Solubilities of Phosphorus-Containing Compounds in Selected Solvents

Xiu-Zhi Guo[†] and Li-Sheng Wang*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Phosphorus-containing flame retardants (FRs) 3,9-dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undeundecane-3,9-dioxide (dihydroxy-TDUD), 3,9-diphenoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undecane-3,9-dioxide (diphenoxy-TDUD), hydroxymethylphenylphosphinic acid (HMPPA), 2-carboxyethylphenylphosphinic acid (CEPPA), tri(*p*-methoxyphenyl)phosphine (TMOPP), and tri(*p*-methoxyphenyl)phosphine oxide (TMOPPO) were characterized by elemental analysis, infrared spectroscopy, ¹H and ³¹P nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Using a static analytical method, the solubilities of solutes in selected solvents were measured and correlated with an empirical equation. The estimated uncertainty of all of the solubility values based on error analysis and repeated observations was within 2.0 %.

Introduction

Flame retardants (FRs) based on organic phosphorus compounds are known to be one of the most promising candidates that can replace the halogen-based FRs.¹ These FRs are believed to be environmentally benign because they can generate less toxic gases and smoke than halogen-containing compounds.^{2–4} The organic phosphorus FRs can be used in polymers to improve the fire resistance of the composites to meet the requirements in electrical engineering and the electronic, transportation, and building industries.^{5,6}

Cyclic phosphorus compounds are particularly thermally stable and useful as FRs for polymeric materials.^{7,8} The FRs include different derivatives from 2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]undecane-3,9-dioxide (hereafter named as TDUD). 3,9-Dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undecane-3,9-dioxide⁹ (hereafter abbreviated as dihydroxy-TDUD, CAS RN 947-28-4) was synthesized from 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undecane-3,9-dioxide^{10,11} (hereafter abbreviated as diphenoxy-TDUD, CAS RN 55120-33-7) was prepared from pentaerythritol and phenyl dichlorophosphate in the presence of pyridine.¹⁰ Dihydroxy-TDUD and diphenoxy-TDUD were used in the plastics formulating art as blowing agents, char-forming additives, and so forth.^{12–14}

Phenylphosphine and phenylphosphinic acid based derivatives are widely used as fire retardants for poly(ethylene terephthalate) (PET).^{15–17} Hydroxymethylphenylphosphinic acid (HMPPA, CAS RN 61451-78-3) is a bifunctional copolymerible phosphorus monomer, and it can be synthesized from phenylphosphinic acid (PPA) and paraformaldehyde as disclosed by a U.S. patent.¹⁷ 2-Carboxyethylphenylphosphinic acid (CEPPA, CAS RN 14657-64-8) is also a bifunctional copolymerizable phosphorus monomer as disclosed by a U.S. patent.^{18,19} Both HMPPA and CEPPA can be polycondensed with ethylene glycol and terephthalic acid to produce FR-PET^{17,20} and renders the alternated PET and the resulting plastics and fibers with good fire-resistance properties.

* Corresponding author. Fax: +86-10-68911040. E-mail: lishengwang@ btamail.net.cn.

The application of catalyst-binding phosphorus ligands is attracting more and more attention for the nature of enhancement of interfacial catalysis in a biphasic system.^{21–23} In these phosphorus ligands, triphenylphosphine (TPP) and tri(*p*-hydroxyphenyl)phosphine oxide (THPPO) are the two most useful compounds. Tri(*p*-methoxyphenyl)phosphine (TMOPP, CAS RN 855-38-9) and tri(*p*-methoxyphenyl)phosphine oxide (TMOP-PO, CAS RN 803-17-8) are the intermediates for preparation of THPPO.

Upon thermal decomposition of the phosphorus-containing FRs during the burning of the polymer composite, highly crosslinked P-C products which remain in the char and contribute to the fire retardancy may be produced. However, a high thermal stability will be required because the polymer composites are usually processed under high temperatures. Therefore, a high purity will be required for the FRs because the decomposition of impurities will be undesirable during the processing. For the preparation and purification of the products it is very important to know the solubilities of these FRs as a function of temperature and solvent composition in different solvents so that the condition of crystallization can be established and the lost quantity of FRs during the process can be calculated. To model these processes, the activity coefficient data are used to describe the solid-liquid equilibrium. However, only a few solubility data for these compounds were published.^{9,24,25} In this study, dihydroxy-TDUD, diphenoxy-TDUD, HMPPA, CEPPA, TMOPP, and TMOPPO were characterized, and their solubilities in selected solvents were measured.

Experimental Section

Materials. Dihydroxy-TDUD, diphenoxy-TDUD, HMPPA, and CEPPA were provided by Shandong Wan Zhao Co., Ltd. TMOPP and TMOPPO were prepared according to literature^{26,27} in this work. The formulas of these compounds are shown in Figures 1 and 2. All of the solvents were analytical grade reagents, which were purchased from Beijing Chemical Factory. They were used without further purification. The basic physical properties and the mass fraction purities for the organic solvents used in this work are listed in Table 1. Water was deionized before use.

[†] Present address: Hulunbeier University, People's Republic of China.

Figure 1. 2,4,8,10-Tetraoxa-3,9-diphosphaspiro[5.5]undecane-3,9-dioxide (TDUD).

Apparatus and Procedure. The elemental analysis, ¹H and ³¹P NMR spectra, and the IR spectra apparatus were the same as those used before.²⁹ The melting temperature and enthalpy of fusion of dihydroxy-TDUD, diphenoxy-TDUD, HMPPA, CEPPA, TMOPP, and TMOPPO were determined with a DSC Q100 differential scanning calorimeter (DSC) in flowing nitrogen at a heating rate of 10 K \cdot min⁻¹, with thermogravimetric analysis (TGA) results of diphenoxy-TDUD and HMPPA, from (298.15 to 873.15) K at a scanning rate of 10 K \cdot min⁻¹ in flowing nitrogen.

The setup for the solubility measurement was the same as that described in the literature.^{28,29} Figure 3 shows the schematic diagram of the experimental apparatus. A jacketed equilibrium cell was used for the solubility measurements with a working volume of 120 mL (without the jacket part) and a magnetic stirrer. A thermocouple is immersed into the solution of the measuring flask, and the uncertainty of the thermocouple is 0.01 K. A circulating water bath was used with a thermostat (type 50 L), which is capable of maintaining the temperature within \pm 0.05 K. An analytical balance with an uncertainty of \pm 0.1 mg was used during the mass measurements.

Characterization of Dihydroxy-TDUD. Elemental analysis (%, calcd): C, 23.26 % (23.08 %); H, 3.79 % (3.85 %). ¹H NMR (D₂O, ppm): $\delta = 4.41-4.67$ (d, 8H). ³¹P NMR (D₂O, ppm): $\delta = -2.263$. IR (KBr): 1305 (P=O); 855 (P(OCH₂)₂C); 1024 (P=O-C); 1000 (P=OH) cm⁻¹ [lit.^{21.30} 1307 (P=O); 855.2 (P(OCH₂)₂C); 1024.5 (P=O-C); 1000 (P=OH) cm⁻¹]. The results show a high purity of the dihydroxy-TDUD sample as certificated by the specification. The results of DSC measurements of dihydroxy-TDUD are shown in the Supporting Information (Figure a). The melting temperature of dihydroxy-TDUD was 583.72 K [lit.^{21.30} (582.15 to 585.15) K, lit.³¹ 587.15 K, lit.³² 581.15 K].

Characterization of Diphenoxy-TDUD. Elemental analysis (%, calcd): C, 49.64 % (49.52 %); H, 4.54 % (4.41 %). ¹H NMR (DMSO-*d*₆, ppm): $\delta = 7.27 - 7.47$ (lit.¹⁰ 7.30-7.50) (m, 10H); $\delta = 4.81 - 4.83$ (lit.¹⁰ 4.82) (m, 2H); $\delta = 4.67 - 4.74$ (lit.¹⁰ 4.70) (m, 2H); $\delta = 4.46 - 4.50$ (lit.¹⁰ 4.48) (m, 2H); $\delta = 4.41 - 4.45$ (lit.¹⁰ 4.42) (m, 2H). ³¹P NMR (DMSO-*d*₆, ppm): $\delta = -7.99$

Table 1. Mass Fraction Purity (ω), Density (ρ), and Refractive Index (n_D) for the Organic Solvents Used in This Work at $T/K = 293.15^a$

		ρ	
solvent	ω /%	$kg \cdot m^{-3}$	n _D
methanol	99.5	792	1.3301
ethanol	99.7	790	1.3660
butanone	99.5	805	1.3788
dichloromethane	99.5	1321	1.4237
toluene	99.5	866	1.4967
acetonitrile	99.8	783	1.3430
ethyl acetate	99.5	899	1.3719
chloroform	99.5	1484	1.4476
diethyl ether	99.5	714	1.3497
1,4-dioxane	99.0	1034	1.4175
pyridine	99.5	983	1.5095
tetrahydrofuran	99.0	985	1.4050
2-ethoxyethanol	99.5	929	1.4065
cyclohexane	99.5	779	1.4266
acetic acid	99.8	1049	1.3716

^a Density and refetractive index data were taken from ref 36.

Figure 3. Schematic diagram of the experimental aparatus: 1, thermocouple; 2, sample gauge; 3, rubber plug; 4, jacket; 5, equilibrium cell; 6, magnetic stirrer; 7, water cycling bath.

(lit.¹⁰ –7.80 ppm, s). IR (KBr, cm⁻¹): 1298.1 (P=O); 1154.7, 1030.6 (P–O–C), 1197.8, 948.3 (P–O–Ph); 1593.2–2000 (Ph–C), 763.6, 689.4 (Ph–), 911.6, 863.5, 801.6, 731.0 (P(OCH₂)₂C) [lit.³³ 1150, 1040 (P–O–C), 1190, 953 (P–O–Ph); 1600–2000 (Ph–C), 766, 688 (Ph–), 922, 851, 775, 685 (P(OCH₂)₂ C)]. The results show a high purity of the diphenoxy-TDUD sample as certificated by the specification. The results of DSC measurements of diphenoxy-TDUD were shown in the Supporting Information (Figure b). The melting temperature of diphenoxy-TDUD was 469.58 K [lit.¹⁰ 472.65 K, lit.³⁴ (470.15 to 472.15) K].

Characterization of HMPPA. Elemental analysis (%, calcd): C, 41.39 % (41.86 %); H, 4.83 % (5.23 %). ¹H NMR (D₂O, ppm): $\delta = 7.41-7.67$ (m, 5H, Ar–H); $\delta = 3.82-3.83$ (2H, d,

Figure 2. Formula of the organic phosphorus compounds related in this work: (a) 3,9-dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undecane-3,9-dioxide (dihydroxy-TDUD), (b) 3,9-diphenoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]-undecane-3,9-dioxide (diphenoxy-TDUD), (c) hydroxymethylphenylphosphinic acid (HMPPA), (d) 2-carboxyethylphenylphosphinic acid (CEPPA), (e) tri(*p*-methoxyphenyl)phosphine (TMOPP), (f) tri(*p*-methoxyphenyl)phosphine oxide (TMOPPO).

Table 2. Compound Name, Abbreviation, Melting Temperature (K), and Melting Enthalpy (kJ·mol⁻¹) of the Organic Phosphorus Compounds Measured in This Work

		melting temperature	melting enthalpy
compound name	abbreviation	K	kJ•mol ⁻¹
3,9-dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]- undecane-3,9-dioxide	dihydroxy-TDUD	583.72	22.46
3,9-diphenoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5.5]- undecane-3,9-dioxide	diphenoxy-TDUD	469.58	36.46
hydroxymethylphenylphosphinic acid	HMPPA	413.40	27.16
2-carboxyethylphenylphosphinic acid	CEPPA	432.66	33.58
tri(p-methoxyphenyl)phosphine	TMOPP	403.82	25.67
tri(p-methoxyphenyl)phosphine oxide	TMOPPO	417.84	28.52

-CH₂). ³¹P NMR (D₂O, ppm): δ = 35.07. IR (KBr): 3469.4 (O-H) (alcoholic); 1591.4 (O-H) (acid); 1439.3 (Ar-P); 1156.9 (P=O) cm⁻¹ [lit.^{24,30} 3469.35 (O-H) (alcoholic); 1591.40 (O-H) (acid); 1439.29 (Ar-P); 1156.95 (P=O) cm⁻¹]. These results show a high purity of the HMPPA sample as certificated by the specification. The results of DSC measurements of HMPPA are shown in the Supporting Information (Figure c). The melting temperature of HMPPA was 413.4 K [lit.³⁰ (410.15 to 413.15) K; lit.²⁴ (411.15 to 412.15) K].

Characterization of CEPPA. Elemental analysis (%, calcd): C, 50.39 % (50.47 %); H, 4.73 % (5.14 %). ¹H NMR (DMSO, ppm): δ = 11.521 (2H, s, O−H); δ = 7.507–7.722 (m, 5H, Ar−H); δ = 1.999–2.505 (4H, m, −CH₂CH₂−) [lit.^{25,30} δ = 13.42 (1H, s, O−H); δ = 7.62–8.14 (m, 5H, Ar−H); δ = 3.02–4.23 (4H, m, −CH₂CH₂−)]. ³¹P NMR (DMSO, ppm): δ = 35.79. IR (KBr): 3310.2 (O−H); 1720.4 (C=O); 1603.3, 1430.1 (Ar−P); 1150.2 (P=O) cm⁻¹ [lit.^{25,30} 3310 (O−H), 1720 (C=O) 1603; 1430 (Ar−P); 1150 (P=O) cm⁻¹]. On the basis of the above analysis, the purity of CEPPA used in this work was higher than 99.0 %. The results of DSC measurements of CEPPA are shown in the Supporting Information (Figure d). The melting temperature of CEPPA was 432.66 K (lit.^{25,30} 431.15 K).

Characterization of TMOPP. Elemental analysis (%, calcd): C, 68.39 % (68.41 %); H, 5.73 % (5.71 %). ¹H NMR (DMSO, ppm): $\delta = 6.9195 - 7.7658$ (m, 4H, Ar—H); $\delta = 3.8058$ (3H, s, O—CH₃) [lit.²⁴ (200 MHz, CDCl₃) (ppm) $\delta = 6.921 - 7.763$ (4H, m, Ar—H); 3.806 (3H, s, O—CH₃)]. ³¹P NMR (DMSO, ppm): $\delta = 25.02$. IR (KBr): 1244.18 (C—O), 1438.78 (Ar—P), 1496.66, 1564.64, 1590.59 (C=C) cm⁻¹. These results show a high purity of the TMOPP sample as certificated by the specification. The results of DSC measurements of TMOPPO are shown in the Supporting Information (Figure e). The melting temperature of TMOPP was 403.82 K [lit.²⁴ (403.15 to 404.15) K].

Characterization of TMOPPO. TMOPPO was prepared according to literature.²⁷ Elemental analysis (%, calcd): C, 68.39 % (68.41 %); H, 5.73 % (5.71 %). ¹H NMR (DMSO, ppm): δ = 7.0695−7.5058 (m, 4H, Ar−H). δ = 3.8079 (3H, s, O−CH₃) [lit.²⁴ (200 MHz, CDCl₃) (ppm) δ = 6.881−7.534 (4H, m, Ar−H), 3.770 (3H, s, O−CH₃)]. ³¹P NMR (DMSO, ppm): δ = 25.12. IR (KBr): 1254.18 (C−O), 1443.25 (Ar−P), 1503.05, 1569.34, 1597.36 (C=C), 1179.73 (P=O) cm⁻¹. On the basis of the above analysis, the purity of TMOPPO used in this work was higher than 99.0 %. The results of DSC measurements of TMOPPO are shown in the Supporting Information (Figure f). The melting temperature of TMOPPO was 417.84 K [lit.²⁴ (416.15 to 417.15) K].

Solubility Measurements. The solubilities were measured by a gravimetric method.²⁸ For each measurement, an excess mass of solute was added to a known mass of solvent. Then the equilibrium cell was heated to a constant temperature with continuous stirring. After at least 2 h (the temperature of the

 Table 3. Comparison of Thermal Degradation and Char-Forming

 Properties of Phosphorus-Containing FRs

I I I I I I I I I I I I I I I I I I I		8		
compound	T_0/K	$T_{5\%}/\mathrm{K}$	$T_{50~\%}/{ m K}$	CR/%
dihydroxy-TDUD ³⁰	553.15	603.15	768.15	30
diphenoxy-TDUD	538.15	596.15	663.15	28
HMPPA ³⁰	488.15	508.15	746.15	11
CEPPA ³⁰	463.15	485.15	538.15	3

water bath approached a constant value, then the actual value of temperature was recorded), the stirring was stopped, and the solution was kept still until it was clear. A preheated on-off injector withdrew 2 mL of the clear upper portion of the solution to another previously weighed measuring vial (m_0) . The vial was quickly and tightly closed and weighed (m_1) to determine the mass of the sample $(m_1 - m_0)$. Then the vial was uncovered with a piece of filter paper to prevent dust contamination. After the solvent in the vial had completely evaporated, the vial was dried and reweighed (m_2) to determine the mass of the sample solution in mole fraction, x, could be determined from eq 1²⁸

$$x = \frac{(m_2 - m_0)/M_1}{(m_2 - m_0)/M_1 + (m_1 - m_2)/M_2}$$
(1)

where M_1 is the molar mass of solute and M_2 is the molar mass of solvent.

Different dissolution times were tested to determine a suitable equilibrium time. It was found that 2 h was enough for solute in solvent to reach equilibrium. During our experiments, three parallel measurements were performed at the same composition of solvent for each temperature, and an average value is given. The maximum standard deviation of each triplicate data is 0.26 %, and the minimum is 0.12 %. The estimated relative uncertainty of the solubility values based on error analysis and repeated observations was within 0.02.

Results and Discussion

DSC and TGA Analysis. The melting temperature and melting enthalpy of the organic phosphorus compounds measured by DSC are listed in Table 2. Table 3 shows the comparison of the thermal stability data of diphenoxy-TDUD with the data of dihydroxy-TDUD, CEPPA, and HMPPA published in our previous paper.³⁰ In Table 3, T_0 denotes the temperature of the onset of decomposition, and $T_{5\%}$ and $T_{50\%}$ denote the temperatures at weight loss of 5 % and 50 %, in nitrogen atmosphere, respectively. From Table 3 it can be seen that both dihydroxy-TDUD and diphenoxy-TDUD show more thermal stability than the other compounds. The initial decomposition temperature of diphenoxy-TDUD at 71.56 % mass loss was 670.35 K, and the char yield at 873.15 K was 28.44 %. The results show that there is a single decomposition step for

4712 Journal of Chemical & Engineering Data, Vol. 55, No. 11, 2010

fubic in filore i fuction bolubilities (x) and fictivity coefficients (7) of boliate in the beleeted boltents

solute	solvent	T/K	x	γ	$(x - x^{\text{calcd}})/x$	T/K	x	γ	$(x - x^{\text{calcd}})/x$
dihydroxy-TDUD	acetone9	295.75	0.0040	2.700	0.018	307.95	0.0049	3.167	0.025
		297.55	0.0041	2.767	0.008	309.15	0.0050	3.211	0.006
		299.85	0.0043	2.855	0.002	313.35	0.0053	3.380	0.018
		301.45	0.0044	2.913	0.001	317.15	0.0057	3.536	0.019
		303.15	0.0045	2.982	0.012	319.15	0.0058	3.621	0.010
	1	305.35	0.0047	3.065	0.005	210 10	0.0012	16 212	0.000
	butanone	293.10	0.0006	15.019	0.015	318.18	0.0015	16.212	0.006
		296.17	0.0007	15.822	-0.026	323.10	0.0015	16.660	-0.011
		308.17	0.0008	16.459	-0.020	323.10	0.0010	16.009	0.012
		313.16	0.0010	16.082	0.020	555.17	0.0010	10.449	0.007
	chloroform	293.16	0.00046	21.631	0.001	318.18	0.00114	17,997	-0.012
	emororori	298.17	0.00054	21.639	-0.023	323.16	0.00137	17.120	-0.001
		303.16	0.00067	20.002	0.010	328.16	0.00163	16.338	0.007
		308.17	0.00081	19.153	0.009	333.17	0.00192	15.655	0.013
		313.16	0.00094	18.996	-0.025	338.15	0.00222	15.301	-0.001
	acetonitrile9	309.35	0.0006	27.314	0.078	321.55	0.0017	13.049	0.020
		311.25	0.0007	23.940	0.060	323.25	0.0020	11.908	0.030
		313.25	0.0009	20.187	0.009	325.75	0.0025	10.209	0.016
		315.45	0.0010	18.346	0.026	327.45	0.0028	9.2599	0.016
		317.35	0.0012	16.736	0.033	329.45	0.0032	8.661	0.066
		319.55	0.0015	14.103	0.014	331.55	0.0038	7.691	0.069
	dichloromethane	291.16	0.00027	35.169	-0.005	303.19	0.00045	30.398	0.0019
		295.18	0.00032	33.086	0.009	305.2	0.00048	29.831	-0.002
	diathril ather	299.10 201.14	0.00057	32.014 17.600	-0.005	309.13	0.00056	28.308	0.001
	diethyr ether	291.10	0.00033	17.099	-0.022	305.19	0.00124	10.895	-0.004
		293.16	0.00073	14.392	0.014	303.20	0.00140	10.220	-0.000
	1.4-diovane	293.16	0.00025	40 254	0.020	318 18	0.00045	45 894	0.012
	1,4 dioxane	298.17	0.00028	42.202	-0.012	323.16	0.00050	46.934	0.012
		303.16	0.00031	43.805	-0.017	328.16	0.00055	48.024	0.013
		308.17	0.00035	44.641	-0.010	333.17	0.00060	50.501	-0.015
		313.16	0.00040	45.115	0.005	338.15	0.00066	51.232	-0.007
	ethyl acetate	293.16	0.00078	12.846	0.002	318.18	0.00177	11.607	0.008
	•	298.17	0.00092	12.678	-0.006	323.16	0.00204	11.503	-0.001
		303.16	0.00109	12.375	-0.001	328.16	0.00229	11.626	-0.029
		308.17	0.00129	12.082	0.004	333.17	0.00271	11.144	-0.002
		313.16	0.00152	11.795	0.009	338.15	0.00315	10.781	0.015
	acetic acid	293.16	0.00017	58.022	-0.019	318.18	0.00048	42.928	0.017
		298.17	0.00022	53.631	0.003	323.16	0.00057	41.325	0.007
		303.16	0.00026	51.449	-0.010	328.16	0.00067	39.652	0.002
		308.17	0.00032	48.138	0.004	333.17	0.00078	38.790	-0.022
	hanzana	313.16	0.00040	44.763	0.025	338.15	0.00092	36.675	-0.009
	benzene	295.10	0.00031	32.800	-0.010	222.16	0.00088	23.402	-0.000
		298.17	0.00038	28 916	-0.003	323.10	0.00103	22.037	-0.000
		308.17	0.00047	26.369	0.012	333 17	0.00125	20.588	-0.012
		313.16	0.00070	25.507	-0.006	338.15	0.00176	19.289	0.005
	toluene	293.16	0.00046	21.547	-0.017	318.18	0.00122	16.861	-0.024
		298.17	0.00059	19.569	0.025	323.16	0.00146	15.758	-0.002
		303.16	0.00071	18.975	0.005	328.16	0.00176	15.086	-0.003
		308.17	0.00086	18.138	-0.001	333.17	0.00209	14.391	0.002
		313.16	0.00104	17.208	0.003	338.15	0.00248	13.678	0.011
	cyclohexane	293.16	0.00016	60.543	0.004	318.18	0.00032	63.388	0.001
		298.17	0.00019	61.612	-0.004	323.16	0.00037	63.112	0.013
		303.16	0.00022	61.896	0.000	328.16	0.00041	64.317	0.002
		308.17	0.00025	62.569	-0.002	333.15	0.00046	65.311	-0.006
		313.16	0.00028	63.367	-0.007	338.15	0.00052	65.409	-0.001
diphenoxy-TDUD	acetone	293.17	0.00237	1.533	-0.002	313.24	0.00421	2.246	0.001
		298.16	0.00275	1.696	-0.002	318.07	0.00479	2.445	0.001
		303.26	0.00322	1.855	0.007	323.25	0.00542	2.693	-0.00/
	hutonona	308.57	0.00371	2.068	-0.002	328.30	0.00622	2.898	0.004
	butanone	295.15	0.00399	1.046	-0.007	313.10	0.00038	1.479	-0.013
		290.10	0.00440	1 17/	-0.007	373 15	0.00733	1 796	0.012
		308.18	0.00575	1.309	-0.000	545.15	0.00007	1.790	0.002
	chloroform	293.25	0.00224	1.625	-0.012	318.25	0.01062	1.110	-0.008
		298.17	0.00319	1.459	0.014	323.04	0.01386	1.045	-0.012
		303.25	0.00436	1.367	0.000	328.35	0.01882	0.958	0.006
		308.56	0.00611	1.253	0.009	333.13	0.02336	0.934	-0.031
		313.25	0.00806	1.175	0.006				
	tetrahydrofuran	293.53	0.00524	0.705	0.000	313.35	0.00996	0.954	0.003
		298.16	0.00615	0.758	0.004	318.31	0.01154	1.024	0.003
		303.49	0.00727	0.830	-0.004	323.35	0.01334	1.098	0.002
		308.25	0.00845	0.893	-0.005	328.46	0.01533	1.180	-0.002

Т	able	4.	Continued
_			

solute	solvent	T/K	r	27	$(r - r^{calcd})/r$	T/\mathbf{K}	r	24	$(r - r^{calcd})/r$
solute	sorvent	1/K	л	Y	(\Lambda \Lambda)/\Lambda	1/K	<i>x</i>	¥	$(\lambda \lambda)/\lambda$
	pyridine	293.43	0.00813	0.452	0.000	313.35	0.01141	0.833	0.007
		298.35	0.00885	0.532	-0.001	318.31	0.01231	0.960	0.006
		303.51	0.00964	0.627	-0.003	323.35	0.01316	1.113	-0.002
		308.35	0.01045	0.725	-0.002	328.45	0.01414	1.279	-0.004
	dichloromethane	293.16	0.00103	3.542	0.007	303.86	0.00146	4.229	-0.010
		299.22	0.00127	3.894	0.003	307.60	0.00167	4.396	0.006
	diethyl ether	291.95	0.00179	1.865	-0.002	299.26	0.00234	2.120	-0.006
		295.37	0.00204	1.955	0.006	303.55	0.00275	2.254	0.002
	1,4-dioxane	293.26	0.00132	2.773	0.013	318.36	0.00294	4.036	0.015
		298.45	0.00152	3.110	-0.019	323.35	0.00335	4.381	0.001
		303.26	0.00181	3.321	-0.010	328.23	0.00383	4.688	-0.002
		308.67	0.00214	3.599	-0.009	333.36	0.00438	5.027	-0.006
		313.24	0.00253	3.745	0.018	338.25	0.00499	5.330	-0.003
	water	293.18	0.00014	25.496	0.007	338.36	0.00148	14.931	0.010
		298.77	0.00020	23.881	-0.010	343.26	0.00188	14.227	0.002
		308.37	0.00030	21.691	0.001	348.35	0.00241	13.388	0.009
		313.56	0.00037	20.709	-0.002	353.24	0.00295	13.157	-0.029
		318.25	0.00050	19.356	-0.004	358.25	0.00371	12.471	-0.027
		323.24	0.00064	18.391	-0.014	363.36	0.00477	11.508	0.003
		328.43	0.00086	16.888	0.009	368.25	0.00591	11.052	-0.008
		333.45	0.00116	15.579	0.026				
	ethyl acetate	293.25	0.00107	3.4133	0.004	318.35	0.00281	4.211	0.011
	•	298.46	0.00132	3.580	0.005	323.35	0.00334	4.388	0.009
		303.27	0.00158	3.775	-0.006	328.26	0.00392	4.580	0.003
		308.66	0.00193	3.982	-0.013	333.37	0.00459	4.802	-0.007
		313.27	0.00230	4.119	-0.009	338.26	0.00539	4.941	-0.001
	benzene	293.17	0.00119	3.062	0.002	323.24	0.00136	10.745	0.006
		298.16	0.00121	3.844	0.001	328.43	0.00138	13.069	0.004
		304.76	0.00124	5.162	-0.006	333.46	0.00141	15.659	0.006
		308.37	0.00127	5.997	-0.003	338.34	0.00143	18.697	0.000
		313.55	0.00129	7.425	-0.004	343.26	0.00145	22.175	-0.002
		318.26	0.00133	8.900	0.002	348.35	0.00147	26.381	-0.007
	acetonitrile	293.31	0.00156	2.341	0.017	323.36	0.00438	3.348	-0.027
		298.17	0.00187	2.494	0.009	328.27	0.00522	3 442	-0.008
		303.26	0.00223	2.682	-0.008	333.35	0.00614	3.583	-0.002
		308.57	0.00223	2.802	0.004	338.56	0.00738	3.651	0.024
		313 35	0.00318	2 987	-0.010	343 44	0.00841	3 852	0.013
		318.24	0.00375	3 147	-0.014	515.11	0.00011	5.052	0.015
	toluene	298.17	0.00115	4 055	0.013	323 37	0.00352	4 171	-0.005
	toldelle	303.25	0.00113	4.033	-0.013	328.25	0.00332	4 233	-0.018
		308.56	0.00145	4.175	-0.002	333 34	0.00536	4 105	0.015
		313 34	0.00229	4.150	-0.002	338 56	0.00536	4.103	0.015
		318.26	0.00225	4.137	-0.000	3/3/15	0.00781	4.171	0.001
	methanol	293.24	0.00285	1 344	0.000	313 23	0.00/01	2 360	-0.003
	methanoi	208.24	0.00271	1.573	-0.004	318.16	0.00401	2.500	0.005
		298.24	0.00298	1.575	-0.004	323 15	0.00443	2.055	0.003
		308.17	0.00365	2.061	-0.001	525.15	0.00+05	5.000	0.002
	ethanol	298.16	0.00305	3 423	0.001	323 16	0.00288	5.043	0.002
	culailoi	203.15	0.00157	3 775	-0.003	328.17	0.00200	5 443	-0.002
		308.16	0.00137	4 023	0.011	333.16	0.00323	5 712	0.004
		313.14	0.00218	4.328	0.005	338.16	0.00305	6 2 2 9	-0.006
		318 16	0.00246	4 769	-0.014	343 15	0.00485	6 611	-0.002
	2-ethoxyethanol	293.24	0.00325	1 122	0.022	333.16	0.01224	1 785	0.002
	2 ethoxyethanor	298.24	0.00392	1 103	0.022	338.17	0.01224	1.902	-0.011
		303.16	0.00352	1 306	-0.022	343.16	0.01590	1.902	-0.011
		308.17	0.00543	1 383	-0.007	348.17	0.01846	2 087	-0.010
		313 23	0.00545	1.383	-0.020	353.16	0.02145	2.007	0.010
		318.16	0.00057	1.553	-0.012	358.16	0.02145	2.147	0.000
		373.18	0.00750	1.555	-0.001	363.17	0.02430	2.247	0.004
		323.10	0.010/1	1 716	-0.007	368.16	0.02186	2.339	0.000
ΗΜΡΡΔ	acetone	288.15	0.0013	24 34	0.007	308.17	0.0023	29.010	0.022
	accione	203.15	0.0015	26.48	-0.024	313 16	0.0025	30.201	-0.007
		208 17	0.0017	20.40	-0.006	318 17	0.0020	31 378	-0.007
		203.17	0.0017	28.065	-0.002	373 16	0.0030	31.520	0.007
	water ²⁴	303.10	0.0020	6 632	0.002	342 45	0.0055	1 669	-0.062
	water	317 14	0.0099	0.055 A A56	_0.030	346.59	0.1100	1 211	0.003
		317.40	0.0200	2 075	-0.051	357.8	0.1002	1.311	0.024
		338 15	0.0424	1 784	0.031	352.0	0.2474	0.022	-0.002
	hutanona	288 15	0.0900	2/ 277	-0.010	312 16	0.0120	32 0.922	0.002
	Jutanone	200.15	0.0015	24.377	0.010	313.10	0.0024	32.701	-0.001
		273.10	0.0013	23.029	-0.007	310.17	0.0027	33.123	-0.000
		200.17	0.0017	20.140	0.005	323.10	0.0029	38 738	0.015
		308.17	0.0019	30.667	0.000	333.16	0.0033	40 772	0.000
		500.14	0.0022	50.007	0.007	555.10	0.0057	-0.112	0.000

4714 Journal of Chemical & Engineering Data, Vol. 55, No. 11, 2010

Table 4. Continued

	onunucu								
solute	solvent	<i>T</i> /K	x	γ	$(x - x^{\text{calcd}})/x$	T/K	x	γ	$(x - x^{\text{calcd}})/x$
	cyclohexane	288.15	0.0010	30.710	-0.002	313.16	0.0015	54.294	-0.001
		293.16	0.0011	34.568	0.002	318.17	0.0016	60.142	0.001
		298.17	0.0012	38.928	0.001	323.16	0.0017	66.631	-0.002
		303.18	0.0013	43.710	-0.001	328.17	0.0018	73.331	0.000
		308.14	0.0014	48.654	0.002	333.16	0.0019	80.559	0.000
	toluene	288.15	0.0010	33.075	0.004	313.16	0.0020	39.821	0.000
		293.16	0.0011	34.577	-0.001	318.17	0.0023	41.566	-0.010
		298.17	0.0013	36.306	-0.013	323.16	0.0026	42.331	0.004
		303.18	0.0015	37.001	0.005	328.17	0.0029	43.832	0.000
		308.14	0.0018	38.108	0.010	333.16	0.0033	45.161	0.000
	benzene	293.16	0.0009	43.955	0.007	318.17	0.0022	41.861	-0.007
		298.17	0.0011	43.344	0.007	323.16	0.0027	41.475	-0.009
		303.18	0.0013	43.599	-0.011	328.16	0.0032	40.501	0.004
		308.14	0.0016	42.349	0.005	333.15	0.0037	39.797	0.011
	diabloromathana	202.16	0.0019	42.434	-0.009	202.14	0.00143	20 412	0.006
	dichloromethane	295.10	0.00081	03.002 55.710	-0.007	305.14	0.00143	35.068	0.000
		290.17	0.00079	44 142	-0.012	505.15	0.00109	55.908	0.004
	diathyl athar	203.16	0.00119	34 580	-0.012 -0.005	303.14	0.00212	26 634	0.001
	dieuryr euler	295.10	0.00113	31 679	0.003	305.14	0.00212	20.034	-0.001
		290.17	0.00138	27 911	0.004	505.15	0.00238	25.404	-0.004
	2-ethoxyethanol	203.16	0.00188	0.848	-0.120	318 17	0.07773	1 209	-0.119
	2-ethoxyethanoi	293.10	0.05117	0.040	-0.128	323.16	0.08/89	1.209	-0.126
		303.18	0.05708	0.922	-0.123	328.16	0.00407	1.277	-0.118
		308.14	0.06380	1 054	-0.118	333 15	0.10152	1.570	-0.128
		313.16	0.07086	1.034	-0.113	555.15	0.10152	1.400	0.120
CEPPA	acetone	293.16	0.00074	15 942	0.009	313.16	0.00197	14 436	0.002
021111		298.17	0.00093	15.963	-0.021	318.17	0.00248	14.001	0.008
		303.18	0.00124	14.941	0.019	323.16	0.00305	13.857	-0.005
		308.14	0.00153	15.011	-0.012				
	butanone	293.16	0.00061	19.238	0.012	318.17	0.00206	16.895	0.004
		298.17	0.00077	19.264	-0.019	323.16	0.00253	16.722	-0.011
		303.18	0.00103	18.030	0.019	328.16	0.00316	16.186	-0.002
		308.14	0.00127	18.114	-0.013	333.15	0.00395	15.597	0.011
		313.16	0.00163	17.420	-0.001				
	water ²⁵	298.25	0.00178	8.356	0.061	337.55	0.02492	2.891	-0.034
		308.66	0.00366	6.427	-0.010	342.75	0.03388	2.550	-0.042
		318.07	0.00671	5.163	-0.079	345.06	0.04121	2.269	0.018
		327.17	0.01332	3.701	-0.002	349.47	0.05682	1.907	0.079
	benzene	293.16	0.00081	14.487	-0.010	318.17	0.00126	27.632	0.007
		298.17	0.00091	16.375	0.009	323.16	0.00134	31.539	-0.005
		303.18	0.00099	18.828	0.007	328.16	0.00145	35.214	0.001
		308.14	0.00107	21.578	0.002	333.15	0.00156	39.444	0.001
		313.16	0.00114	24.909	-0.013				
	toluene	293.16	0.00051	23.119	0.008	318.17	0.00105	33.201	-0.003
		298.17	0.00059	25.202	-0.003	323.16	0.00119	35.434	-0.004
		303.18	0.00068	27.195	-0.007	328.16	0.00138	37.100	0.017
		308.14	0.00079	28.928	0.001	333.15	0.00154	39.984	-0.003
		313.16	0.00092	31.003	-0.000				
	ethyl acetate	293.16	0.00128	9.205	-0.002	318.17	0.00226	15.371	-0.008
		298.17	0.00148	10.027	0.021	323.16	0.00254	16.64/	0.005
		303.18	0.00162	11.442	-0.006	328.10	0.00281	10.193	0.005
		300.14 312.14	0.00182	12.043	-0.000	333.13	0.00511	19.018	0.000
	cyclobeyane	203.16	0.00202	13 371	-0.014	318 17	0.00222	15 664	-0.007
	cyclonexane	293.10	0.00088	12.371	0.000	222.16	0.00222	16.112	-0.007
		303.18	0.00108	14 469	-0.011	328.16	0.00203	16 317	0.009
		308.14	0.00128	14.643	0.005	323.10	0.00371	16.608	0.011
		313.16	0.00137	15 273	-0.009	555.15	0.00571	10.000	0.011
	2-ethoxyethanol	293.16	0.0461	0.255	0.002	318 17	0.0777	0 447	0.002
	2 ethonyeunanor	298.17	0.0512	0.290	-0.006	323.16	0.0849	0.498	-0.004
		303.18	0.0571	0.325	-0.004	328.16	0.0937	0.546	0.004
		308.14	0.0638	0.360	0.004	333.15	0.1015	0.606	-0.005
		313.16	0.0709	0.400	0.008				
	acetic acid	293.16	0.01047	1.124	0.014	318.17	0.01825	1.905	-0.004
		298.17	0.01160	1.279	-0.006	323.16	0.02047	2.066	0.007
		303.18	0.01304	1.424	-0.008	328.16	0.02247	2.277	-0.001
		308.14	0.01468	1.567	-0.003	333.15	0.02487	2.473	0.003
		313.16	0.01641	1.729	-0.003				
	acetonitrile	293.16	0.00006	192.940	-0.004	318.17	0.00053	65.209	0.024
		298.17	0.00010	152.020	0.008	323.16	0.00078	54.037	0.020
		303.18	0.00015	122.740	0.004	328.16	0.00109	47.113	-0.029
		308.14	0.00023	102.270	-0.023	333.15	0.00161	38.141	0.003
		313.16	0.00035	81.848	-0.005				

Table 4. Continued

solute	solvent	T/K	x	γ	$(x - x^{\text{calcd}})/x$	T/K	x	γ	$(x - x^{\text{calcd}})/x$
	dichloromethane	288.15	0.00029	31.563	0.301	303.18	0.00080	23.135	0.273
		293.16	0.00042	28.309	0.293	308.14	0.00111	20.801	0.272
	-1-1	298.17	0.00059	25.219	0.292	313.16	0.00149	18.949	0.262
	chloroform	288.15	0.00021	44.206	-0.001 -0.004	313.10	0.00063	45.295	-0.004
		293.10	0.00020	44.337	0.004	323.16	0.00073	45 359	0.022
		303.18	0.00041	45.192	-0.010	328.16	0.00112	45.841	-0.002
		308.14	0.00052	44.686	0.005	333.15	0.00133	46.201	-0.009
TMOPPO	butanone	293.16	0.00621	4.902	-0.002	318.17	0.00962	7.945	0.001
		298.17	0.00684	5.418	0.002	323.16	0.01033	8.732	-0.006
		303.18	0.00749	5.981	0.003	328.17	0.01126	9.423	0.004
		308.14	0.00815	6.602	0.001	333.16	0.01208	10.275	0.000
		313.16	0.00884	7.270	-0.002	222.4.4	0.00004	1.000	0.005
	2-ethoxyethanol	293.16	0.00522	5.832	-0.015	323.16	0.02094	4.309	0.006
		298.17	0.00693	5.347	0.021	328.17	0.02547	4.167	-0.003
		303.18	0.00802	3.198 4.071	-0.000 -0.003	338.17	0.0311	3.994	-0.001
		313.16	0.01082	4.971	-0.003	343 15	0.0377	3 691	0.002
		318.17	0.01679	4 548	-0.001	545.15	0.04557	5.071	0.000.
	methanol	293.16	0.00022	141.390	-0.026	308.14	0.00051	104.160	0.029
		298.17	0.00029	128.120	-0.021	313.16	0.00066	98.851	-0.013
		303.18	0.00040	111.410	0.039	318.17	0.00083	92.999	-0.031
	ethanol	323.16	0.00107	85.547	-0.026	308.14	0.00142	37.232	37.232
		293.16	0.00084	36.606	36.606	313.16	0.00173	37.554	37.554
		298.17	0.00102	36.802	36.802	318.17	0.00202	38.185	38.185
		303.18	0.00121	36.792	36.792	323.16	0.00241	37.952	37.952
	diethyl ether	293.16	0.00587	5.189	-0.001	301.16	0.01008	4.121	0.001
		296.17	0.00721	4.762	-0.003	303.15	0.01142	3.920	-0.004
	h	299.18	0.00889	4.333	0.0061	212.16	0.00079	04.062	0.011
	benzene	293.10	0.00029	104.010	-0.001	218.10	0.00082	94.903	0.011
		290.17	0.00037	100 370	-0.006	323.16	0.00082	93.703	0.000
		308.14	0.00045	99 390	-0.016	525.10	0.00077	90.010	0.020
	toluene	293.16	0.00035	88.052	0.005	318.17	0.00089	85.468	0.015
		298.17	0.00042	87.530	0.006	323.16	0.00105	85.638	0.009
		303.18	0.00051	88.050	-0.004	328.17	0.00123	85.992	0.002
		308.14	0.00061	88.342	-0.011	333.15	0.00145	85.790	0.001
		313.16	0.00075	86.082	0.0113				
	cyclohexane ²⁴	299.15	0.00054	71.416	0.022	323.65	0.00326	28.128	0.007
		304.05	0.00082	56.197	0.059	328.45	0.00436	24.556	-0.026
		308.85	0.00107	51.571	-0.046	332.85	0.00596	20.623	-0.002
		313.95	0.00151	43.769	-0.081	337.65	0.00848	16.781	0.043
TMODD	toluono	318.45	0.00231	33.388	0.024	210 17	0.00000	129 270	0.004
TMOPP	toluene	293.10	0.00036	130.070	0.001	310.17	0.00099	128.270	0.004
		303.18	0.00045	147.990	0.013	328.10	0.00121	122.220	-0.0017
		308.14	0.00066	141.250	-0.019	333.15	0.00169	116.230	0.001
		313.16	0.00083	131.070	0.018				
	butanone	288.15	0.00567	8.199	0.001	313.16	0.01016	10.755	0.000
		293.16	0.00642	8.690	0.001	318.17	0.01125	11.351	-0.005
		298.17	0.00725	9.183	0.002	323.16	0.01251	11.857	-0.001
		303.18	0.00814	9.704	0.002	328.17	0.01391	12.342	0.005
		308.14	0.00907	10.261	-0.003	333.16	0.01531	12.907	0.005
	benzene	293.16	0.00031	184.980	-0.013	313.16	0.00076	144.820	0.008
		298.17 303 19	0.00039	1/2.300	-0.003	318.17 373 16	0.00094	137.320	0.008
		303.18	0.00048	152.710	0.005	523.10	0.00112	104.040	-0.025
	diethyl ether	293.16	0.00607	9 198	0.020	301.16	0.01057	6 977	0.009
	diedityr editer	296.17	0.00739	8 392	-0.010	303.15	0.01181	6.687	-0.012
		299.18	0.00929	7.419	0.013	000110	0101101	0.007	01012
	ethanol ²⁴	298.25	0.00037	178.550	0.044	317.75	0.00128	98.477	0.004
		303.75	0.00049	164.040	-0.060	322.35	0.00168	86.191	-0.001
		308.05	0.00067	139.170	-0.036	328.15	0.00236	72.674	-0.000
		313.35	0.00102	107.820	0.049				
	methanol ²⁴	293.35	0.00019	295.650	0.052	313.15	0.00056	194.110	0.000
		298.25	0.00024	278.240	-0.009	318.15	0.00071	179.720	-0.034
		303.15	0.00031	257.140	-0.050	322.65	0.00098	148.620	0.058
	0 oth 1 1	308.05	0.00042	222.600	-0.021	202.16	0.00000	C C C A	0.007
	∠-etnoxyethanol	293.10	0.005/3	9.746	0.016	323.10 329.17	0.02226	0.004	0.007
		278.17	0.00/10	9.293 8.600	-0.007	326.17 333 17	0.02/39	0.218	0.018
		308.17	0.00919	8 153	-0.003	338.25	0.03301	5 660	0.000
		313.16	0.01431	7.641	-0.009	343.17	0.04816	5.376	0.000
		318.17	0.01754	7.279	-0.022	5 15.17	0.0 1010	5.570	0.000
	cyclohexane	298.15	0.00053	75.801	0.020	323.65	0.00322	25.575	-0.014
		304.05	0.00082	59.106	-0.007	328.45	0.00455	20.472	0.017
		308.32	0.00113	48.378	0.000	332.85	0.00589	17.615	-0.004
		313.95	0.00166	38.458	-0.017	337.65	0.00806	14.460	0.012
		318.45	0.00229	31.497	-0.008				

Figure 4. Mole fraction solubilities of dihydroxy-TDUD in selected solvents: (a) experimental data: ■, cyclohexane; ▼, benzene; ●, 1,4-dioxane; ▲, toluene; (b) experimental data: ■, acetic acid; ▲ butanone; ●, ethyl acetate; ▼, acetone, data from ref 9; (c) experimental data: ●, dichloromethane; ▲, acetonitrile, data from ref 9; ■, chloroform; ▼, diethylether; −, solubility curve calculated from eq 3.

diphenoxy-TDUD. A higher thermal stability is required for the FRs because of the conditions of polymer processing. From Table 3 it can be seen that the thermal stabilities of CEPPA and HMPPA were not satisfactory. The initial decomposition temperature of HMPPA was around 488.15 K, and the initial decomposition temperature of CEPPA was around 463.15 K. As a monomer for polycondensation of PET, the decomposition temperatures of CEPPA and HMPPA are much lower than the temperature range of esterification and polycondensation of PET. The weight loss of CEPPA and HMPPA at a relatively low temperatures results from dehydrolysis between the molecules. Therefore, CEPPA or HMPPA should be incorporated into PET by a pre-esterification of the CEPPA or HMPPA with the ethylene glycol procedure.

Figure 5. Mole fraction solubilities of diphenyl-TDUD in selected solvents: (a) experimental data: ♦, water; ▲, ethanol; ●, methanol; ■, 2-ethoxyethanol; (b) experimental data: ■, butanone; ▼, diethylether; ●, acetone; ▲, 1,4dioxane; (c) experimental data: ●, benzene; ■, toluene; ♦, tetrahydrofuran; ▼, pyridine; (d) experimental data: ●, dichloromethane; ▲, ethyl acetate; ▼, chloroform; ■, acetonitrile; −, solubility curve calculated from eq 3.

Solubility. The mole fraction solubilities *x* of solute in selected solvents measured in this work are summarized in Table 4 and

Figure 6. Mole fraction solubilities of HMPPA in selected solvents: (a) experimental data: ●, 2-ethoxyethanol; ▲, water; data from ref 24; ■, acetone; (b) experimental data: ●, cyclohexane; ▲, benzene; ■, toluene; (c) experimental data: ●, diethylether; ▲, butanone; ■, dichloromethane; -, solubility curve calculated from eq 3.

plotted as $\ln x$ versus *T* in Figures 4 to 9. The solubilities were correlated as a function of temperature by

$$\ln x = A + B/(T/K) \tag{2}$$

Parameters A and B for each solvent are listed in Table 5. The relative standard deviations (RSDs), defined by eq 3, are also presented in Table 5. The smoothed data calculated from eq 2 are compared with the data listed in Table 4.

$$RSD = \left[\frac{1}{N}\sum_{1}^{n} \left(\frac{x_{i} - x_{i}^{calcd}}{x_{i}}\right)^{2}\right]^{1/2}$$
(3)

Figure 7. Mole fraction solubilities of CEPPA in selected solvents: (a) experimental data: \checkmark , 2-ethoxyethanol; \blacktriangle , water, data from ref 25; \blacklozenge , acetone; \blacksquare , butanone; (b) experimental data: \blacktriangledown , cyclohexane; \blacktriangle , ethyl acetate; \blacklozenge , toluene; \blacksquare , benzene; (c) experimental data: \blacklozenge , acetonitrile; \bigstar , dichloromethane; \blacksquare , acetic acid; \blacktriangledown , chloroform; -, solubility curve calculated from eq 3.

where calcd stands for the calculated values and N is the number of experimental points. The results show that eq 2 can be used to correlate the solubility data. The accuracy of the experimental data used in the correlations is satisfactory. The obtained RSD values for different systems are all less than 0.05. Most of them are less than 0.02. Within the temperature range of the measurements, the solubilities of the solute in all of the investigated solvents increased with an increase in temperature.

The solubility of dihydroxy-TDUD in acetone shows the highest value from (295.75 to 319.15) K and in cyclohexane

Figure 8. Mole fraction solubilities of TMOPP in selected solvents: (a) experimental data: ■, toluene; ●, benzene; ▲, ethanol, data from ref 24; ▼, methanol, data from ref 24; (b) experimental data: ■, cyclohexane; ●, 2-ethoxyethanol; ▼, butanone; ▲, diethylether; —, solubility curve calculated from eq 3.

shows the lowest value, which was probably related to the theory of similarity and compatibility and the certain polarity of dihydroxy-TDUD. Thus, acetone is recommended as the best solvent for the purification of dihydroxy-TDUD.

The solubility of diphenoxy-TDUD in 2-ethoxyethanol shows the highest value from (358.15 to 368.15) K and in water shows the lowest value from (298.15 to 328.45) K. However, because of its higher boiling temperature and good dissolubility with diphenoxy-TDUD, 2-ethoxyethanol is recommended as the best solvent for the recrystallization of diphenoxy-TDUD, as the second stage of purification. For the final stage of purification, water is recommended as the solvent to remove the 2-ethoxyethanol from the slurry by quickly filtrating and drying.

The solubility of HMPPA in water shows the highest value from (343.15 to 363.15) K and in dichloromethane shows the lowest value from (293.15 to 303.15) K. Because of its higher boiling temperature and good dissolubility with HMPPA, water is recommended as the best solvent for purification and recrystallization of HMPPA.

The solubility of CEPPA in 2-ethoxyethanol shows the highest value from (293.15 to 363.15) K and in acetonitrile shows the lowest value from (293.15 to 313.15 K). Compared to 2-ethoxyethanol, water is not only environmentally friendly as solvent, but also the solubility of CEPPA in water increases more greatly than that in 2-ethoxyethanol as the temperature increases. Therefore, water is undoubtedly recommended as the best solvent for the recrystallization of CEPPA in this work.

The solubility of TMOPP in 2-ethoxyethanol shows the highest value from (203.15 K to 343.15) K and in methanol

Figure 9. Mole fraction solubilities of TMOPPO in selected solvents: (a) experimental data: \blacksquare , cyclohexane, data from ref 24; \bullet , toluene; \lor , butanone; \blacktriangle , benzene; (b) experimental data: \blacksquare , 2-ethoxyethanol; \bullet , methanol; \bigstar , ethanol; \blacktriangledown , diethylether; -, solubility curve calculated from eq 3.

shows the lowest value from (293.15 to 313.15 K). Thus, 2-ethoxyethanol is recommended as the best solvent for the purification of TMOPP.

The solubility of TMOPPO in 2-ethoxyethanol shows the highest value from (298.15 to 358.15) K and in methanol shows the lowest value from (298.15 to 323.15) K. Because of its higher boiling temperature and good dissolubility with TMOP-PO, 2-ethoxyethanol is recommended as the best solvent for the recrystallization of TMOPPO, as the second stage of purification. For the final stage of purification, methanol is recommended as the solvent to remove the 2-ethoxyethanol from the slurry by quickly filtrating and drying.

To obtain the activity coefficients of solute in the solvents from the experimental data, the following equilibrium equation for solute 1 was derived as a fair approximation³⁵

$$\ln \frac{1}{x_1 \gamma_1} = \frac{\Delta_{\text{fus}} H}{R T_{\text{m}}} \left(\frac{T_{\text{m}}}{T} - 1 \right) \tag{4}$$

where $\Delta_{\text{fus}}H$ refers to the enthalpy of fusion; T_{m} is the melting temperature; R is the gas constant; and x_1 and γ_1 refer to the mole fraction and activity coefficient of solute in the solution, respectively. With the experimental x_1 , T, $\Delta_{\text{fus}}H$, and T_{m} values known, the activity coefficients of solute in different solvents were obtained. The results are listed in Table 4. From Table 4, it can be seen that the activity coefficients of solute in these selected solvents are all more than unity. Generally, a relatively

Table 5.	Parameters of Equation 2 and Relative Standard
Deviation	s (RSDs) of the Measured Solubility of Solute in Selected
Solvents f	from the Calculated Results

solute	solvent	Α	В	RSD
dihydroxy-TDUD	acetone9	-0.3730	-1523.6	0.001
	butanone	1.4829	-2596.5	0.016
	dichloromethane	4.5628	-3724.5	0.006
	chloroform	4.2862	-3516.0	0.017
	benzene	5.0048	-3839.1	0.014
	toluene	4.7613	-3642.6	0.014
	acetonitrile	19.4760	-8311.1	0.023
	diethyl ether	13.3376	-60/4.5	0.018
	1,4-dioxane	-0.7670	-2213.0	0.013
	euryr acetate	3.2022	-3030.8	0.012
	cyclobeyane	-0.0485	-3090.3 -2541.5	0.010
diphenoxy-TDUD	water	10.4950	-5675.5	0.000
diplicitoxy TDOD	methanol	0 3926	-1850.8	0.006
	ethanol	3.1345	-2903.8	0.010
	benzene	-5.3253	-414.7	0.005
	acetone	2.9177	-2627.5	0.005
	butanone	2.1939	-2266.2	0.010
	dichloromethane	3.3502	-3000.1	0.009
	toluene	7.7952	-4346.4	0.011
	acetonitrile	5.0878	-3392.8	0.016
	ethyl acetate	5.3630	-3580.6	0.008
	chloroform	13.6150	-5776.9	0.011
	diethyl ether	3.9792	-3003.7	0.006
	1,4-dioxane	3.5153	-2980.3	0.013
	pyridine	0.4220	-1535.9	0.005
	2 othorworthanal	4.8670	-2970.2	0.004
нмрра	2-etiloxyetilallol	2 3/11	-2591.2	0.014
THVIT I A	butanone	0.8342	-2147.4	0.013
	water	20 4410	-7714.9	0.007
	cvclohexane	-2.6769	-1204.5	0.002
	toluene	2.1239	-2611.2	0.008
	diethyl ether	12.1490	-5549.3	0.005
	benzene	4.8994	-3497.4	0.009
	dichloromethane	18.4270	-7573.2	0.010
	diethyl ether	12.1490	-5549.4	0.005
	2-ethoxyethanol	3.6676	-1943.9	0.005
CEPPA	acetone	8.2144	-4524.7	0.015
	butanone	8.1217	-4553.6	0.014
	water ²⁵	17.0910	-7004.1	0.016
	benzene	-1.7597	-1567.3	0.008
	toluene	1./163	-2/28.4	0.007
	etnyl acetate	0.0035	-2146.9	0.011
	2 othorwathanal	4.8883	-3497.4 -1043.8	0.009
	acetic acid	2 7209	-2138.3	0.005
	acetonitrile	17 5220	-79807	0.007
	dichloromethane	12.5920	-6075.2	0.005
	chloroform	5.2807	-3962.1	0.010
TMOPPO	butanone	0.4378	-1617.3	0.003
	2-ethoxyethanol	9.4988	-4320.8	0.011
	methanol	8.6347	-4999.6	0.019
	ethanol	4.1489	-3294.3	0.006
	diethyl ether	15.1620	-5950.8	0.005
	benzene	4.8033	-3793.1	0.005
	toluene	3.9739	-3502.7	0.005
	cyclohexane	16.4310	-7173.4	0.047
TMOPP	butanone	2.1565	-2112.5	0.003
	2-ethoxyethanol	9.5459	-4316.9	0.015
	methanol athonal	9.4070	-5288.9	0.017
	diathul athar	4.1703	-2097.4	0.013
	benzene	5 0109	-0033.4	0.015
	toluene	5.9108	-3807.1	0.010
	cyclohexane	15.7260	-6941.8	0.015

small solubility and a large activity coefficient result from the deviation from ideal behavior ($\gamma_{1=1}$), which illustrated that the interaction between the solutes and the solvents is weak and the polar or specific chemical force between the molecules of the solid is strong.

Supporting Information Available:

The ¹H NMR and ³¹P NMR spectra and the DSC graphs of dihydroxy-TDUD, diphenoxy-TDUD, HMPPA, CEPPA, TMOPP,

and TMOPPO information. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Kim, J.; Lee, K.; Bae, J.; Yang, J.; Hong, S. Studies on the thermal stabilization enhancement of ABS; synergistic effect of triphenyl phosphate nanocomposite, epoxy resin, and silane coupling agent mixtures. *Polym. Degrad. Stab.* **2003**, *79*, 201–207.
- (2) Maiti, S.; Banerjee, S. Phosphorus-containing polymers. Prog. Polym. Sci. 1993, 18, 227–261.
- (3) Shieh, J. Y.; Wang, C. S. Synthesis and properties of novel phosphoruscontaining hardener for epoxy resins. J. Appl. Polym. Sci. 2000, 78, 1636–1644.
- (4) Xia, X. N.; Lu, Y. B.; Zhou, X.; Xiong, Y. O.; Zhang, X. H.; Xu, W. J. Synthesis of novel phosphorous-containing biphenol, 2-(5,5dimethyl-4-phenyl-2-oxy-1,3,2-dioxa-phosphorin-6-yl)-1,4-benzenediol and its application as flame retardant in epoxy resin. J. Appl. Polym. Sci. 2006, 102, 3842–3847.
- (5) Lu, S. Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. *Prog. Polym. Sci.* 2002, 27, 1661–1712.
- (6) Troitzsch, J. H. Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. *Chim. Oggi* 1998, 16, 18–24.
- (7) Gail, H. B. Hydrogen phosphonates and polymer compositions containing them as flame retardants. U.S. Patent 4,070,336, 1978.
- (8) William, G.; Gianluigi, L.; Antonio, R.; Carlo, N. New pentaerythryl phosphonates containing self-extinguishing thermoplastic compositions. U.S. Patent 5,338,787, 1994.
- (9) Wang, L. S.; Liu, Y.; Wang, R. Solubilities of some phosphaspirocyclic compounds in selected solvents. J. Chem. Eng. Data 2006, 51, 1686– 1689.
- (10) Hoang, D.; Kim, J. Synthesis and applications of biscyclic phosphorus flame. *Polym. Degrad. Stab.* **2008**, *93*, 36–42.
- (11) Hoang, D.; Kim, J.; Jang, B. N. Synthesis and performance of cyclic phosphorus-containing flame retardants. *Polym. Degrad. Stab.* 2008, 93, 2042–2047.
- (12) Yuval, H. Pentate salts of amino-s-triazines. U.S. Patent 4,154,930, 1979.
- (13) Howard, R. G.; Ben, W. K. Phosphorus-containing spirobi(metadioxane) resins. U.S. Patent 2,957,856, 1960.
- (14) William, B. H.; Tae, B. M.; Joseph, A. H. Pentaerythrityl diphosphonate-ammonium polyphosphate combinations as flame retardants for olefin polymers. U.S. Patent 4,174,343, 1979.
- (15) Liu, Y. L.; Liu, Y. L.; Jeng, R. J.; Chiu, Y. S. Triphenylphosphine oxide-based bismaleimide and poly(bismaleimide): synthesis, characterization and properties. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1716–1725.
- (16) Wang, L. S.; Wang, X. L.; Yan, G. L. Synthesis, characterization and flame retardance behavior of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. *Polym. Degrad. Stab.* 2000, 69, 127–130.
- (17) Monza, G. M.; Pisticci Scalo, A. M.; Crema, F. P.; Matera G. A.; Matera, M. F. Flameproof linear polyester. A process for its preparation, and articles formed from said polyester. U.S. Patent 4,517,355, 1985.
- (18) Weinkauff, D. J.; Paulik, F. E. Production of 2-carboxyalkyl(phenyl)phosphinic acid. U.S. Patent 6,320,071, 2001.
- (19) Weinkauff, D. J.; Paulik, F. E. Process for the preparation of 2-carboxyalkyl(aryl)phosphinic acid and corresponding anhydride(s). U.S. Patent 6,399,814, 2002.
- (20) Wu, B.; Wang, Y. Z.; Wang, X. L.; Yang, K. K.; Jin, Y. D.; Zhao, H. Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters. *Polym. Degrad. Stab.* **2002**, *76*, 401–409.
- (21) Chandharl, R. V.; Bhanage, B. M.; Deshpande, R. M.; Delmas, H. Enhancement of interfacial catalysis in a biphasic system using catalyst-binding ligands. *Nature* **1995**, *373*, 501–503.
- (22) Sinou, D.; Pozzi, G.; Hope, E. G.; Stuart, A. M. A convenient access to triarylphosphines with flurous phase affinity. *Tetrahedron Lett.* 1999, 40, 849–852.
- (23) Fremy, G.; Monflier, E.; Carpentier, J. F.; Catanet, Y.; Mortreux, A. Enhancement of catalytic activity for hydroformylation of methyl acrylate by using biphasic and "supported aqueous phase" systems. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1474–1476.
- (24) Wang, L. S.; Yang, M.; Wang, S. B.; Ouyang, X. Solubilities of phenylphosphinic acid, hydroxymethylphenylphosphinic acid, pmethoxyphenylphosphinic acid, p-methoxyphenylhydroxymethylphosphinic acid, triphenylphosphine, tri(p-meth-oxyphenyl)phosphine, and tri(p-methoxyphenyl)phosphine oxide in selected solvents. J. Chem. Eng. Data 2006, 51, 462–466.

- (25) Wang, Z. W.; Sun, Q. X.; Wu, J. S.; Wang, L. S. Solubilities of 2-carboxyethylphenylphosphinic acid and 4-carboxyphenylphenylphinic acid in water. J. Chem. Eng. Data 2003, 48, 1073–1075.
- (26) Friedrichsen, B. P.; Powell, D. R.; Whitlock, H. W. Sterically encumbered functional groups: an investigation of endo versus exo phosphoryl complexation using ¹H and ³¹P NMR. *J. Am. Chem. Soc.* **1990**, *112*, 8931–8941.
- (27) Whitaker, C. M.; Kott, K. L.; Mcmahon, R. J. Synthesis and solidstate structure of substituted arylphosphine oxides. *J. Org. Chem.* 1995, 60, 3499–3508.
- (28) Zhu, M. Solubility and density of disodium salt hemiheptahydrate of ceftriaxone in water + ethanol mixtures. J. Chem. Eng. Data 2001, 46, 175–176.
- (29) Guo, X. Z.; Wang, L. S.; Tian, N. N. Solubilities of (2,5-dihydroxyphenyl)diphenyl phosphine oxide in selected solvents. *J. Chem. Eng. Data* **2009**, *55*, 1745–1749.
- (30) Wang, L. S.; Kang, H. B.; Wang, S. B.; Liu, Y.; Wang, R. Solubilities, thermostabilities and flame retardance behaviour of phosphoruscontaining flame retardants and copolymers. *Fluid Phase Equilib.* 2007, 258, 99–107.

- (31) Raetz, R. F. W. Reaction of cyclic phosphorus chlorides with dimethyl sulfoxide. *Tetrahedron Lett.* **1963**, *8*, 529–532.
- (32) Raetz, R. F. W. 3,9-Dihydroxy-2,4,8,10-tetraoxa-2,9-diphosphaspiro-[5.5]undecane 3,9-dioxide. U.S. Patent 3167576, 1965.
- (33) Sun, C. Y.; Li, B.; Zhang, Z. F.; Shao, B.; Xu, S. C. Synthesis and characterization of bis-phenol ester of spirocyclic pentaerythritol bischloro- phosphatidic acid. *Appl. Chem. Chin. Ed.* 2006, 23, 165– 168.
- (34) Ogasawara, K.; Ohira, Y.; Taketani, Y. Manufacture of spiro compounds from pentaerythritol and phosphonic dihalides. JP Patent 11302293 A, 1999.
- (35) Prausnitz, J. M.; Lichtenthaler, R. N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice-Hall Inc.: Englewood Cliffs, NJ, 1986.
- (36) Cheng, N. L. Solutions Manual, 3rd ed.; Chemical Industry Press: Beijing, 2001.

Received for review April 8, 2010. Accepted September 27, 2010.

JE100341Q