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Flash point is one of the major physical and chemical properties used to determine the fire and explosion
hazards of liquids; therefore, the prediction of flash points is an important safety consideration. In this
paper, flash point prediction methods based on vapor pressure, molecular structure, composition range, and
boiling point of flammable liquids are reviewed, respectively. Le Chatelier’s rule and Antoine equations are
used in the correlation between vapor pressure and flash point. Research on the correlations between flash
point and composition range of the mixture has focused on flash point predictions for binary and ternary
solutions, and further investigation for multicomponent solutions is required in the future. With regard to
the correlation between molecular structure and flash point, some key breakthroughs have been made through
quantitative structure-property relationship (QSPR) analysis. In particular, the artificial neural network (ANN)
in QSPR is one possible correlation technique because of its nonlinear property and high accuracy and has
the potential for wide application.

Introduction

Flash point is one of the most important flammability
characteristics of liquids and low-melting substances. The
American Society for Testing and Materials (ASTM) defines
flash point as the lowest temperature, corrected to a pressure of
101.3 kPa, at which the application of an ignition source causes
the vapors of a sample specimen to ignite under specified testing
conditions. Flash point is widely used to evaluate the fire and
explosion hazards of liquids and has great practical significance
in the handling and transporting of such compounds in bulk
quantities. The Abel flash point tester was invented in the United
Kingdom in the 19th century, and current measurement devices
fall into two basic categories, the open cup or the closed cup
design.

There is often a significant demand for flash point data, and
a reliable theoretical method for estimating flash points is
desirable. In this paper, we present an overview of current flash
point prediction methods, which are based on calculations from
vapor pressure, composition range, molecular structure, and
boiling point of flammable liquids, respectively.

Pure Component Flash Point Prediction Methods

Flash Point and Vapor Pressure. In 1917, from the viewpoint
of oxidation reaction in combustion chemistry, Thorton1 deter-
mined the amount of oxygen atoms needed at the upper and
lower limit of inflammability. On the basis of this rule, Mack
et al.2 evaluated the minimum volume fraction of the inflam-
mable substance in air that gives an explosive mixture and
acquired the partial pressure of the inflammable substance. The
flash point temperature could then be read off directly from the
vapor-pressure curve of pure substances. Additionally, the vapor
pressure could be calculated by the method of Lewis and Weber3

if experimentally unavailable. The authors applied this to 2
compounds from aliphalic hydrocarbons, 6 from aromatic
hydrocarbons, 11 from aliphatic esters, 7 from phenols, 2 from

miscellaneous compounds, 8 from alcohols, and 1 from carbon
disulfide and also tried to extend it to a mixture, provided the
components of the mixture are all in the same series and the
vapor pressure of the mixture in the region of flash point must
be known. Apparently, the number of compounds considered
is rather limited. Meanwhile, this mathematical model has
unsatisfactory precision with the maximum deviation of isomeric
compounds being 14 °C, so it may not be appropriate to predict
flash points. In 2000, according to the law that the net enthalpy
of combustion at the flash point varies with the carbon number
in compounds, Huang4 reported flash point prediction models
for aliphatic alkanes, alcohols, aldehydes, and aliphatic alkenes,
respectively. The calculated flash points are in good agreement
with experimental data, with the average absolute relative
deviation being only 0.72 %. However, this research did not
include other chemical families and compounds with compli-
cated structures. Therefore, it is nearly impossible to estimate
flash points for multifunctional or polyfunctional compounds.

Flash Point and Boiling Point. Generally, the evaporability
of compounds is determined by boiling point: the lower the
boiling point, the faster the evaporation. Flash point has a direct
bearing on evaporability: the faster the evaporation rate, the
lower the flash point. Therefore, there is a good relation between
flash point and normal boiling point.

The traditional methods of calculating flash point are mainly
Affen,5 Butler,6 Prugh,7 and Hagopian8 models (Table 1). Since
the 1990s, many other models have been reported in correlation
of boiling points and flash points of pure compounds (Table
2).

Patil9 performed a quadratic correlation for the estimation of
organic compounds

where Tf in K is the flash point temperature and Tb in K is the
normal boiling temperature. However, the maximum deviation
could reach 84 K when it was applied on silicone compounds.10
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Tf/K ) 4.656 + 0.844 · (Tb/K) - 0.234 · 10-3(Tb/K)2
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In 1991, Satyanarayana and Katati11 proposed a model
containing specific gravity as follows

where tf in °C is the flash point temperature; tb in °C is the
normal boiling temperature; and d in g · cm-3 is the liquid
density.

Metcalfe and Metcalfe,12 following Satyanarayana and
Kakati,11 reported a unique empirical equation

where tf in °C is the flash point temperature; tb in °C is the
normal boiling temperature; and d in g · cm-3 is the liquid
density. However, Hshieh10 showed that there is no linear
relation between liquid density and flash points, so the introduc-
tion of this liquid density term is questionable. Although the
predictive ability of eq 2 is excellent for 250 compounds, this
does not mean that the agreement between estimated values and
experimental data is correct for all the compounds considered.
Equation 3 related to liquid density performs relatively poorly
(see Table 2).

In 1992, Satyanarayana and Rao13 proposed an exponential
relationship between flash points and normal boiling points as
follows

where Tf in K is the flash point temperature; Tb in K is the
normal boiling temperature; and a, b, and c are constants. The
prediction of this equation was reliable for not only pure
compounds but also petroleum fractions.

After that, Hiesh10 reported an equation similar to eq 1 to
predict flash points of general organic compounds and organic
silicon compounds

where tf in °C is the flash point temperature and tb in °C is the
normal boiling temperature.

In 2001, Wang et al.14 used the topology chemistry method
and established a mathematical model as follows

where Tf is the flash point and Tb is the boiling point. The flash
point prediction modeling for 1457 organic compounds is
established by computer. The results showed that the calculated
values agree with experimental data satisfactorily, with an
average error of 3.75 %. However, the maximum deviation is
too high to allow a reliable prediction model.

Later, Catoire and Naudet15 developed an equation which was
able to predict flash point with a maximum absolute deviation
of only 10 K

Table 1. Calculation of Flash Point: Flash Point and Normal Boiling Point

method applicability disadvantages

Prugh model pure organic compounds The results read off from chart are
sensitive to the slight variations,
which will lead to deviation.

Affen model alkenes It is only adequate for analogues of
compounds.

Butler model pure alkanes, including chain
alkanes, cycloparaffins, aromatic
hydrocarbons, and distillate easily
separated

It is only adequate for analogues of
compounds.

Hagopian model alcohols, aldehydes, amines, and
ketones

It is only adequate for analogues of
compounds.

Table 2. Comparison between Different Flash Points and Prediction Equations for Pure Compounds: Flash Point and Normal Boiling Pointsa

eq number applicability accuracy limitation

eq 1 - R ) 0.90 silicone compounds
are not included

eq 2 250 organic compounds R ) 0.98 the structure of this
model is questionable

eq 3 249 organic compounds S ) 10.3 °C; dmax ) 30.3 °C the structure of this
model is questinable

eq 4 1200 organic compounds
and 21 petroleum fractions

djr < 1 % more compounds should
be considered

eq 5 494 organic compounds S ) 11.66 °C; dmax ) 30 °C the maximum absolute
deviation is too high

eq 6 1457 organic compounds dj ) 11.96 °C; dmax ) 52 °C the maximum absolute
is too high

eq 7 600 organic compounds dj ) 3 °C, dmax ) 10 °C the range of flash point
temperature, boiling point,
the standard enthalpy of
vaporization, and the
total number of carbon atoms
is limited, respectively

a R, correlation coefficient; S, standard deviation; dmax, the maximum absolute deviation; dj, average absolute deviation; djr, the average absolute
relative deviation.

tf/°C ) -83.3362 + 0.5811 · (tb/°C) +

0.1118 · 10-3/(tb/°C)2 + 38.734 · (d/g · cm-3) (2)

tf/°C ) -84.794 + 0.6208 · (tb/°C) +

37.8127 · (d/g · cm-3) (3)

Tf/K ) a + b(c/(Tb/K))e-c/(Tb/K)/(1 - e-c/(Tb/K))2 (4)

tf/°C ) -54.5377 + 0.5883 · (tb/°C) +

0.00022 · (tb/°C)2 (5)

Tf/K ) 33.176 + 0.67465 · (Tb/K) (6)
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where Tf in K is the flash point temperature; Tb in K is the
normal boiling temperature; ∆Hvap in kJ ·mol-1 is the standard
enthalpy of vaporization at 298.15 K; and n is the total number
of carbon atoms in the molecule. However, the equation is
limited to predictions in the range: 173 e Tf/K e 473; 250 e
Tb/K e 650; 20 e ∆Hvap/(kJ ·mol-1) e 110; 1 e n e 21.

Compared with eq 4, eq 7 includes the standard enthalpy of
vaporization and number of atoms, which represent the molec-
ular structures and correlate the boiling point with flash point.
Catoire15 showed in figures that the boiling point has a statistical
relationship with standard enthalpy of vaporization when ∆Hvap

) (20 to 110) kJ ·mol-1, and the standard enthalpy of vaporiza-
tion only has a relationship with the atom number when n ) 1
to 21. Therefore, more suitable parameters to correlate Tb and
Tf are needed. Maybe molecular weight should be considered,
which has the high correlation with normal boiling point.
Meanwhile, eq 4 with high accuracy shows an exponential
relationship between boiling point and flash point, which should
be attended in the future.

Flash Point and Molecular Structure. In recent years, the
quantitative structure-property relationship (QSPR) has become
an important technique and has been widely used to predict
physical and chemical properties of organic compounds. QSPR
includes multilinear regression (MLR), group contribution
method, and artificial neural network (ANN) and so on. Various
approaches to describe the molecular structure in the ANN
method have been successfully used, including molecular
fragments, topological indices, and descriptors calculated by
semiempirical quantum chemical methods. Table 3 shows
several QSPR models for predicting flash points of pure
compounds.

In the 1990s, the method for estimating the flash points of
organic compounds from their molecular structure was devel-
oped by Suzuki et al.16,17 Twenty-five atomic and group
contributions were employed to predict the flash points of 33
aliphatic and 26 aromatic hydrocarbons with an average absolute
deviation of (12.2 and 6.1) °C, respectively. Subsequently,
correlation between flash point and molecular structure of
organic compounds using the group bond contribution method
was reported by Suzuki.18 In 1999, Suzuki and Tetteh19 applied
a group bond contribution method in a radial basis function
(RBF) neural network to estimate both the flash points and the
boiling points for a large set of 400 compounds from different
classes. The average absolute deviation with RBF was 13 °C
less than that with partial least-squares regression (PLS),
indicating the superior predictive ability of the neural model
and strongly suggesting that a nonlinear relationship exists
between the input and target parameters of the data. However,
the effects of second-order terms in the PLS models were not
studied.

Zefirov et al.20 focus on the research of the fragmental
descriptors, which could be applied to the QSPR modeling to
predict the flash points. In 2003, Zefirov et al.21 used a set of
fragmental descriptors, instead of any topological index for the
QSPR models. It reveals in Table 3 that ANN is of higher
accuracy than MLR, although MLR is simpler and faster.

Albahri22 developed a structural group contribution (SGC)
method and displayed a quartic equation to predict the flash
points of 500 pure hydrocarbon compounds

where Fv is the numerical value of flash point temperature and
∑iΦi is the sum of the molecular structure group contributions.
However, the maximum absolute deviation is too high, and there
is considerable work needed to determine the structural group
contributions for compounds other than hydrocarbons.

Kartrizky et al.23,24 have concentrated on the study of multiple
linear regression methods in QSPR. In 2007, Kartrizky et al.24

made use of the CODESSA PRO software and established
quantitative structure-flash point relationships for a diverse set
of 758 compounds. Their model based on either MLR or ANN
is highly accurate with the average absolute deviation of about
13 K and can acquire an estimate function from the studied
samples while the form of the mathematical function is
unknown. In 2009, Patel et al.25 applied QSPR in computer-
aided molecular design (CAMD) using topological indices,
which has a better representation of molecules, and found that
the flash points of 236 compounds calculated by the BP neural
network with R2 being 0.898 had much higher accuracy than
those by multiple linear regression with R2 being 0.523.
However, the average absolute deviation is more than 20 K,
indicating that the predicted flash points by BP-ANN still could
not agree well with experimental data.

In China, based on Xu’s method26 of three group parameters
for correlating basic physical properties of organic compounds,
Wang et al.27 developed the three-parameter group contribution
method to predict the flash point of pure compounds

where Fv is the numerical value of flash point temperature; ni

is the number of molecular group i; ∆i
(0), ∆i

(1), and ∆i
(2) are group

contribution indices which were confirmed for different groups
in molecules step by step based on flash points of pure
compounds, and zi ) ni/∑nj.

This method was a bold attempt, but the information of both
group property and connectivity in the analyzed molecules was
ignored. The results were just calculated from the experimental
data of flash points, and therefore the applicability is limited.

In 2007, Pan et al.28 applied the group contribution method
in the back-propagation (BP) neural network model and used
32 kinds of molecular groups as input varieties for flash points
of 258 organic compounds to determine the quantitative relation
between molecular structure and flash point. Subsequently, BP
was combined with the group bond contribution and topology
to predict the flash points of 44 alkanes and 40 fatty alcohols,
respectively.29,30 In general, the results showed that the predicted
flash points are in good agreement with experimental data, with
the absolute mean relative error being less than 2.25 %, which
is superior to those of traditional group contribution methods.
In 2007, Pan and co-workers31 developed a model combining
the group bond contribution method with the back-propagation
(BP) neural network for 92 alkenes. The smaller average
absolute deviation shows that the group bond contribution
method is superior to the group contribution method.

As for BP-ANN methods with topological indices, Pan et
al.30 only use six indices; however, the model only applied to

Tf/K )

1.477 · (Tb/K)0.79686 · (∆Hvap/kJ ·mol-1)0.16845 · n-0.05948

(7)

Fv ) [84.65 + 64.18 · ( ∑
i

Φi) - 5.6345 · ( ∑
i

Φi)
2 +

0.360 · ( ∑
i

Φi)
3 - 0.0101 · ( ∑

i

Φi)
4] (8)

Fv ) 27.0 + 13.5 · { ∑
i

[∆i
(0) + ni(∆i

(1) + zi∆i
(2))] -

59.7}0.4 (9)
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the fatty chemical family with simple structures. Patel et al.25

used indices involving the shape, the size of the molecule, and
the molecular connectivity that could provide some information
on the interactions among molecules. However, alcohols and
amines considered by Patel and his co-worker have additional
molecular phenomena of hydrogen bonding that dictate the
physical properties associated with the chemicals. The topologi-
cal indices do not give sufficient information on hydrogen
bonding ability, which leads to the low predication ability of
this model. Therefore, the hydrogen donor charged solvent
accessible surface area is recommended as a parameter here to
connect with hydrogen bonding ability.

For the group contribution method, Alahri22 chose 9 kinds
of groups for paraffins, 9 for olefins, 10 for cyclic, and 7 for
aromatics. Apparently, groups of many other chemical families
are not involved. Pan et al.28 used 32 kinds of groups only for
alkanes, while Wang et al.27 applied 50 kinds of groups
containing S, N, and halogen elements for 750 compounds. A
hydrogen atom is attached to one of the electronegative
elements, such as F, O, or N, so it has the same problem as the
model by Patel et al.25

For the group bond contribution method, Pan et al.31 deleted
7 kinds of bonds for cyclic compounds which were used in a
previous work,29 and employed only 9 kinds of group bonds to

predict the flash points of 92 alkanes including cyclic com-
pounds with an average absolute deviation of only 4.8 K. The
model is superior to the previous one by Pan29 with more sample
compounds, less group bonds involved, and higher accuracy.

ANN modeling has been rather successfully employed in the
estimation of physical and chemical properties such as flash
point because of its inherent ability to incorporate nonlinear
and cross-product terms into the model, which better reflects
the interactions between molecular groups. However, there are
some problems associated with this technique, as Taskinen
et al.32 showed. Due to the slow iterative training and the
validation procedures, it could not ensure that the optimal
architecture is found or overtrain and overfitting are avoided.32

Mixture Section

Flash Point and Vapor Pressure. Proposed in 1891, Le
Chatelier’s rule33 for the lower flammability limits of binary
and multicomponent solutions, LFLmix, containing N combustible
compounds is as follows

Table 3. Comparison between Different Flash Points and Prediction Equations for Pure Compounds: Flash Point and Molecular Structurea

ref no. method applicability accuracy index

19 group bond contribution
method in RBF-ANN

400 (Si compounds
not included)

dmax ) 40 °C, dj ) 12 °C 26 descriptors involving the bulk, i.e.,
size and shape of the molecule;
the specific polar characteristics
of the functional groups which
can be correlated directly with the
structural additivity scheme

PLS dmax ) 100 °C; dj ) 25 °C

21 MLR 525 R2 ) 0.832 to 0.935 molecular fragments
ANN R2 ) 0.959; S ) 14.6 °C

22 SGC 500 dj ) 5.3 °C; dmax ) 35.7 °C the sum of the
molecular structure
group contributions

23 three-parameter
QSPR model

271 S ) 16.1 K the gravitational index over all bonded
atoms; a hydrogen donor charged solvent
accessible surface area; the relative
molecular weight

S ) 11.2 K; dmax ) 46 K experimental boiling point; the ratio of maximum
(by absolute value) atomic partial
negative surface charge and the sum of
similar negative charges in the molecule;
a hydrogen donor charged solvent accessible
surface area

S ) (14.15 to 15.66) K predicted boiling point; the hydrogen bonding
surface area; the molecular weight

24 MLR 758 S ) 18.9 K; dj ) 13.9 K BP; two descriptors related to hydrogen
bonding ability of molecules;
relative number of triple bonds

BP-ANN 600 R2 ) 0.978; dj ) 12.6 K BP; two descriptors related to hydrogen bonding
ability of molecules; Balaban J index
(based on topological distance)

25 BP-ANN 236 R2 ) 0.898; djr ) 6.16 %; dj ) 20.44 K 29 topological indices
involving molecular
connectivity, the size and
the shape of the molecule

MLR 600 R2 ) 0.523; dj ) 24.92 K; djr ) 7.42 %

27 three-parameter group
contribution

750 djr ) 4.71 % 50 kinds of group

28 group contribution
method in BP-ANN

258 dj ) 6.22 K; djr ) 2.24 % 32 kinds of molecular groups

29 group bond contribution
method in BP-ANN

44 alkanes dj ) 6.0 K; djr ) 2.15 % 16 kinds of group bonds

30 BP-ANN 40 fatty alcohols dj ) 2.4 K; djr ) 0.75 % 6 topological indices to represent molecular
structure descriptors, better to identiy the isomeric

31 group bond contribution
method in BP-ANN

92 alkanes dj ) 4.8 K 9 kinds of group bonds were used as
molecular structure descriptors

a R, correlation coefficient; S, standard deviation; dmax, the maximum absolute deviation; dj, average absolute deviation; djr, the average absolute
relative deviation.

LFLmix ) 1/[ ∑
i

(yi/LFLi)], i ) 1, 2, ..., N (10)
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where yi is the composition of a flammable substance i in the
vapor phase and LFLi is the lower flammability limit (LFL) of
the pure component i.

In 1952, Coward and Jones34 proposed that the pressure has
negligible influence on LFL at near atmospheric pressure and
also there are only small changes in LFL over moderate ranges.
In 1965, Zabetakis35 accounted for the temperature effect on
various types of substances by the equation

where Li(t) and Li(25) in kPa are the lower flammability limits
at t °C and 25 °C, respectively, and ∆Hci is the net enthalpy of
combination in kJ ·mol-1. The values of Li(25) have been
tabulated by Coward and Jones34 and Zabetakis.35

The partial pressures Pi corresponding to the vapor-liquid
equilibrium (VLE) at temperature T can be calculated using the
following equation, assuming the vapor-air mixture as an ideal
gas

where xi is the mole fraction of component i; γi is the activity
coefficient; and Pi

δ in kPa is the saturated vapor pressure of
component i at temperature T. Activity coefficients have been
thoroughly studied in vapor-liquid equilibrium modeling.
Hence, UNIFAC36–38 was developed for the prediction of
activity coefficients in nonelectrolyte liquid mixtures, and other
correlative models, such as Wilson,39 NRTL,40 van Laar41

equations, etc. are also widely used. However, there is still no
universal model to estimate activity coefficients.

The saturated vapor pressure variation with temperature for
a pure substance i can be estimated by the Antoine equation

The constants Ai, Bi, and Ci may be found for many substances
in Gmehling et al.42

On the basis of the above studies, assuming that for a pure
combustible component i the flash point was estimated as the
temperature for which the vapor pressure Pi

δ equals the partial
pressure at the lower flammability limit, Gmehling and Ras-
mussen43 used eqs 10 to 13 to predicate the flash points for
isobutanol + toluene, methanol + methylacetate, water +
methanol, water + ethanol, water + 2-propanol, chloroform +
methylethylketone, chloroform + methylacetate, and ethanol +
toluene + ethyl acetate, respectively. Unfortunately, only
predictive curves could be read in this paper to show that the
estimated flash points did not agree well with experimental data.
The deviation may be caused by sensitivity of value Li(t) to
Li(25) and the value for pure component flash point. Meanwhile,
Li(25) and the flash point temperatures of the individual
components of the mixture are not known for all compounds,
which hinders the use of this model to predict the flash points.

In 1972, Affens and McLaren44 have developed a model
based upon eq 10 and Raoult’s law, to predict the flash point
for binary hydrocarbon solutions

where T in K describes the flash point of the solution when it
satisfied both eqs 14 and 15.

White et al.45 reduced Affens and Mclaren’s model to a
simpler equation by ignoring the temperature effect upon the
lower flammability limit (LFL) for predication of the flash points
of two aviation-fuel mixtures JP-4/JP-8 and JP-5/JP08

where Pi,f in kPa is the vapor pressure of the pure substance, i,
at its flash point.

In 2002, Crowl and Louvar46 suggested that flash point of a
liquid solution with only one component which is flammable
could be estimated using Raoult’s law. This model is only
adequate for a composition range where the flammable-
substance composition lies close to unity

where T2,f in K is the flash point of the pure substance, 2, which
is flammable.

Garland and Maccolm47 developed a statistical model to
predict the flash point of an organic acid-water solution: acetic
acid + propionic acid + butyric acid + water. However, this
model is limited to solutions assumed as ideal with composition
range considered. Furthermore, the main assumption that the
linear relationship between the flash point and the composition
of the solution components leads to failure of this model.

Apparently, none of the above-mentioned models are able to
effectively predict the measured flash point for a nonideal
solution. Since 2002, Liaw et al.,48–55 introducing liquid phase
activity coefficients, have reported a series of the mathematical
models, which could be used for predicting the flash points for
both nonideality and ideality (Table 4). From the definition of
flash point,56 the LFL of component i, LFLi, was expressed as

where Pi,f
δ in kPa is its saturated vapor pressure at flash point;

and P in kPa is the ambient pressure.
In 2002, Liaw et al.,48,49 assuming LFL is invariant, used

eqs 10, 12, and 18 and developed the flash point prediction
models, which could be used for predicting flash points of binary
organic solutions (octane + heptane, methanol + methyl acetate,
octane + 1-butanol, and octane + ethanol) and aqueous-organic
solutions (water + methanol, water + ethanol, water +
n-propanol, and water + isopropanol). The curve predicted by
the flash point prediction model as proposed in this work appears
to be consistent with the experimentally derived data, which
demonstrates that the flash point prediction model is able to
successfully predict the flash-point variation of an almost-ideal
solution. Figures in the paper reveal that the predictive curves
based upon Affens and McLaren’s model, White et al.’s

Li(t)/kPa ) Li(25)/kPa - 0.182(t/°C -

25)/(∆Hci/kJ ·mol-1) (11)

Pi/kPa ) xiγi(Pi
δ/kPa) (12)

log(Pi
δ/kPa) ) Ai - Bi/(T/K + Ci) (13)

∑xi · 10a ·
1642 - (Ti,f/K + 230)

1642 - (T/K + 230)
) 1 (14)

a ) -
Bi(Ti,f/K - T/K)

(Ti,f/K + 230)(T/K + 230)
(15)

1 ) ∑
xi(Pi

δ/kPa)

Pi,f/kPa
)

x1(P1
δ/kPa)

P1,f/kPa
+

x2(P2
δ/kPa)

P2,f/kPa
(16)

Tf/K )
B2

(B2/(T2,f/K + C2)) + log x2
- C2 (17)

LFLi )
Pi,f

δ /kPa

P/kPa
(18)
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equation, and Crowl and Louvar’s equation, respectively, almost
overlap with that result predicted by the flash point prediction
model for an almost-ideal solution.

On the basis of the above achievements, Liaw and Chiu50

reported a general mathematical model, which not only is
applicable to the above-mentioned solutions but also can predict
the flash point of ternary liquid with the highest maximum
deviation of 2.85 K for water + methanol + ethanol and 0.76
K for water + methanol + isopropanol. Apart from Catoire’s
correlation,57,58 Liaw et al.’s models are the only ones to
correctly predict the occurrence of minimum flash point behavior
(which can dramatically increase the risk of explosion hazard),51,59

and of maximum flash point behavior (which is a blessing,
reducing the risk) in mixtures.52 Subsequently, assuming that
the liquid phases are in equilibrium, Liaw et al.53–55 reported a
series of models to predict the flash points for binary partially
miscible mixtures and ternary partially miscible mixtures.
Comparing the prediction results with the corresponding ex-
perimentally derived data or the caculated results ignoring partial
miscibility, it shows that the prediction models are of higher
accuracy with the highest maximum deviation of about 6 K.
However, the flash point is calculated iteratively, in particular
for nonideal solutions for which the calculations of activity
coefficients are requested.

In 2002, Yang et al.60 proposed experimental models for four-
components system of ethers, ether-ketone-alcohol, and
alcohol-ether solutions, respectively, by using the three-term
Taylor series. Although the calculated value is close to
experimental data with the maximum deviation of 5 °C, the
model is only applicable to the mentioned types of liquid. When

applying to other liquid systems, the maximum of 26 °C is
obtained. Similarly, Zhang et al.61 have reported formulas
pertaining to ternary solutions with alcohols, ethers, and alcohol-
ether, respectively, by way of the three-term Taylor series.
Moreover, the changing regularities of the flash point for the
mixed liquid are figured. Apparently, these models have the
same disadvantage as the ones mentioned by Yang et al.

In general, a series of Liaw’s models are rather dependable
with high accuracy, and every parameter in the models has a
physical meaning which is also theoretically reliable, although
the procedure of flash point calculation is iterative.

Flash Point and Boiling Point. Making use of the correlation
of flash point with boiling point, Riazi et al.62 modeled pure
hydrocarbons and oil fractions having normal boiling points in
(339 to 477) K, or ASTM10 % temperature in (477 to 755) K

where Tf in K is the closed cup flash point temperature and Tb

in K is the normal boiling point of pure hydrocarbons or
ASTM10 % temperature of oil distillate.

In addition, with linear relation between flash point and
normal boiling point, a model is obtained directly as follows

Table 4. Comparison between Different Flash Points and Prediction Equations for Mixtures: Flash Point and Vapor Pressurea

ref no. mixture type system
methods to calculate

the activity coefficients models compared accuracy

47 binary organic solution octane + heptane NRTL equation Affens and McLaren’s
model; White et al.’s
equation

-
octane + ethanol
octane + 1-butanol Wilson equation
methanol + methyl acetate UNIQUAC, three suffix

margules, NRTL equation,
Wilson equation

48 binary aqueous-organic
solutions

water + methanol Wilson equation,
NRTL equation, UNIQUAC

Crowl and Louvar’s
model

-

water + ethanol Wilson equation,
NRTL equation, UNIQUAC

water + n-propanol Wilson equation,
NRTL equation, UNIQUAC

water + isopropanol Wilson equation,
NRTL equation, UNIQUAC,

49 ternary aqueous-organic
solutions

water + methanol + ethanol Wilson equation,
NRTL equation, UNIQUAC

Garland and Maccolm’s
model

-
water + methanol + isopropanol

50 binary orgnic solution
exhibiting minimum
flash-point behavior

octane + 1-butanol Wilson equation dmax ) 0.13 °C
octane + 2-butanol
ethanol + octane NRTL equation
methyl acrylate + methanol
isoamyl acetate +

isoamyl alcohol
51 binary organic solution

exhibiting maximum
flash-point behavior

cyclohexanol + phenol Wilson equation,
NRTL equation, UNIQUAC

dmax ) 0.45 °C
cyclohexanone+ phenol
p-picoline + phenol
acetophenone + phenol

52 binary partially
miscible mixtures

ethanol + tetradecane NRTL equation,
T-K-Wilson equation

- dj ) (0.37 to 6.21) °C;
dj(Ignoring partial
miscibility ) (1.27 to 6.29) °C

methanol + octane
methanol + decane
acetone + decane
methanol + 2,2,4-trimethylpentane

53 binary partically
miscible mixtures

water + 1-butanol NRTL equation, UNIQUAC - dj ) (0.3 to 4.8) K;
dj(Ignoring partial
miscibility ) (1.0 to 17.6) K

water + 2-butanol
water + isobutanol
water + 1-pentanol
water + octane

54 ternary partially
miscible mixtures

methanol + toluene +
2,2,4-trimethypentane

NRTL equation, UNIQUAC - dj ) (0.47 to 2.02) K

methanol + acetone + decane

a dmax, the maximum absolute deviation; dj, average absolute deviation.

1/(1.8 · (Tf/K) - 0.33) ) -0.014568 +
2.84947/(1.8 · (Tb/K) - 0.33) +

1.903 · 10-3 ln(1.8 · (Tb/K) - 0.33) (19)

1.8 · (Tf/K) ) 1.27 · (Tb/K) + 9.96 (20)
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where Tf in K is the flash point and Tb in K is the boiling point
of pure hydrocarbons or ASTM10 % temperature of oil distillate.
For Tb at about 533 K, the evaluations are relatively accurate.

Similarly, Li63 proposed a conventional modeling through
linear regression by using some data from the calculation
package of ASTM10 %. Two separate model equations were
achieved for flash points at < 423 K and > 423 K, respectively.
Compared to eqs 19 and 20, the figures in the paper showed
that the results evaluated by Li’s equation agree better with the
collected flash points. Unfornately, no indication is given in
this paper concerning the mean absolute deviation, the standard
deviation, or the absolute deviation.

Catoire and Naudet57,58 used eq 715 to predict the flash points
of mixtures (Table 5). UNIFAC was introduced to calculate the
acitivity coeffients for nonideal solutions. The model for
mixtures is of high accuracy with the highest maximum absolute
deviation being 6 K. However, the technique used to derive
this equation was not mentioned. Equation 7 is limited to
predictions in the range (-100 to 200) °C. This study also
stressed the need for reliable experimental values of the flash
points.

For mixtures, these models always have bounds for the normal
boiling points of compounds. The flash points for a mixture
vary from composites and type of mixture, so it is relatively
difficult to acquire a general model only containing boiling point
for the flash point predication of all types of mixtures.

QSRP Engineering Models. In the 1990s, the near-infrared
spectroscopy technique was widely used in the petrochemical
industry, involving analysis of oil qualities, gasoline blending
process control, catalytic cracking, etc. Xu et al.64 combined a
charge-coupled device near-infrared spectrometer (CCD-NIR)
and PLS for the rapid determination of diesel physical properties
for 70 samples, including flash point. The results determined
by NIR with the maximum absolute deviation being 3 °C agree
with those determined by standard methods. In addition, the
NIR method is more rapid, has better reproducibility and lower
analysis costs, and needs less manpower.

Apart from the near-infrared analysis, based on the local data
from hydrogenation equipment, such as reflux temperature,
Wang et al.65 established predictive models, respectively, using

BP and RBF in the neural network for three important quality
targets of diesel oil, including flash point. The precision and
convergence speed of two kinds of neural networks are
compared. It was found that with the same amount of nerve
cells the predicted error in BP is about 60 to 1000 times less
than that of RBF with the average absolute deviation of about
0.1 °C, but if nerve cells are increased within a certain range,
it will decrease the error in RBF.

In the engineering field, although the composites of the oil
fractions transported are complicated, they are always analogues.
Therefore, maybe QSPR modeling for pure compounds should
be considered to combine with that of engineering modeling.

Conclusions

Over the past decade, on the basis of traditional methods and
practical experience, advanced technologies such as near-
infrared analysis and artificial neural networks have been
introduced, and new breakthroughs have been achieved par-
ticularly in the correlation between flash point and the molecular
structure.

However, the study on flash point itself and the correlation
of flash point with other physical and chemical properties (e.g.,
boiling point, vapor pressure, composition range) has been
inadequate and needs further investigation. In view of advan-
tages of QSPR, we may combine QSPR together with other
prediction models and advanced technologies and seek the
correlation between flash point and molecular structure to
construct a universal prediction method in the future.

Note Added after ASAP Publication: This paper was published
on July 14, 2010. A reference was added, and changes were made
to Table 1. The corrected version was reposted on July 27, 2010.
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