Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents

Monika Geppert-Rybczyńska,*,* Andreas Heintz, Jochen K. Lehmann, and Aleksandra Golus*

University of Rostock, Institute of Chemistry, Department of Physical Chemistry, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany

Densities of six binary mixtures containing the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide mixed with tetrahydrofuran or acetonitrile or dimethyl sulfoxide were determined at atmospheric pressures in the temperature range between 293.15 K and 313.15 K. On the basis of the experimental densities, excess molar volumes were calculated. Comparison of excess molar volumes of six binary systems reveals the slight influence of the IL's cation on these physical properties and the small temperature dependence of V^{E} for systems containing dimethyl sulfoxide.

Introduction

Ionic liquids (IL) are known to be a new and partly wellestablished class of liquids used in many fields of application such as chemical separation processes, new catalytic reaction, electrochemistry, heat transfer, solar energy techniques, and many other more special areas.¹⁻⁹ The chemical complexity of the cations and anions involved in the liquid structure exhibit also a challenge for theoreticians to understand the thermophysical properties on a molecular basis using molecular dynamics. However, reliable molecular force fields needed for such calculations have to be tested against systematic experimentally determined thermodynamic properties, in the first place caloric properties such as heat capacities and volume properties such as densities and excess volumes in the case of IL + solvent mixtures. In this paper, we present a new series of densities of such binary mixtures providing useful experimental material for testing molecular dynamics calculations and the force field parameters on which these calculations are based.

Experimental Section

Chemicals. The characteristic data of all chemicals used, as well as the water content (determined by means of Coulometric Karl Fischer Titrator, Titroline KF Trace, Schott Instruments GmbH, with standard deviations (3 to 5) ppm), are presented in Table 1. In this table, there are also the literature data^{10–33} and experimental densities of the pure substances used in this work.

The ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM NTf₂) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM NTf₂) have been dried and degassed under vacuum at elevated temperatures. Tetrahydrofuran (THF), acetonitrile, and dimethyl sulfoxide (DMSO) were used without any other purification after checking the water content and comparing their densities with the literature values. They were also degassed in ultrasonic cleaner before using. During the experiment, the quality of all chemicals was periodically checked by density measurements.

* Corresponding author. E-mail: monikageppert@wp.pl.

[†] Permanent address: University of Silesia, Institute of Chemistry, Department of Physical Chemistry, Szkolna 9, 40-006, Katowice, Poland.

Density Measurements. The densities of all pure chemicals and the corresponding mixtures were measured using a vibrating-tube densimeter (model Anton Paar DMA 602). This measuring set is well-known and has widely been used in the literature. However, in special cases this method implies problems as soon as the viscosities of binary components differ too much from each other. Therefore, one has to decide carefully when viscosity corrections have to be taken into account. Second, the apparatus has to be calibrated at all temperatures using very clean water and air of known humidity. The description of experimental details and procedures has already been reported elsewhere;³⁴ the estimated experimental error was \pm 0.00002 g·cm⁻³ (when the viscosity correction is applied). During our procedure, the correctness of the values obtained was regularly checked by comparison of densities determined for some typical solvents (nonane, cyclohexane, and dichloromethane) where reliable densities are known from the literature.

Since the viscosities of our ionic liquids (EMIM NTf₂ and BMIM NTf₂) are not very high (62.64 mPa \cdot s for BMIM NTf₂, 38.98 mPa·s for EMIM NTf₂ at 293.15 K¹⁰), it is justified to suppose that the influence of viscosity correction on the V^{E} data is not very significant. According to an analysis made by Sanmamed and co-workers,³⁴ it follows that for our binary mixtures density error caused by viscosity can not be higher than 0.0001 g·cm⁻³ (eq 4 and Figure 3 in Sanmamed et al.³⁵). This corresponds also to the analysis made by some of us in an earlier paper.³⁴ On this basis, we calculated the influence of viscosity corrections on the excess molar volumes, $V^{\rm E}$, in our present systems. A maximal shift of $V^{\rm E}$ of about 0.03 cm³·mol⁻¹ was obtained in the worst case (for very concentrated solutions of BMIM NTf₂), which is eventually about a few percent of any $V^{\rm E}$ value. As a result, neglecting the viscosity correction does not change the data significantly in a quantitative sense.

Results and Discussion

The density measurements, ρ , for six binary mixtures were carried out for the total concentration range at temperatures from (293.15 to 313.15) K (in the case of mixtures containing THF to 308.15 K) in steps of 5 K. The experimental densities are presented in Tables 2 to 7.

			ρ/	$(g \cdot cm^{-3})$	
compound	source and purity	amount of water	this work	literature	$AAD/(\%)^a$
tetrahydrofuran	Sigma-Aldrich, puriss. p.a.	107 ppm	0.88198	0.88193 ^c 0.88195 ^{d,e} 0.88198 ^f 0.881996 ^g 0.88201 ^h 0.8821 ⁱ	0.004
acetonitrile	HiPerSolv Chromanorm, for HPLC-Isocratic grade	15 ppm	0.77652	0.7762 ^j 0.77628 ^k 0.7765 ^l 0.776533 ^g 0.77655 ^m 0.776565 ^h 0.77662 ⁿ 0.77673 ^o	0.016
dimethyl sulfoxide	Fluka Analytical, Puriss p.a. ACS \geq 99.9 %	148 ppm	1.09530	1.09527^{g} 1.09530^{h} 1.09534^{o} 1.09556^{p} 1.0956^{q} 1.0959^{r}	0.019
EMIM NTf ₂	Io-li-tech, 99.9 %	25 ppm	1.51696 (1.51656) ^b	1.51471 ^s 1.5187 ^t 1.519 ^u ; 1.5219 ^v 1.52 ^w ; 1.5252 ^x	0.24
BMIM NTf ₂	Io-li-tech, 99.9 %	39 ppm	$\frac{1.43683}{(1.43634)^b}$	1.43573 ^y ; 1.43601 ^s 1.4366 ^{t,z} 1.43664 ^z 1.4397 ^v	0.063

Table 1. Source, Purity, Density ρ , and Amount of Water in Pure Compounds at 298.15 K

^{*a*} Absolute Average Deviation = $\sum_{n=1}^{n} |(\rho_{exp} - \rho_{lit})/\rho_{exp}| \cdot (100/n)$. ^{*b*} After viscosity correction using viscosity data from ref 10. ^{*c*} Ref 11. ^{*d*} Ref 12. ^{*e*} Ref 13. ^{*f*} Ref 14. ^{*g*} Ref 15. ^{*h*} Ref 16. ^{*i*} Ref 16. ^{*i*} Ref 18. ^{*k*} Ref 19. ^{*l*} Ref 20. ^{*m*} Ref 21. ^{*n*} Ref 22. ^{*o*} Ref 23. ^{*p*} Ref 24. ^{*q*} Ref 25. ^{*r*} Ref 26. ^{*s*} Ref 27. ^{*t*} Ref 28. ^{*u*} Ref 29. ^{*v*} Ref 10. ^{*w*} Ref 30. ^{*x*} Ref 31. ^{*y*} Ref 32. ^{*z*} Ref 33.

Table 2. Densities, ρ , and Excess Molar Volumes, V^{E} , at Temperatures T for the Binary System EMIM NTf₂ (1) + Tetrahydrofuran (2)

		T/	K	
x_1	293.15	298.15	303.13	308.15
		$\rho/(g \cdot cm^{-3})$		
0	0.88741	0.88198	0.87647	0.87096
0.1037	1.06502	1.06132	1.05614	1.05120
0.2024	1.17877	1.17360	1.16846	1.16355
0.3255	1.27855	1.27414	1.26966	1.26442
0.3841	1.31559	1.31096	1.30648	1.30180
0.4425	1.34751	1.34257	1.33770	1.33256
0.5469	1.39540	1.39069	1.38578	1.38131
0.6863	1.44480	1.44010	1.43545	1.43062
0.7697	1.46916	1.46451	1.45945	1.45467
0.9177	1.50522	1.50021	1.49517	1.49013
1	1.52208	1.51696	1.51185	1.50680
		$V^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1})$	¹)	
0.1037	-0.707	-0.900	-0.965	-1.054
0.2024	-0.866	-0.930	-1.003	-1.100
0.3255	-0.829	-0.972	-1.115	-1.174
0.3841	-0.791	-0.910	-1.052	-1.170
0.4425	-0.731	-0.811	-0.905	-0.963
0.5469	-0.639	-0.741	-0.823	-0.956
0.6863	-0.395	-0.490	-0.594	-0.668
0.7697	-0.284	-0.380	-0.416	-0.488
0.9177	-0.102	-0.130	-0.152	-0.165

On the basis of the densities, excess molar volumes were calculated according to the equation

$$V^{\rm E} = V - \sum_{i=1}^{2} x_i V_i \tag{1}$$

Table 3. Densities, ρ , and Excess Molar Volumes	, V ^E , at
Temperatures T for the Binary System EMIM NT	$f_{1}(1) +$
Acetonitrile (2)	

			T/K		
x_1	293.15	298.15	303.13	308.15	313.15
		<i>ρ</i> /(g	•cm ⁻³)		
0	0.78189	0.77652	0.77112	0.76568	0.76020
0.0533	0.94696	0.94154	0.93610	0.93061	0.92526
0.1886	1.18376	1.17850	1.17340	1.16818	1.16268
0.3370	1.31694	1.31168	1.30648	1.30114	1.29639
0.4724	1.39006	1.38482	1.37962	1.37457	1.36951
0.6520	1.45253	1.44740	1.44224	1.43710	1.43202
0.8245	1.49264	1.48758	1.48239	1.47735	1.47228
0.9240	1.51036	1.50526	1.50020	1.49513	1.49011
1	1.52208	1.51696	1.51185	1.50680	1.50174
		V ^E /(cm	$n^3 \cdot mol^{-1}$)		
0.0533	-0.337	-0.364	-0.392	-0.421	-0.462
0.1886	-0.605	-0.659	-0.729	-0.792	-0.837
0.3370	-0.648	-0.696	-0.753	-0.796	-0.899
0.4724	-0.583	-0.623	-0.667	-0.726	-0.788
0.6520	-0.409	-0.444	-0.475	-0.504	-0.543
0.8245	-0.206	-0.234	-0.241	-0.264	-0.284
0.9240	-0.083	-0.094	-0.110	-0.117	-0.132

where V is the molar volume; x_i is the mole fraction of component *i* of the mixture; and V_i is the molar volume of component *i* of the mixture.

All calculated excess molar volumes are listed in Tables 2 to 7 and are shown in Figures 1 to 6. In Figure 7, a comparison of excess molar volumes of all six mixtures under the test is presented at T = 298.15 K.

For a satisfactory correlation, the change of density with composition was described using the Connors and Wright equation³⁶

Table 4. Densities, ρ , and Excess Molar Volumes, V^{E} , at Temperatures T for the Binary System EMIM NTf₂ (1) + Dimethyl Sulfoxide (2)

			T/K		
x_1	293.15	298.15	303.13	308.15	313.15
		<i>ρ</i> /(g•	cm ⁻³)		
0	1.10031	1.09530	1.09031	1.08527	1.08027
0.0593	1.17370	1.16867	1.16366	1.15866	1.15363
0.1959	1.28973	1.28468	1.27959	1.27453	1.26948
0.3595	1.37556	1.37044	1.36531	1.36026	1.35520
0.5086	1.42776	1.42261	1.41747	1.41242	1.40736
0.6325	1.45988	1.45475	1.44964	1.44459	1.43952
0.7778	1.48912	1.48404	1.47896	1.47389	1.46884
0.9378	1.51361	1.50851	1.50342	1.49838	1.49329
1	1.52208	1.51696	1.51185	1.50680	1.50174
		VE/(cm	$^{3} \cdot mol^{-1}$)		
0.0593	0.344	0.341	0.339	0.334	0.331
0.1959	0.686	0.680	0.679	0.674	0.670
0.3595	0.743	0.741	0.741	0.735	0.731
0.5086	0.635	0.637	0.638	0.633	0.628
0.6325	0.498	0.497	0.496	0.491	0.488
0.7778	0.305	0.298	0.293	0.293	0.288
0.9378	0.141	0.138	0.135	0.133	0.139

Table 5. Densities, ρ , and Excess Molar Volumes, V^{E} , at Temperatures *T* for the Binary System BMIM NTf₂ (1) + Tetrahydrofuran (2)

		17	K	
x_1	293.15	298.15	303.13	308.15
		$\rho/(g \cdot cm^{-3})$		
0	0.88741	0.88198	0.87647	0.87096
0.0488	0.97817	0.97369	0.97001	0.96412
0.1139	1.06971	1.06522	1.06065	1.05592
0.1771	1.13661	1.13217	1.12801	1.12234
0.2815	1.21829	1.21374	1.20923	1.20463
0.4048	1.28631	1.28183	1.27724	1.27269
0.4897	1.32141	1.31710	1.31214	1.30742
0.6329	1.36737	1.36288	1.35873	1.35321
0.7468	1.39556	1.39106	1.38629	1.38145
0.9071	1.42674	1.42192	1.41719	1.41245
1	1.44163	1.43683	1.43198	1.42716
		$V^{\rm E}/(\rm cm^3 \cdot mol^-)$	¹)	
0.0488	-0.442	-0.545	-0.736	-0.718
0.1139	-0.746	-0.860	-0.977	-1.078
0.1771	-0.838	-0.962	-1.124	-1.129
0.2815	-0.847	-0.957	-1.083	-1.199
0.4048	-0.779	-0.892	-1.002	-1.117
0.4897	-0.660	-0.791	-0.843	-0.926
0.6329	-0.472	-0.567	-0.728	-0.668
0.7468	-0.321	-0.406	-0.453	-0.486
0.9071	-0.098	-0.108	-0.141	-0.171
	_			
	[bx_1	(1)/	
ρ	$= \rho_1 - 1 $	$-\frac{1}{(1-ar)}$	$(1 - x_1)(\rho_1 - \gamma_1)(\rho_1 - \gamma_1)$	$-\rho_2$) (2)
	L	$(1 u n_1)$		

where ρ_1 and ρ_2 are densities of pure compounds; x_i is the mole fraction of component *i* of the mixture; and the *a* and *b* are fitting constants. Equation 2 was until now generally adopted only for the concentration dependencies of surface tensions,³⁷ but in our case it also gives a fit better (a low standard deviation from eq 2) than any other simple polynomial.

The coefficients a and b in eq 2 are presented in Table 8 for all mixtures studied.

The excess volumes were described for each temperature using a Neau equation 38

$$V^{\rm E} = x_1(1-x_1) \sum_{i=0}^{m} A_i \left[x_1 - \frac{1}{(1+35x_1)} \right]^i$$
(3)

Table 6. Densities, ρ , and Excess Molar Volumes, V^{E} , at Temperatures *T* for the Binary System BMIM NTf₂ (1) + Acetonitrile (2)

			T/K		
x_1	293.15	298.15	303.13	308.15	313.15
		<i>ρ</i> /(g	•cm ⁻³)		
0	0.78189	0.77652	0.77112	0.76568	0.76020
0.0971	1.03465	1.02933	1.02405	1.01947	1.01426
0.2033	1.17545	1.17035	1.16512	1.16025	1.15505
0.2989	1.25206	1.24709	1.24232	1.23721	1.23240
0.4710	1.33515	1.33018	1.32541	1.32049	1.31567
0.6261	1.38043	1.37557	1.37072	1.36588	1.36114
0.7423	1.40479	1.40001	1.39536	1.39045	1.38564
0.8983	1.42903	1.42412	1.41928	1.41454	1.40973
1	1.44163	1.43683	1.43198	1.42716	1.42236
		V ^E /(cm	$n^3 \cdot mol^{-1}$)		
0.0971	-0.469	-0.503	-0.543	-0.640	-0.692
0.2033	-0.610	-0.659	-0.703	-0.781	-0.831
0.2989	-0.657	-0.712	-0.792	-0.841	-0.921
0.4710	-0.584	-0.621	-0.688	-0.738	-0.801
0.6261	-0.436	-0.471	-0.512	-0.555	-0.611
0.7423	-0.336	-0.369	-0.431	-0.450	-0.480
0.8983	-0.114	-0.107	-0.120	-0.147	-0.159

Table 7. Densities, ρ , and Excess Molar Volumes, V^{E} , at Temperatures *T* for the Binary System BMIM NTf₂ (1) + Dimethyl Sulfoxide (2)

			T/K		
x_1	293.15	298.15	303.13	308.15	313.15
		<i>ρ</i> /(g•	cm ⁻³)		
0	1.10031	1.09530	1.09031	1.08527	1.08027
0.1025	1.20234	1.19739	1.19243	1.18749	1.18255
0.1960	1.26315	1.25821	1.25326	1.24831	1.24337
0.2358	1.28338	1.27840	1.27345	1.26849	1.26351
0.3241	1.31945	1.31452	1.30958	1.30464	1.29972
0.4205	1.34972	1.34481	1.33988	1.33499	1.33005
0.4785	1.36467	1.35972	1.35480	1.34987	1.34487
0.5179	1.37361	1.36867	1.36377	1.35886	1.35393
0.5911	1.38828	1.38333	1.37850	1.37359	1.36872
0.6581	1.40007	1.39516	1.39025	1.38542	1.38054
0.8232	1.42306	1.41822	1.41334	1.40848	1.40360
1	1.44163	1.43683	1.43198	1.42716	1.42236
		V ^E /(cm	$^{3} \cdot mol^{-1})$		
0.1025	0.525	0.522	0.521	0.515	0.512
0.1960	0.697	0.696	0.695	0.693	0.692
0.2358	0.719	0.722	0.722	0.722	0.726
0.3241	0.757	0.759	0.760	0.761	0.761
0.4205	0.726	0.728	0.729	0.726	0.733
0.4785	0.676	0.686	0.688	0.691	0.708
0.5179	0.650	0.659	0.660	0.662	0.671
0.5911	0.583	0.597	0.589	0.593	0.597
0.6581	0.486	0.495	0.499	0.493	0.500
0.8232	0.276	0.280	0.284	0.287	0.298

where A_i are the fit parameters, and *m* is the degree of polynomial. For all investigated cases, $m \leq 3$.

Values of the coefficients A_i , determined by the least-squares method, are listed in Table 9. Excess molar volumes of the mixtures containing EMIM NTf₂ or BMIM NTf₂ + THF or + acetonitrile, shown in Figures 1, 2, 4, 5, and 7, are negative in the whole concentration range and decrease further with the temperature. For EMIM NTf₂ or BMIM NTf₂ + DMSO, positive V^E values are observed, showing almost no temperature dependence (Figures 3 and 6). The relative magnitude of V^E is in all cases higher than for the IL mixtures containing alcohols.^{34,28,39} However, the excess molar volumes obtained in this work are smaller in comparison with the V^E of binary systems IL + water⁴⁰ or the same solutes (methanol, THF, acetonitrile, and DMSO) but different ionic liquid (BMIM PF₆).¹⁶ The maxima of the $V^E(x)$ curves are shifted toward smaller concentrations of ionic liquid ($x_{IL} \approx 0.2$ to 0.3). From

Figure 1. Excess molar volumes of EMIM NTf₂ + tetrahydrofuran at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K; \triangle , 308.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

Figure 2. Excess molar volumes of EMIM NTf₂ + acetonitrile at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K, \triangle , 308.15 K; \bigoplus , 313.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

Figure 3. Excess molar volumes of EMIM NTf₂ + dimethyl sulfoxide at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K; \triangle , 308.15 K, \blacklozenge , 313.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

Figure 7, it is also obvious that the excess molar volumes for all mixtures practically do not depend on the kind of IL in the mixture; i.e., the behavior is nearly independent of the cations.

Figure 4. Excess molar volumes of BMIM NTf₂ + tetrahydrofuran at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K; \triangle , 308.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

Figure 5. Excess molar volumes of BMIM NTf₂ + acetonitrile at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K; \triangle , 308.15 K; \diamondsuit , 313.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

Figure 6. Excess molar volumes of BMIM NTf₂ + dimethyl sulfoxide at \bigcirc , 293.15 K; \square , 298.15 K; \diamondsuit , 303.15 K; \triangle , 308.15 K; \blacklozenge , 313.15 K; points were calculated using eq 1; lines were drawn on the basis of eq 3.

The EMIM NTf_2 + acetonitrile binary system has already been studied in the literature⁴¹ at temperatures different from those in our work. The results fit well into our results; the only significant difference is the perfectly symmetrical shape of the

Table 0. Density Latameters a and b and Then Standard Deviations and Metal Deviation Regulation

			T/K		
	293.15	298.15	303.15	308.15	313.15
		EMIM $NTf_2(1)$	+ Tetrahydrofuran (2)		
а	-2.4070 ± 0.0070	-2.436 ± 0.024	-2.432 ± 0.025	-2.432 ± 0.031	
b	-2.3651 ± 0.0033	-2.387 ± 0.011	-2.392 ± 0.012	-2.397 ± 0.015	
$\delta/(g \cdot cm^{-3})$	0.000087	0.00031	0.00032	0.00042	
		EMIM NTf ₂ (1) \pm Acetonitrile (2)		
а	-4.0704 ± 0.0073	-4.0658 ± 0.0060	-4.0677 ± 0.0082	-4.0634 ± 0.0098	-4.055 ± 0.011
b	-4.0936 ± 0.0043	-4.0903 ± 0.0035	-4.0914 ± 0.0048	-4.0882 ± 0.0058	-4.0947 ± 0.0066
$\delta/(g \cdot cm^{-3})$	0.00010	0.000079	0.00010	0.00012	0.00014
-		FMIM NTf ₂ (1) \pm	- Dimethyl Sulfoxide (2)		
a	-23314 ± 0.0099	-2333 ± 0.010	-2332 ± 0.010	-2334 ± 0.010	-2333 ± 0.011
h	$-2.3415 \pm 0.0000000000000000000000000000000000$	-2.3420 ± 0.0049	-2.3405 ± 0.0050	-2.3413 ± 0.0049	-2.3405 ± 0.0054
$\delta/(g \cdot cm^{-3})$	0.000066	0.000074	0.000082	0.000081	0.000086
le ,		$\mathbf{BMIM} \mathbf{NTf}_{\mathbf{r}}(1)$	+ Tetrahydrofuran (2)		
a	-2.8620 ± 0.0050	-2.888 ± 0.012	-2.946 ± 0.031	-2.945 ± 0.022	
h	-2.8020 ± 0.0030 -2.8199 ± 0.0025	-2.8435 ± 0.012	-2.883 ± 0.016	-2.885 ± 0.022	
$\delta/(g \cdot cm^{-3})$	0.000064	0.00016	0.00036	0.00023	
.,(8)		DMIM NTE (1) A(4		
	4 722 + 0 0082	BMIM N Π_2 ((2) + Acetonitrile (2)	4 740 + 0.010	4.722 ± 0.014
a b	-4.753 ± 0.0082 -4.7642 ± 0.0050	-4.727 ± 0.011 -4.7589 ± 0.0064	-4.710 ± 0.013 -4.7503 ± 0.0002	-4.740 ± 0.010 -4.7704 ± 0.0060	-4.752 ± 0.014 -4.7667 ± 0.0082
$\delta/(g \cdot cm^{-3})$	0.000084	0.00010	4.7505 ± 0.0092	0.00011	4.7007 ± 0.0082 0.00014
o/(g em)	0.000004	0.00010		0.00011	0.00014
	0.7400 + 0.0072	BMIM NTf ₂ (1) +	- Dimethyl Sulfoxide (2)	0 5505 1 0 00 10	0.55(0.1.0.00.45
a	-2.7409 ± 0.0063	-2.7479 ± 0.0057	-2.7477 ± 0.0051	-2.7507 ± 0.0048	-2.7568 ± 0.0047
$v = \delta/(\alpha \cdot \alpha m^{-3})$	-2.7412 ± 0.0032	-2.7427 ± 0.0029	-2.7418 ± 0.0026	-2.7425 ± 0.0024	-2.7434 ± 0.0024
o/(g·ciii ·)	0.000048	0.000041	0.000037	0.000055	0.000025

 $V^{E}(x)$ curve presented by Hong and co-workers,⁴¹ whereas our $V^{E}(x)$ curves have minima shifted toward smaller concentrations

of ionic liquid. The analysis of literature data^{28,16} for mixtures containing BMIM NTf₂ + alcohols or BMIM PF₆ + acetonitrile

Table 9. Values of the Coefficients A_i , for the Neau Equation (Equation 3), and Standard Deviations δ for Excess Molar Volumes of the Investigated Systems

T/K	$A_0{}^a$	A_1^a	A_2^a	A_3^a	δ^a
		EMIM $NTf_2(1) + Te$	etrahydrofuran (2)		
293.15	-6.148 ± 0.088	11.96 ± 0.66	-11.5 ± 2.0	4.9 ± 1.8	0.017
298.15	-7.25 ± 0.16	16.7 ± 1.2	-21.5 ± 3.7	11.3 ± 3.2	0.031
303.15	-7.87 ± 0.23	16.8 ± 1.7	-20.4 ± 5.4	10.4 ± 4.7	0.044
308.15	-8.53 ± 0.27	19.1 ± 2.0	-26.3 ± 6.3	14.9 ± 5.5	0.052
		EMIM $NTf_2(1) +$	Acetonitrile (2)		
293.15	-4.286 ± 0.015	6.499 ± 0.078	-5.13 ± 0.23	1.89 ± 0.21	0.0027
298.15	-4.653 ± 0.033	7.15 ± 0.17	-5.43 ± 0.50	1.63 ± 0.45	0.0057
303.15	-5.128 ± 0.053	7.65 ± 0.24	-4.21 ± 0.28	0	0.0096
308.15	-5.522 ± 0.082	8.29 ± 0.37	-4.60 ± 0.43	0	0.015
313.15	-5.975 ± 0.012	8.931 ± 0.064	-5.50 ± 0.19	0.76 ± 0.17	0.0022
		EMIM $NTf_2(1) + Dim$	nethyl Sulfoxide (2)		
293.15	4.751 ± 0.079	-5.54 ± 0.27	0	3.06 ± 0.39	0.014
298.15	4.706 ± 0.088	-5.39 ± 0.29	0	2.82 ± 0.43	0.015
303.15	4.693 ± 0.089	-5.33 ± 0.30	0	2.68 ± 0.44	0.015
308.15	4.648 ± 0.083	-5.26 ± 0.28	0	2.63 ± 0.41	0.014
313.15	4.627 ± 0.097	-5.27 ± 0.33	0	2.69 ± 0.48	0.017
		BMIM $NTf_2(1) + T$	etrahydrofuran (2)		
293.15	-6.092 ± 0.089	10.45 ± 0.44	-5.88 ± 0.56	0	0.021
298.15	-6.95 ± 0.11	13.01 ± 0.63	-11.7 ± 2.1	4.4 ± 2.0	0.026
303.15	-8.07 ± 0.15	17.54 ± 0.82	-21.0 ± 2.7	10.3 ± 2.6	0.034
308.15	-8.65 ± 0.13	16.82 ± 0.72	-15.1 ± 2.3	5.0 ± 2.2	0.029
		BMIM $NTf_2(1) +$	Acetonitrile (2)		
293.15	-4.313 ± 0.058	7.02 ± 0.45	-6.7 ± 1.4	2.9 ± 1.2	0.011
298.15	-4.645 ± 0.094	7.65 ± 0.74	-7.7 ± 2.2	3.7 ± 1.9	0.018
303.15	-5.02 ± 0.16	8.0 ± 1.2	-7.8 ± 3.7	3.6 ± 3.2	0.031
308.15	-5.68 ± 0.11	10.54 ± 0.86	-12.1 ± 2.6	5.9 ± 2.2	0.021
313.15	-6.12 ± 0.12	11.24 ± 0.97	-13.1 ± 2.9	6.7 ± 2.5	0.024
		BMIM $NTf_2(1) + Dir$	nethyl Sulfoxide (2)		
293.15	4.826 ± 0.036	-6.46 ± 0.18	3.53 ± 0.24	0	0.0078
298.15	4.824 ± 0.032	-6.82 ± 0.28	5.36 ± 0.85	-1.76 ± 0.75	0.0068
303.15	4.820 ± 0.021	-6.72 ± 0.18	4.96 ± 0.57	-1.35 ± 0.49	0.0045
308.15	4.784 ± 0.032	-6.18 ± 0.17	3.33 ± 0.21	0	0.0070
313.15	4.778 ± 0.032	-6.06 ± 0.17	3.27 ± 0.21	0	0.0070

^{*a*} Units: $cm^3 \cdot mol^{-1}$.

Figure 7. Excess molar volumes of six binary mixtures at 298.15 K: \bullet , EMIM NTf₂ + tetrahydrofuran; \blacksquare , EMIM NTf₂ + acetonitrile; \blacktriangle , EMIM NTf₂ + dimethyl sulfoxide; \bigcirc , BMIM NTf₂ + tetrahydrofuran; \square , BMIM NTf₂ + acetonitrile; \triangle , BMIM NTf₂ + dimethyl sulfoxide; points were calculated using eq 1; lines were drawn on the basis of eq 3. Solid lines are for mixtures with EMIM NTf₂, and dotted lines are for mixtures with BMIM NTf₂.

allows us to conclude that the nonsymmetrical $V^{E}(x)$ shapes are more common than the symmetrical ones.

Zafarani-Moattar and co-workers¹⁶ studied excess molar volumes of binary mixtures of BMIM PF₆ with THF, acetonitrile, and DMSO, i.e., the same solvents as we studied. The order of changes of V^{E} is the same as in our work, IL + THF < IL + acetonitrile < IL + DMSO, but they are all significantly shifted to more negative values. These authors have observed results from very large and negative V^{E} for the BMIM PF₆ + THF system to small but still negative V^{E} for the BMIM PF₆ + DMSO mixture. This indicates a distinct anion influence (PF₆⁻ and NTf₂⁻) on the IL behavior in these solvents.

We resisted the temptation to present a more detailed analysis of the molecular reasons for the behavior observed. This attempt would have a pure speculative character.

Literature Cited

- MacFarlane, D. R.; Pringle, J. M.; Howlett, P. C.; Forsyth, M. Ionic liquids and reactions at the electrochemical interface. *Phys. Chem. Chem. Phys.* 2010, *12*, 1659–1669.
- (2) MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annata, G.; Frasera, K. On the concept of ionicity in ionic liquids. *Phys. Chem. Chem. Phys.* **2009**, *11*, 4962–4967.
- (3) Domańska, U.; Rękawek, A. Extraction of Metal Ions from Aqueous Solutions Using Imidazolium Based Ionic Liquids. J. Solution Chem. 2009, 38, 739–751.
- (4) Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH Verlags GmbH & Co. KGaA: Weinheim, 2008.
- (5) Ionic Liquids in Chemical Analysis; Koel, M., Ed.; CRC Press: Boca Raton, FL, 2009.
- (6) Heintz, A.; Wertz, C. Ionic liquids: A most promising research field in solution chemistry and thermodynamics. *Pure Appl. Chem.* 2006, 78, 1587–1593.
- (7) Van Valkenburg, M. E.; Vaughn, R. L.; Williams, M.; Wilkes, J. S. Thermochemistry of ionic liquid heat-transfer fluids. *Thermochim. Acta* 2005, 425, 181–188.
- (8) Chiappe, C.; Pieraccini, D. Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275–297.
- (9) Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures - a review. *Fluid Phase Equilib.* 2004, 219, 93–98.
- (10) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. J. Phys. Chem. B 2005, 109, 6103–6110.

- (11) Suri, S. K.; Naorem, H. Thermodynamic studies of binary mixtures of tetrahydrofuran with some oxygen- and nitrogen-containing solvents: molar excess volumes. J. Chem. Eng. Data 1987, 32, 462–464.
- (12) Amigo, A.; Bravo, R.; Pintos, M. Excess Volumes of Binary Mixtures Containing Cyclic Ethers + Alkanols at 298.15 K. J. Chem. Eng. Data 1993, 38, 141–142.
- (13) Pineiro, A.; Brocos, P.; Amigo, A.; Pintos, M.; Bravo, R. Surface tensions and refractive indices of (tetrahydrofuran + n-alkanes) at T = 298.15 K. J. Chem. Thermodyn. 1999, 31, 931–942.
- (14) Brocos, P.; Pineiro, A.; Bravo, R.; Amigo, A.; Roux, A. H.; Roux-Desgranges, G. Thermodynamics of Mixtures Involving Some Linear or Cyclic Ketones and Cyclic Ethers. 1. Systems Containing Tetrahydrofuran. J. Chem. Eng. Data 2002, 47, 351–358.
- (15) Shekaari, H.; Zafarani-Moattar, M. T. Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at *T* = 298.15 K. *Int. J. Thermophys.* 2008, 29, 534– 545.
- (16) Zafarani-Moattar, M. T.; Majdan-Cegincara, R. Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K. J. Chem. Eng. Data 2007, 52, 2359–2364.
- (17) Rodríguez, S. Densities, speeds of sound, and isentropic compressibilities of a cyclic ether with chlorocyclohexane, or bromocyclohexane at the temperatures 298.15K and 313.15K. J. Chem. Thermodyn. 1999, 31, 139–149.
- (18) Nikam, P. S.; Shirsat, L. N.; Hasan, M. Density and Viscosity Studies of Binary Mixtures of Acetonitrile with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data **1998**, 43, 732–737.
- (19) Tripathi, A. D. Excess Molar Enthalpies of 1,1,2,2-Tetrachloroethane with Acetone, Dibutyl Ether, Acetonitrile, and Dimethyl Sulfoxide at 298.15 K. J. Chem. Eng. Data 1995, 40, 1262–1263.
- (20) D'Aprano, A.; Capalbi, A.; Iammarino, M.; Mauro, V.; Princi, A.; Sesta, B. Acetonitrile + Nitromethane: An Example of Ideal Solvent Mixtures. J. Solution Chem. 1995, 24, 227–240.
- (21) Handa, Y. P.; Benson, G. C. Thermodynamics of Aqueous Mixtures of Nonelectrolytes. IV. Excess Volumes of Water-Acetonitrile Mixtures from 15 to 35°C. J. Solution Chem. **1981**, 10, 291–300.
- (22) Kolker, A. M.; Kulikov, M. V.; Krestov, A. G. Volumes and heat capacities of binary non-aqueous mixtures. Part 1. The systems Acetonitrile - formamide and Acetonitrile -N-methylformamide. *Thermochim. Acta* **1992**, *211*, 61–72.
- (23) Grolier, J.-P. E.; Roux-Desgranges, G.; Berkane, M.; Wilhelm, E. Heat capacities and densities of mixtures of very polar substances 1. Mixtures containing Acetonitrile. *J. Chem. Thermodyn.* **1991**, *23*, 421– 429.
- (24) Kimura, T.; Takagi, S. Thermodynamics of liquid mixtures containing methyl methylthiomethyl sulfoxide I. Excess volumes of (water or benzene or dimethyl sulfoxide + methyl methylthiomethyl sulf.oxide) and (water or benzene + dimethyl sulfoxide) at 298.15 and 318.15 K. J. Chem. Thermodyn. 1986, 18, 447–454.
- (25) Aznarez, S. B.; Mussari, L.; Postigo, M. A. Temperature Dependence of Molar Excess Volumes for the Dimethyl Sulfoxide + Thiophene System and Thermal Expansion Coefficients between 293.15 and 313.15 K. J. Chem. Eng. Data 1993, 38, 270–273.
- (26) Nikam, P. S.; Jadhav, M. C.; Hasan, M. Density and Viscosity of Mixtures of Dimethyl Sulfoxide + Methanol, +Ethanol, +Propan-1ol, +Propan-2-ol, +Butan-1-ol, +2-Methylpropan-1-ol, and +2-Methylpropan-2-ol at 298.15 and 303.15 K. J. Chem. Eng. Data 1996, 41, 1028–1031.
- (27) Tariq, M.; Forte, P. A. S.; Costa Gomes, M. F.; Canongia Lopes, J. N.; Rebelo, L. P. N. Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 2009, 41, 790–798.
- (28) Wandschneider, A.; Lehmann, J. K.; Heintz, A. Surface Tension and Density of Pure Ionic Liquids and Some Binary Mixtures with 1-Propanol and 1-Butanol. J. Chem. Eng. Data 2008, 53, 596–599.
- (29) Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. *J. Phys. Chem. B* 2006, *110*, 19593– 19600.
- (30) Martino, W.; Fernandez de la Mora, J.; Yoshida, Y.; Saito, G.; Wilkes, J. Surface tension measurements of highly conducting ionic liquids. *Green Chem.* 2006, 8, 390–397.
- (31) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 2. Activity Coefficients at Infinite Dilution of Hydrocarbons and Polar Solutes in 1-Methyl-3ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide and in 1,2-Dimethyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide Using Gas-Liquid Chromatography. J. Chem. Eng. Data 2002, 47, 894–899.

- (32) Troncoso, J.; Cerdeirina, C. A.; Sanmamed, Y. A.; Romani, L.; Rebelo, L. P. N. Thermodynamic Properties of Imidazolium-Based Ionic Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 2006, 51, 1856– 1859.
- (33) Harris, K. R.; Kanakubo, M.; Woolf, L. A. Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 2007, 52, 1080–1085.
- (34) Heintz, A.; Klasen, D.; Lehmann, J. K.; Wertz, Chr. Excess Molar Volumes and Liquid-Liquid Equilibria of the Ionic Liquid 1-Methyl-3-Octyl-midazolium Tetrafluoroborate Mixed with Butan-1-ol and Pentan-1-ol. J. Solution Chem. 2005, 34, 1135–1144.
- (35) Sanmamed, Y. A.; Gonzalez-Salgado, D.; Troncoso, J.; Cerdeirina, C. A.; Romani, L. Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. *Fluid Phase Equilib.* 2007, 252, 96–102.
- (36) Connors, K. A.; Wright, J. L. Dependence of surface tension on composition of binary aqueous-organic solutions. *Anal. Chem.* 1989, 61, 194–198.
- (37) Markarian, S. A.; Terzyan, A. M. Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures. *J. Chem. Eng. Data* **2007**, *52*, 1704–1709.

- (38) Treszczanowicz, A. J.; Treszczanowicz, T.; Benson, G. C. Review of experimental andrecommended data for the excess molar volume of 1-alkanol + n-alkane binary mixtures. *Fluid Phase Equilib.* **1993**, *89*, 31–56.
- (39) Domańska, U.; Pobudkowska, A.; Wiśniewska, A. Solubility and Excess Molar Properties of 1,3-Dimethylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Methylsulfate, or 1-Butyl-3-Methylimidazolium Octylsulfate Ionic Liquids with n-Alkanes and Alcohols: Analysis in Terms of the PFP and FBT Models. J. Solution Chem. 2006, 35, 311–334.
- (40) Pereiro, A. B.; Rodriguez, A. Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K. J. Chem. Eng. Data 2007, 52, 600–608.
- (41) Hong, G.; Jacquemin, J.; Husson, P.; Costa Gomes, M. F.; Deetlefs, M.; Nieuwenhuyzen, M.; Sheppard, O.; Hardacre, C. Effect of Acetonitrile on the Solubility of Carbon Dioxide in 1-Ethyl-3methylimidazolium Bis(trifluoromethylsulfonyl)amide. *Ind. Eng. Chem. Res.* 2006, 45, 8180–8188.

Received for review March 31, 2010. Accepted July 19, 2010.

JE100315G