Solubility of CO_2 in Propanone, 1-Ethyl-3-methylimidazolium Tetrafluoroborate, and Their Mixtures[†]

Zhigang Lei,* Juan Yuan, and Jiqin Zhu

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 35, Beijing, 100029, China

Solubility data of carbon dioxide (CO₂) (1) in propanone (2), 1-ethyl-3-methylimidazolium ([EMIM]⁺[BF4]⁻) (3), and their mixtures ($w_3 = 0.10$, 0.20, and 0.50) at temperatures (298.2 and 313.2) K and pressures up to 8.0 MPa were measured by means of a high-pressure view-cell technique. Henry's law was applied to correlate the experimental data, and it was found that the magnitude of Henry's constants for propanone ($w_3 = 0.0$), [EMIM]⁺[BF4]⁻ ($w_3 = 1.0$), and their mixtures follows the order of $w_3 = 0.0 < w_3 = 0.10 < w_3 = 0.20 < w_3 = 0.50 < w_3 = 1.0$ at a given temperature. The mixtures of propanone and [EMIM]⁺[BF4]⁻ may be used as promising solvents for capturing CO₂ since they combine the advantages of organic solvents and ionic liquids.

Introduction

In recent years, ionic liquids (ILs) have received significant attention because they offer many excellent properties, $^{1-3}$ such as (1) high chemical stability, (2) less caustic, (3) good solvents for polar and nonpolar compounds, (4) nonvolatility, and (5) good performance in separation and reaction processes. For capturing CO₂ to reduce greenhouse gas emissions, a great number of experimental data on the solubility of CO₂ in ILs at high pressures and above room temperature have been reported, $^{4-14}$ which are important design parameters in establishing equilibrium stage (EQ) and nonequilibrium stage (NEQ) mathematical models to simulate and optimize the absorption and stripping columns. However, compared with traditional organic solvents, the high viscosity and cost of ILs may become some obstacles for their application in industry.

As we know, propanone as a polar but nonassociated solvent is used for absorbing CO₂ in industry. Many researchers have reported the vapor-liquid equilibrium (VLE) data for CO_2 + propanone,¹⁵⁻¹⁸ and the results showed that the solubility of CO₂ in propanone is greater than other physical solvents, such as methanol, $^{19-24}$ ethanol, 15,16,21,23 and so on. $^{17-20,23-30}$ However, its high volatile quality makes the separation process and solvent recycling usage hardly viable, which demands high energy. ILs might serve as a superior additive which can counteract this disadvantage brought out by traditional physical solvents. The mixtures of propanone and ILs as absorbing agents for capturing CO₂ combine the advantages of organic solvents and ILs and reduce propanone's volatility. Moreover, they may substitute the current propanone process only by replacing the separating agent without changing the whole flowsheet. However, only very few investigations³¹⁻³⁴ on gas-liquid equilibrium for $CO_2(1)$ + propanone (2) containing ionic liquids (3) have been done currently, and no systematic solubility data are reported.

The IL, i.e., 1-ethyl-3-methylimidazolium ([EMIM]⁺[BF4]⁻), was selected in this study because it was much easier to obtain

from chemical markets at a lower price. Moreover, there are a very limited number of VLE data reported⁸ for the system of CO_2 (1) + [EMIM]⁺[BF4]⁻ (2) only at temperature 298.15 K and pressures from (0.251 to 0.875) MPa so that we can not compare the solubility of CO_2 in [EMIM]⁺[BF4]⁻ with those in various ILs including a bis(trifluoromethylsulfonyl)imide (Tf₂N) anion which can be found from the ILs database (see http://ilthermo.boulder.nist.gov/ILThermo). Therefore, the solubility data of CO_2 on the binary and ternary systems of CO_2 (1) + propanone (2), CO_2 (1) + [EMIM]⁺[BF4]⁻ (2), and CO_2 (1) + propanone (2) + [EMIM]⁺[BF4]⁻ (3) were measured at temperatures (298.2 and 313.2) K and pressures up to 8.0 MPa, which will be the essential data for capturing CO_2 efficiently and effectively.

Experimental Section

Chemicals. The ionic liquid [EMIM]⁺[BF4]⁻ was provided by the Chemical Engineering Institute of the Normal University of Hebei (China), with a mass fraction purity > 98 % observed by liquid chromatography and no Cl⁻ anion detected (the detection limit 0.1 g \cdot L⁻¹). Furthermore, before the experiments, the IL was dried for 48 h at (348 to 358) K under a vacuum by the rotary evaporator to separate the IL from volatile byproducts and water. After experiments, the IL was reused after the rotary evaporation to eliminate the volatile components, and no color change of IL was found. The water mass fraction in IL determined by Karl Fisher titration was less than 0.002. Propanone was purchased from Beijing modern eastern fine chemicals with a mass fraction purity of > 0.995. CO_2 was purchased from Longkou City Gas Plant, with a mass fraction purity > 0.9999. Sodium sulfate (Na_2SO_4) with a mass fraction purity > 0.990 and sulfuric acid (H₂SO₄) with a mass fraction purity of between (0.95 and 0.98) % were purchased from Beijing Chemical Plant.

Apparatus and Procedure. The solubility data were measured by means of a high-pressure view-cell technique, which is showed schematically in Figure 1. The apparatus mainly consisted of a CO_2 cylinder, a computer-controlled metering syringe pump (made by Beijing Satellite Manufacturing Fac-

[†] Part of the "Sir John S. Rowlinson Festschrift".

^{*} To whom correspondence should be addressed. Tel: +86 10 64433695. E-mail: leizhg@mail.buct.edu.cn.

Figure 1. Experimental apparatus for solubility measurement: 1, CO_2 cylinder; 2, syringe pump; 3, pressure and flow rate display; 4, pressure transducer; 5, thermostat cover; 6, high-pressure view cell; 7, magnetic stirrer; 8, electric motor; 9, thermocouple; 10, sodium sulfate solution; 11, airbag; 12, sampler; 13, pressure and temperature display.

tory), a volume-variable high-pressure stainless steel view cell, a magnetic stirrer, and two samplers taking out gas and liquid samples, respectively. The temperature was monitored with a thermocouple and a digital thermometer with an uncertainty of 0.1 K. The pressure gauge consisted of a pressure transducer and an indicator calibrated by a high-precision pressure gauge before experiments with an uncertainty of 0.01 MPa in the pressure range of (0 to 20) MPa. A certain amount of solvent (about 35 mL) was first loaded into the cell. Then air was purged from the system with CO_2 several times. The cell was controlled at a predetermined temperature. As CO_2 entered the cell by a syringe pump, it was dissolved into the solvent, and the system pressure decreased gradually. It was assumed that gas—liquid equilibrium had been reached until the system pressure was invariable for about 2 h.

A small amount of gas sample was collected with an airbag and was detected by gas chromatography. The gas chromatography (GC 4000A) was equipped with a TCD detector. The chromatographic column (3 m \times 0.3 mm) was packed with Porapak-Q. The carrier gas was hydrogen flowing at 30 cm³·min⁻¹, and the operating conditions were as follows: the injector, oven, and detector temperatures at 353.2 K. The maximum uncertainty of gas mole fractions was 0.003. The liquid sample (about (1.5 to 2.0) g) was collected in the sample bomb, from which CO₂ was released slowly and then absorbed into the aqueous solution of Na₂SO₄ with pH (between 2.5 and 3.0) adjusted by H₂SO₄ to trap the volatile organic solvent that is desorbed from CO₂ as well and thus realize a more complete separation of CO₂ and solvent. The amounts of CO₂ and solvent in the liquid sample were determined using the gravimetric method by measuring the mass difference of solutions with and without CO₂. The mass uncertainty using an electronic balance (CPA 1003S, Sartorius) was 0.001 g. Therefore, the estimated uncertainty of solubility measurement in mole fractions was less

Table 1. Solubility of CO₂ (1) in Propanone (2) + [EMIM]⁺[BF4]⁻ (3) at Different Temperatures and Pressures

	T = 298.2 K		T = 313.2 K			
	P/MPa	<i>x</i> ₁	<i>y</i> 1	P/MPa	<i>x</i> ₁	<i>y</i> 1
propanone	0.55	0.1099	0.9514	1.01	0.1490	0.9708
1 1	1.03	0.2033	0.9590	1.52	0.2212	0.9724
	1.53	0.2989	0.9622	2.00	0.2927	0.9759
	2.05	0.3960	0.9799	2.43	0.3500	0.9759
	2.50	0.4665	0.9747	3.00	0.4322	0.9845
	3.02	0.55607	0.9682	3.54	0.5075	0.9861
	3.54	0.6311	0.9826	4.00	0.5654	0.9856
	4.04	0.7193	0.9845	4.60	0.6474	0.9866
	4.60	0.8054	0.9869	5.01	0.7001	0.9642
	5.16	0.8847	0.9520	5.51	0.7587	0.9508
	5.51	0.9339	0.9541	6.03	0.8234	0.9504
				7.02	0.9326	0.9560
$w_3 = 0.1 \text{ IL} + w_2 = 0.9 \text{ propanone}$	0.52	0.0955	0.9380	0.52	0.0689	0.9242
	1.01	0.1855	0.9688	1.00	0.1337	0.9485
	1.49	0.2724	0.9773	1.50	0.2060	0.9727
	2.03	0.3670	0.9836	2.05	0.2843	0.9735
	2.51	0.4421	0.9854	2.50	0.3431	0.9737
	3.06	0.5341	0.9875	3.07	0.4228	0.9781
	3.54	0.6200	0.9882	3.57	0.4862	0.9795
$w_3 = 0.2 \text{ IL} + w_2 = 0.8 \text{ propanone}$	0.53	0.0887	0.9468	0.54	0.0608	0.8853
	1.00	0.1758	0.9667	1.00	0.1168	0.9270
	1.50	0.2646	0.9771	1.55	0.1839	0.9487
	2.01	0.3590	0.9819	2.04	0.2491	0.9692
	2.50	0.4278	0.9856	2.52	0.3097	0.9734
				3.03	0.3813	0.9829
$w_3 = 0.5 \text{ IL} + w_2 = 0.5 \text{ propanone}$	0.60	0.0792	0.9510	0.54	0.0526	0.9466
	1.02	0.1349	0.9783	1.02	0.0970	0.9246
	1.55	0.2011	0.9638	1.50	0.1414	0.9234
	2.03	0.2617	0.9843	2.00	0.1981	0.9781
	2.54	0.3208	0.9823	2.50	0.2437	0.9790
				3.00	0.2983	0.9842
$[EMIM]^+[BF_4]^-$	0.53	0.0555	1.0000	0.56	0.0425	1.0000
	0.91	0.0918	1.0000	1.01	0.0763	1.0000
	1.55	0.1470	1.0000	1.50	0.1147	1.0000
	2.01	0.1875	1.0000	1.57	0.1197	1.0000
	2.50	0.2274	1.0000	2.01	0.1510	1.0000
	3.00	0.2700	1.0000	2.52	0.1877	1.0000
	3.50	0.3102	1.0000	3.05	0.2271	1.0000
	4.04	0.3453	1.0000	3.54	0.2576	1.0000
				4.06	0.2891	1.0000

Figure 2. Relative deviations $|\Delta x_1|/x_1 = |x(exptl) - x(calcd)|/x(exptl)$ between the calculated and measured solubility in mole fractions of CO₂ in propanone at 298.2 (a) and 313.2 K (b): •, this work with error bars representing the extended uncertainty; \Box , ref 15; \triangle , ref 16; \Rightarrow , ref 17.

than 0.00002. For each data point, three runs were performed to check the reproducibility of the results at the same temperature and pressure, which also indicates that no degradation of IL was produced.

Results and Discussion

To test the performance of the experimental apparatus, the solubility of CO_2 (1) in propanone (2) was measured at temperatures of (298.2 and 313.2) K and pressures up to 8.0 MPa. The vapor-liquid equilibria for the binary system of CO_2 (1) + propanone (2) are listed in Table 1, where x_1 is the mole fraction of CO_2 in solution and y_1 is the mole fraction of CO_2 in gas. The experimental results were compared to those by Day et al.,¹⁵ Chiu et al.,¹⁶ and Adrian et al.,¹⁷ as shown in Figure 2. Our experimental data were in good agreement with those reported in the literature with the maximum relative deviation between the calculated and measured solubility in mole fractions of CO₂ in the liquid phase of $|\Delta x_1|/x_1$ about 0.10, thus verifying that the experimental apparatus was reliable. Herein, the measured solubility, i.e., x(exptl), represents the experimental data coming from the references and this work, and the calculated solubility data, i.e., x(calcd), were obtained by linear regression using our experimental data at the same temperatures and pressures as the measured solubility because the experi-

Figure 3. Solubility of CO₂ (1) in the mixtures of propanone (2) + $[\text{EMIM}]^+[\text{BF}_4]^-$ (3) at 298.2 K (a) and 313.2 K (b): \blacksquare , propanone; \square , 10 wt % IL + 90 wt % propanone; \bigcirc , 20 wt % IL + 80 wt % propanone; \bigcirc ,

mental pressures between our measurement and reference data can not be exactly the same.

50 wt % IL + 50 wt % propanone; \blacktriangle , IL.

In this way, measurements were made for the solubility of CO₂ (1) in the mixtures of propanone (2) and [EMIM]⁺[BF4]⁻ (3) in which the mass fractions of [EMIM]⁺[BF4]⁻ were kept at $w_3 = 0, 0.1, 0.2, 0.5, and 1$ on a CO₂-free basis. The solubility data at temperatures (298.2 and 313.2) K and pressures up to 8.0 MPa are also listed in Table 1, which comprises the equilibrium mole fractions of CO₂ in liquid and gas phases (x_1, y_1), equilibrium temperature (T), and pressure (P) at different IL contents. It should be mentioned that CO₂ may induce a liquid–liquid phase split for homogeneous mixtures containing IL and polar organic solvent at high pressure, as pointed out by Aki et al.³¹ and Mellein and Brennecke.³² We confirmed this experimental phenomenon, and thus the solubility measurements were carried out below the lower-critical end point pressure (LCEP) which is the locus segmenting the homogeneous liquid phase and two liquid phases.

The *P*, *x* diagrams are plotted in Figure 3, and it can be seen that as the pressure increases the CO₂ solubility increases almost linearly, indicating that CO₂ is physically absorbed.^{33–38} However, the CO₂ solubility decreases with rising temperature. The solubility trend in the mixtures of propanone and $[\text{EMIM}]^+[\text{BF4}]^-$ is remarkably similar to that in pure solvents. Moreover, under the same temperature and pressure, CO₂

Figure 4. P, x_1 , y_1 diagram for CO₂ (1) + propanone (2) + [EMIM]⁺[BF₄]⁻ (3) at $w_3 = 0.0$ (a), 0.10 (b), 0.20 (c), 0.50 (d): \blacksquare , 298.2 K; \bigcirc , 313.2 K.

exhibits the highest solubility in propanone, while the solubility of CO₂ in [EMIM]⁺[BF4]⁻ is the lowest. The mixtures lie inbetween, following the order of $w_3 = 0.0 > w_3 = 0.10 > w_3 =$ $0.20 > w_3 = 0.50 > w_3 = 1.0$. On the other hand, as shown in Figure 4, as the temperature increases, the amount of propanone in the gas phase also increases. That is to say, the higher the temperature, the more the volatile solvent loss. However, there is no appreciable amount of ILs solubilized into the CO₂ phase. Therefore, the mixtures of propanone and ILs combine the advantages of organic solvents and ILs and can tune the solubility at different IL concentrations.

The Henry's constants^{39,40} of CO₂ in propanone, [EMIM]⁺-[BF4]⁻, and their mixtures can be defined as

$$H_{1}(T,P) = \lim_{x_{1} \to 0} \frac{f_{1}^{L}}{x_{1}}$$
(1)

where f_1 is the fugacity of CO₂ (1) in the liquid phase. At an equilibrium state, fugacity of CO₂ (1) in the liquid and gas phases is equal.

$$f_{1}^{L}(T, P, x_{1}) = f_{1}^{V}(T, P, y_{1}) = y_{1}P\phi_{1}(T, P, y_{1})$$
(2)

where y_1 is the mole fraction of CO₂ in the gas phase, and $\phi_1(T, P, y_1)$ is the fugacity coefficient of CO₂ in the gas mixture. Since the

mole fraction of CO_2 in the gas phase y_1 is close or equal to unity under the experimental conditions, eq 1 could be rewritten as

$$H_{1}(T,P) = \lim_{x_{1} \to 0} \frac{f_{1}^{L}}{x_{1}} = \lim_{x_{1} \to 0} \frac{y_{1}P\varphi_{1}(T,P)}{x_{1}}$$
(3)

where $\phi_1(T, P)$ is the fugacity coefficient of pure CO₂ and is calculated from the equation of state by Span and Wagner.⁴¹

Henry's constants were estimated by linear extrapolation at $x_1 \rightarrow 0$ from the ratio of fugacity to mole fraction of CO₂, f_1/x_1 , and the estimated results are given in Table 2. It was found that Henry's constants increase with increasing temperature but at a given temperature follow the order of $w_3 = 0.0 < w_3 = 0.10 < w_3 =$

Table 2. Henry's Constant of CO_2 in Propanone, $[EMIM]^+[BF4]^-,$ and Their Mixtures at Zero Pressure (On the Mole Fraction Scale)

	$H_1(T, P)$		
	T = 298.2 K	T = 313.2 K	
propanone	4.79	6.61	
$w_3 = 0.1 \text{ IL} + w_2 = 0.9$ propanone	5.11	7.01	
$w_3 = 0.2 \text{ IL} + w_2 = 0.8$ propanone $w_2 = 0.5 \text{ IL} + w_2 = 0.5$	5.58	7.92	
$w_3 = 0.5 \text{ IL} + w_2 = 0.5$ propanone [EMIM] ⁺ [BF ₄] ⁻	7.06 9.74	9.68 13.02	

 $0.20 < w_3 = 0.50 < w_3 = 1.0$, which is contrary to the trend of solubility data.

Conclusions

Experimental results are present for the solubility data of CO₂ (1) in propanone (2), 1-ethyl-3-methylimidazolium ([EMIM]⁺- $[BF4]^{-}$), (3) and their mixtures ($w_3 = 0.10, 0.20, and 0.50$) at temperatures (298.2 and 313.2) K and pressures up to 8.0 MPa. The Henry's constants were obtained by extrapolation procedure, following the order of $w_3 = 0.0 < w_3 = 0.10 < w_3 = 0.20 < w_3 =$ $0.50 < w_3 = 1.0$ at a given temperature. The mixtures of propanone and IL may be promising absorbing agents for capturing CO2 due to the combination of advantages of organic solvents and ILs. The new data help to evaluate the separation ability of different solvents such as organic solvents, ILs, and their mixtures and to design the feasible process for capturing CO₂ efficiently and effectively. Furthermore, the solubility data can also be used for some synthetic chemistry in which ILs are required to recover from volatile organic solvents utilizing CO₂ and for stimulant detections in which volatile drugs are extracted by the double actions of CO_2 and IL.

Literature Cited

- (1) Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R. D. Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO₂. *Ind. Eng. Chem. Res.* 2006, 45, 5574–5585.
- (2) Yao, S.; Wang, X.; Zhang, H.; Liu, Z. Progress of fixation and utilization of CO₂ using ionic liquids. *Chem. Ind. Eng. Prog.* **2008**, *27*, 640–647.
- (3) Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Solubility of CO₂, CH₄, C₂H₄, C₂, and N₂ in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids. Acc. Chem. Res. 2007, 40, 1208–1216. Shiflett, M. B.; Yokozeki, A. Solubility of CO₂ in room temperature ionic liquid [hmim][Tf₂N]. J. Phys. Chem. B 2007, 111, 2070–2074.
- (4) Blanchard, A.; Gu, Z.; Brennecke, J. F. High-pressure Behavior of Ionic Liquid/CO₂ Systems. J. Phys. Chem. B 2001, 105, 2437–2444.
- (5) Scovazzo, P.; Camper, D.; Kieft, J. Regular Solution Theory and CO₂ Gas Solubility in Room Temperature Ionic Liquids. *Ind. Eng. Chem. Res.* 2004, *43*, 6855–6860.
- (6) Shariati, A.; Peters, C. J. High-pressure phase behavior of systems with ionic liquid: II.The binary system carbon dioxide + 1-ethyl-3-methylimidazolium hexafluorophosphate. J. Supercrit. Fluids 2004, 29, 43–48.
- (7) Shiflett, M. B.; Yokozeki, A. Solubility and Diffusivities of Carbon dioxide in Ionic Liquids: [bmim][PF₆] and [bmim][BF₄]. *Ind. Eng. Chem. Res.* 2005, 44, 4453–4464.
- (8) Kim, Y. S.; Choi, W. Y.; Jsng, J. H.; Yoo, K. P.; Lee, C. S. Solubility measurement and prediction of carbon dioxide in ionic liquids. *Fluid Phase Equilib.* 2005, 228–229, 435–455.
- (9) Zhang, S.; Chen, Y.; Ren, X. F. Solubility of CO₂ in sulfonate ionic liquids at high pressure. J. Chem. Eng. Data 2005, 50, 230–233.
- (10) Kroon, M. C.; Shariati, A.; Costantini, M.; Spronsen, J. V.; Witkamp, G. J.; Sheldon, R. A.; Peters, C. J. High-pressure Phase Behavior of Systems with Ionic Liquids: part V. the Binary System Carbon Dioxide + 1-Butyl-3-methylimidazolium Tetrafluoroborate. *J. Chem. Eng. Data* 2005, *50*, 173–176.
- (11) Kumelan, J.; Kamps, A. P.S.; Tuma, D.; Maurer, G. Solubility of CO₂ in the ionic liquid [hmim][Tf₂N]. J. Chem. Thermodyn. 2006, 38, 1396–1401.
- (12) Fu, D. B.; Sun, X. W.; Pu, J. J. Effect of Water Content on the Solubility of CO₂ in the Ionic Liquid [bmim][PF₆]. J. Chem. Eng. Data 2006, 51, 371–375.
- (13) Schilderman, A. M.; Raeissi, S.; Peters, C. J. Solubility of carbon dioxide in the ionic liquid 1,2ethyl,2,3,2methylimidazolium bis (trifluoromethylsulfonyl) imide. *Fluid Phase Equilib.* **2007**, 260, 19–22.
- (14) Muldoon, M. J.; Aki, S. N. V.; Anderson, J. L. Improving Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B 2007, 111, 9001–9009.
- (15) Day, C. Y.; Chang, C. J.; Chen, C. Y. Phase Equilibrium of Ethanol + CO₂ and Propanone + CO₂ at Elevated Pressures. J. Chem. Eng. Data **1996**, 41, 839–843.
- (16) Chiu, H. Y.; Lee, M. J.; Lin, H. M. Vapor-Liquid Phase Boundaries of Binary Mixtures of Carbon Dioxide with Ethanol and Propanone. *J. Chem. Eng. Data* **2008**, *53*, 2393–2402.
- (17) Adrian, T.; Maurer, G. Solubility of Carbon Dioxide in Propanone and Propionic Acid at Temperatures between 298 and 333 K. J. Chem. Eng. Data 1997, 42, 668–672.
- (18) Scurto, A. M.; Aki, S.; Brennecke, J. F. CO₂ as a separation switch for ionic liquid/organic mixtures. J. Am. Chem. Soc. 2002, 124, 10276–10277.

- (19) Reighard, T. S.; Lee, S. T.; Olesik, S. V. Determination of methanol/ CO₂ and acetonitrile/CO₂ vapor-liquid phase equilibria using a variablevolume view cell. *Fluid Phase Equilib.* **1996**, *123*, 215–230.
- (20) Ohgaki, K.; Katayama, T. Isothermal vapor-liquid equilibrium data for binary systems containing carbon dioxide at high pressures: methanol-carbon dioxide, n-hexane-carbon dioxide, and benzene-carbon dioxide systems. *J. Chem. Eng. Data* **1976**, *21*, 53–55.
- (21) Yoon, J. H.; Lee, H. S.; Lee, H. High-Pressure Vapor-Liquid Equilibria for Carbon Dioxide + Methanol, Carbon Dioxide + Ethanol, and Carbon Dioxide + Methanol + Ethanol. J. Chem. Eng. Data 1993, 38, 53–55.
- (22) Bezanehtak, K.; Combes, G. B.; Dehghani, F.; Foster, N. R.; Tomasko, D. L. Vapor-Liquid Equilibrium for Binary Systems of Carbon Dioxide + Methanol, Hydrogen + Methanol, and Hydrogen + Carbon Dioxide at High Pressures. J. Chem. Eng. Data 2002, 47, 161–168.
- (23) Suzuki, K.; Sue, H.; Itou, M.; Smith, R. L.; Inomata, H.; Arai, K.; Saito, S. Isothermal Vapor-Liquid-Equilibrium Data for Binary-Systems at High Pressures: Carbon Dioxide-Methanol, Carbon Dioxide-Ethanol, Carbon Dioxide-1-Propanol, Methane-Ethanol, Methane-1-Propanol, Ethane-Ethanol, and Ethane-1-Propanol Systems. J. Chem. Eng. Data 1990, 35, 63–66.
- (24) Leu, A. D.; Chung, S. Y. K.; Robinson, D. B. The Equilibrium Phase Properties of (Carbon Dioxide-Methanol). J. Chem. Thermodyn. 1991, 23, 979–985.
- (25) Stievano, M.; Elvassore, N. High-Pressure Density and Vapor-Liquid Equilibrium for the Binary Systems Carbon Dioxide-Ethanol, Carbon Dioxide-Propanone and Carbon Dioxide-Dichloromethane. J. Supercrit. Fluids 2005, 33, 7–14.
- (26) Kühne, E.; Calvo, E. S.; Witkamp, G. J.; Peters, E. Fluid Phase Behavior of the Ternary System [bmim][BF₄] + 1-(4-Isobutylphenyl)-Ethanol + Carbon Dioxide. J. Supercrit. Fluids 2008, 45, 293–297.
- (27) Fu, D. B.; Sun, X. W.; Qiu, Y. H. High-Pressure Phase Behavior of the Ternary System CO₂ + Ionic Liquid [bmim][PF₆] + Naphthalene. *Fluid Phase Equilib.* **2007**, 25, 114–120.
- (28) Zhang, Z. F.; Wu, W.; Liu, Z. M.; Han, B. X.; Gao, H. X.; Jiang, T. A study of tri-phasic behavior of ionic liquid-methanol-CO₂ systems at elevated pressures. *Phys. Chem. Chem. Phys.* **2004**, *6*, 2352–2357.
- (29) Zhang, Z. F.; Wu, W. Z.; Gao, H. X.; Han, B. X.; Wang, B.; Huang, Y. Tri-phase behavior of ionic liquid-water-CO₂ system at elevated pressures. *Phys. Chem. Chem. Phys.* **2004**, *6*, 5051–5055.
- (30) Liu, Z. M.; Wu, W. Z.; Han, B. X.; Dong, Z. X.; Zhao, G. Y.; Wang, J. Q.; Jiang, T.; Yang, G. Y. Study on the Phase Behaviors, Viscosities, and Thermodynamic Properties of CO₂/[C₄mim][PF₆]/Methanol System at Elevated Pressures. *Chem.—Eur. J.* **2003**, *9*, 3897–3903.
- (31) Aki, S. N. V.; Scuro, A. M.; Brennecke, J. F. Ternary Phase Behavior of Ionic Liquid (IL)-Organic-CO₂ Systems. *Ind. Eng. Chem. Res.* 2006, 45, 5574–5585.
- (32) Mellein, B. R.; Brennecke, J. F. Characterization of the Ability of CO₂ to Act as an Antisolvent for Ionic Liquid/Organic Mixtures. J. Phys. Chem. B 2007, 111, 4837–4843.
- (33) Zhang, Z.; Wu, W.; Wang, B.; Chen, J.; Shen, D.; Han, B. Highpressure phase behavior of CO₂/propanone/ionic liquid system. *J. Supercrit. Fluids* **2007**, 40, 1–6.
- (34) Rumpf, B.; Maurer, G. An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes. *Ber. Bunsen-Ges. Phys. Chem.* **1993**, *97*, 85–97.
- (35) Lei, Z.; Chen, B.; Li, C.; Liu, H. Predictive Molecular Thermodynamic Models for Liquids, Solid Salts, Polymers, and Ionic Liquids. *Chem. Rev.* 2008, 108, 1419–1455.
- (36) Kordikowski, A.; Schenk, A. P.; Van Nielen, R. M.; Peters, C. J. Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents. J. Supercrit. Fluids 1995, 8, 205–216.
- (37) Jodecke, M.; Kamps, A. P. S.; Maurer, G. Experimental Investigation of the Solubility of CO₂ in (Propanone + Water. *J. Chem. Eng. Data* 2007, *52*, 1003–1009.
- (38) Soriano, A. N.; Doma, B. T., Jr.; Li, M. H. Solubility of Carbon Dioxide in 1-Ethyl-3-Methylimidazolium Tetrafluoroborate. J. Chem. Eng. Data 2008, 53, 2550–2555.
- (39) Fornari, R. E.; Alessi, P.; Kikic, I. High-pressure fluid phase equilibria: experimental methods and systems investigated (1978–1987). *Fluid Phase Equilib.* **1990**, *57*, 1–33.
- (40) Badilla, J.; Peters, C. J.; Arons, J. D. Volume expansion in relation to the gas-antisolvent process. J. Supercrit. Fluids 2000, 17, 13–23.
- (41) Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596.

Received for review April 9, 2010. Accepted July 23, 2010. This work is financially supported by Fok Ying Tong Education Foundation (No. 111074) and the National Nature Science Foundation of China under Grant (Nos. 20821004 and 20706005).

JE100343V