Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from ($\mathbf{0 . 1}$ to 40) MPa

Jianguo Zhou, ${ }^{\dagger}{ }^{\text {T }}$ Rongjiao Zhu, ${ }^{\dagger}$ Hongfei Xu, ${ }^{\dagger}$ and Yiling Tian ${ }^{*}{ }^{\dagger}{ }^{\dagger}$
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China, and Department of Materials Science and Engineering, Tianjin Institute of Urban Construction, Tianjin, 300384, China

Abstract

The densities of dimethyl carbonate, cyclohexane, and their mixtures were measured for nine compositions at five different temperatures varying from (293.15 to 313.15) K and over the pressure range of (0.1 to 40) MPa. The densities of pure substances and their mixtures at atmospheric pressure were measured with a vibrating-tube densimeter. The densities at elevated pressures were measured with a high-pressure apparatus and a precise analytical balance. The molar volumes V_{m}, excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$, isothermal compressibilities κ, and isobaric expansivities α were derived from the experimental densities.

Introduction

Dimethyl carbonate, sometimes regarded as a cornerstone of organic synthesis and a green chemical, is one of the most important chemicals in the chemical industry because of its negligible ecotoxicity, low environmental persistence, and high reaction activity. ${ }^{1,2}$ It is a possible replacement for methyl tertbutyl ether (MTBE).

The densities and excess volumes of the liquids investigated and their mixtures are required, for instance, for relating the excess enthalpy and excess Gibbs function. ${ }^{3-7}$ The relations among excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$, excess molar enthalpy $H_{\mathrm{m}}^{\mathrm{E}}$, and excess molar Gibbs function $G_{\mathrm{m}}^{\mathrm{E}}$ are exactly the same as those between the total functions: $H_{\mathrm{m}}^{\mathrm{E}}=U_{\mathrm{m}}^{\mathrm{E}}+p V_{\mathrm{m}}^{\mathrm{E}}$ and $G_{\mathrm{m}}^{\mathrm{E}}=$ $H_{\mathrm{m}}^{\mathrm{E}}-T S_{\mathrm{m}}^{\mathrm{E}}$. The partial derivatives of extensive excess functions are analogous to those of the total functions, for example, $\left(\partial G_{\mathrm{m}}^{\mathrm{E}} /\right.$ $\partial p)_{T, x}=V_{\mathrm{m}}^{\mathrm{E}}$. Excess functions may be positive or negative. When the excess molar volume of a solution is greater than zero, that is, $\left(\partial G_{\mathrm{m}}^{\mathrm{E}} / \partial p\right)_{T, x}>0$, the solution is said to exhibit positive deviations from ideality, whereas if $V_{\mathrm{m}}^{\mathrm{E}}$ is less than zero, the deviation from ideality is said to be negative. ${ }^{8,9}$ Therefore, $V_{\mathrm{m}}^{\mathrm{E}}$ is an important parameter for the thermodynamics of solution. From a practical point of view, the data are useful for the design of mixing, storage, and process equipment. Last but not least, the data measured reflect interactions between the molecules of the mixtures studied and can serve for testing the theories of the liquid state.
Densities of dimethyl carbonate, cyclohexane, and their mixtures were determined in this work. The measurements were carried out from (293.15 to 313.15) K and at pressures up to 40 MPa . The molar volumes V_{m}, excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$, isothermal compressibilities κ, and isobaric expansivities α were derived from the experimental densities.

Experimental Section

Materials. Dimethyl carbonate and cyclohexane (all mass fraction purity stated 0.995) were obtained from the Kewei Pure Chemical Company. They were dried over 4 Å molecular sieves

[^0]

Figure 1. Schematic diagram of the high-pressure apparatus. 1, screw-driven pump; 2, pressure meter; 3, Hall probe; 4, heat jacket; 5, autoclave; 6, piston; 7, O-ring; 8 , stirrer; 9 , quartz window; 10 , sampling valves; 11 , pressure sensor; 12, thermocouple; 13, small steel vessel; 14, thermometer; 15, vacuum meter; 16 , steel bulb.
for 48 h and degassed in an ultrasonic bath (model: KQ3200DB, China) for 4 h before measurements. The liquid mixtures were prepared by weight using a precise analytical balance (model: FA2014, SPSIC, China) with an accuracy of $1 \cdot 10^{-4} \mathrm{~g}$.

Experimental Apparatus and Procedures. The densities of pure substances and mixtures at normal pressure were measured with a vibrating-tube densimeter (model: DA-505, KEM, Japan). The densities at high pressures were measured with a variablevolume autoclave and a precise analytical balance. The highpressure apparatus is similar to the equipment used earlier to determine high-pressure phase equilibria. ${ }^{10} \mathrm{~A}$ schematic is shown in Figure 1. The cylindrical high pressure autoclave (outer diameter 50 mm , inner diameter 20 mm) was built from a special alloy (austentitic manganese steel). A movable piston separated the content of autoclave from the pressure-transmitting medium, which moved the piston to generate the pressure inside the autoclave. The sapphire window allows the observation of the contents of the autoclave. The homogenization of temperatures was achieved by a magnetic stirring. The temperature of the sample was measured with a calibrated $\mathrm{Cr}-\mathrm{Al}$ thermocouple (with an uncertainty of $\pm 0.1 \mathrm{~K}$). On the outside of the autoclave, there were three independent heating jackets and three thermocouple sensors. Temperature inhomogeneities were minimized by adjusting the voltage of different heating jackets.

Table 1. Comparison of Experimental Densities (ρ) of Pure Components with the Literature Values at Different Temperatures and Pressures ${ }^{a}$

$\frac{p}{\mathrm{MPa}}$	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ at T / K									
	293.15		298.15		303.15		308.15		313.15	
	exptl	lit.								
0.1	1.0698		1.0632		Dimethyl Carbonate		1.0498		1.0430	$\begin{aligned} & 1.04301^{12} \\ & 1.04310^{11} \\ & 1.0434^{15} \end{aligned}$
		$1.06969{ }^{11}$		$1.06331{ }^{14}$	1.0565	1.05635^{12}		1.050011^{16}		
		$1.06954{ }^{12}$		$1.06295{ }^{12}$		1.0565^{15}		$1.04962{ }^{13}$		
		$1.06949{ }^{13}$		$1.06284{ }^{13}$		1.05624^{13}		$1.05004{ }^{14}$		
5	1.0744	1.07422^{17}	1.0680	1.06770^{17}	1.0613	1.06117^{17}	1.0546	$1.05459{ }^{17}$	1.0481	$\begin{aligned} & 1.04794^{17} \\ & 1.04872^{18} \end{aligned}$
		1.07466^{18}				1.06165^{18}				
10	1.0786	$1.07858{ }^{17}$	1.0724	1.07221^{17}	1.0660	$1.06582{ }^{17}$	1.0594	$1.05939{ }^{17}$	1.0530	$\begin{aligned} & 1.05291^{17} \\ & 1.05371^{18} \end{aligned}$
		$1.07901{ }^{18}$				1.06629^{18}				
20	1.0869	$1.08683{ }^{17}$	1.0808	1.08070^{17}	1.0747	$1.07459{ }^{17}$	1.0685	$1.06843{ }^{17}$	1.0623	$\begin{aligned} & 1.06222^{17} \\ & 1.06305^{18} \end{aligned}$
		1.08726^{18}				1.07511^{18}				
30	1.0945	$1.09450{ }^{17}$	1.0887	$1.08862{ }^{17}$	1.0829	1.08275^{17}	1.0770	$1.07680{ }^{17}$	1.0710	$\begin{aligned} & 1.07082^{17} \\ & 1.0710^{19} \end{aligned}$
		$1.0943{ }^{19}$				1.0827^{19}				
40	1.1019	1.10174^{17}	1.0962	$1.09604{ }^{17}$	1.0904	1.09035^{17}	1.0848	$1.08463{ }^{17}$	1.0790	$\begin{aligned} & 1.07887^{17} \\ & 1.0791^{19} \end{aligned}$
		1.1015^{19}				$1.0903{ }^{19}$				
0.1	0.7788		0.7739		Cyclohexane		0.7645	$\begin{aligned} & 0.7640^{23} \\ & 0.7644^{24} \end{aligned}$	0.7597	$\begin{aligned} & 0.75965^{20} \\ & 0.75955^{22} \end{aligned}$
		0.77870^{20}		$0.77371{ }^{21}$	0.7693	0.76920^{20}				
		0.77851^{21}		0.7739^{22}		$0.76911^{22}$$0.773588^{25}$				
5	0.7828	0.78261^{25}	0.7783	0.77851^{26}	0.7736		0.7690	0.7731^{3}	0.7645	0.76444^{26}
10	0.7866	0.78647^{25}	0.7823	0.7820^{3}	0.7778	0.77772^{25}	0.7734	$0.7731{ }^{3}$	0.7689	0.76861^{26}
20	0.7939		0.7898	0.7894^{3}	0.7857		0.7815	0.7810^{3}	0.7774	0.77717^{26}
30	0.8010		0.7967	$0.7961{ }^{3}$	0.7928		0.7888	0.7883^{3}	0.7848	0.7844^{27}
40	0.8078		0.8029	0.8017^{3}	0.7992		0.7955	$0.7943{ }^{3}$	0.7918	0.7911^{27}

${ }^{a}$ The densities at lower temperatures $T / K=(293.15,298.15$, and 303.15$)$ are in the supercooled region.

A strain gauge precision transducer was used to measure the pressure. The pressure was manually generated by a screwdriven pump. The position of the piston and hence the volume of the samples were detected magnetically. A Hall-effect probe detected the position of the magnet which was fixed onto the end of the piston inside the autoclave. The Hall-effected probe was fixed on an electronic caliper (which made the position of the piston measurable with an uncertainty of $\pm 0.1 \mathrm{~mm}$) outside the autoclave.

The relationship between the effective volume of the autoclave and the position of the piston was calibrated by means of weighing water at different temperatures and pressures. The pressure-volume dependence, $(d V / d p)_{T} / V$, was $2.060 \cdot 10^{-5}$ MPa^{-1}. The temperature-volume dependence, $(d V / d T)_{p} / V$, was $4.050 \cdot 10^{-5} \mathrm{~K}^{-1}$. The uncertainties in temperature and pressure were $\pm 0.1 \mathrm{~K}$ and $\pm 0.05 \mathrm{MPa}$, respectively.

The equilibrium, indicated by reaching a constant pressure and temperature, was achieved typically 2 h after terminating stirring. The samples were then removed from the lower sampling valve. The volume of sample was determined by the moved distance of piston. The mass of the samples was weighed using an electronic balance with an accuracy of $1 \cdot 10^{-4} \mathrm{~g}$. The densities of the samples were determined using the ratio of the weight to the volume of the sample.

The overall experimental uncertainty in the mole fraction composition is about $\pm 1 \cdot 10^{-4}$, in density is approximately \pm $1 \cdot 10^{-4} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, in $V_{\mathrm{m}}^{\mathrm{E}}$ is estimated to be about $\pm 2 \cdot 10^{-3}$ $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$, in κ is $\pm 3 \cdot 10^{-5} \mathrm{MPa}^{-1}$, and in α is $\pm 2 \cdot 10^{-4}$ K^{-1}.

Results and Discussion

The densities of pure substances (dimethyl carbonate and cyclohexane) were measured at temperatures $T / \mathrm{K}=(293.15$, $298.15,303.15,308.15$, and 313.15) and under pressures p / MPa $=(0.1,5.0,10.0,20.0,30.0$, and 40.0).

The comparison between the experimental densities in this work and the literature values ${ }^{11-27}$ is shown in Table 1. The results show that our experimental data were in good agreement with the literature data. A comparison with the literature data
for dimethyl carbonate and cyclohexane results in an absolute mean difference of $7.8 \cdot 10^{-6} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ and $3.0 \cdot 10^{-4} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, respectively.

Densities of the mixtures of nine different mole fractions of dimethyl carbonate ($x_{1}=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$, and 0.9) were measured at temperatures $T / K=(293.15,298.15$, $303.15,308.15$, and 313.15$)$ and under pressures $p / \mathrm{MPa}=(0.1$, $5.0,10.0,20.0,30.0$, and 40.0). The results are presented in Table 2.

The isothermal experimental densities at a given composition were correlated by the Tait equation ${ }^{28}$

$$
\begin{equation*}
\left(\rho-\rho_{0}\right) / \rho=C \ln \left[(B+p) /\left(B+p_{0}\right)\right] \tag{1}
\end{equation*}
$$

where B and C are adjustable parameters and ρ_{0} is the density at a reference pressure p_{0} ($p_{0}=0.1 \mathrm{MPa}$ in this work).

The fitted parameters of the above equation and the standard deviations $\sigma(\rho)$ are reported in Table 3.

The excess molar volumes were calculated from the experimental data according to the following equation

$$
\begin{equation*}
V_{\mathrm{m}}^{\mathrm{E}}=\left[x_{1} M_{1}+x_{2} M_{2}\right] / \rho-\left[x_{1} M_{1} / \rho_{1}+x_{2} M_{2} / \rho_{2}\right] \tag{2}
\end{equation*}
$$

where ρ is density of the mixtures; x_{1} and x_{2} are the mole fractions; M_{1} and M_{2} are molar masses; and ρ_{1} and ρ_{2} are the densities of dimethyl carbonate and cyclohexane, respectively. The excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ are presented in Table 4.

It has been reported ${ }^{29}$ that the $V_{\mathrm{m}}^{\mathrm{E}}$ values of the binary mixture result from the chemical, physical, and structural characteristics of the liquids. The excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ are positive over the whole composition, temperature, and pressure range. This indicates that positive contributions (such as destruction of dipole-dipole interactions during the mixing process) overcome the negative contributions (e.g., free volume), resulting in the positive $V_{\mathrm{m}}^{\mathrm{E}}$ values. The pressure dependence of $V_{\mathrm{m}}^{\mathrm{E}}$ is illustrated in Figure 2 for the temperature of 298.15 K . At a fixed temperature and mole fraction composition, the experimental

Table 2. Experimental Densities (ρ) for the Binary Mixture of Dimethyl Carbonate (1) + Cyclohexane (2) at Different
Temperatures and Pressures

x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ at p / MPa					
	0.1	5	10	20	30	40
$T / \mathrm{K}=293.15$						
0.1010	0.7979	0.8022	0.8062	0.8139	0.8213	0.8285
0.1993	0.8183	0.8227	0.8270	0.8350	0.8427	0.8502
0.3026	0.8423	0.8469	0.8512	0.8596	0.8675	0.8752
0.3999	0.8660	0.8707	0.8753	0.8839	0.8920	0.8998
0.5001	0.8937	0.8985	0.9031	0.9118	0.9200	0.9280
0.5996	0.9236	0.9284	0.9330	0.9418	0.9500	0.9580
0.7039	0.9575	0.9623	0.9669	0.9757	0.9838	0.9918
0.8005	0.9910	0.9958	1.0003	1.0090	1.0171	1.0250
0.9028	1.0304	1.0351	1.0395	1.0480	1.0558	1.0635
$T / \mathrm{K}=298.15$						
0.1010	0.7923	0.7969	0.8012	0.8092	0.8165	0.8232
0.1993	0.8125	0.8173	0.8218	0.8302	0.8378	0.8448
0.3026	0.8363	0.8413	0.8460	0.8546	0.8625	0.8698
0.3999	0.8600	0.8651	0.8700	0.8788	0.8870	0.8945
0.5001	0.8874	0.8926	0.8975	0.9065	0.9148	0.9225
0.5996	0.9170	0.9222	0.9271	0.9361	0.9445	0.9523
0.7039	0.9508	0.9560	0.9608	0.9698	0.9782	0.9861
0.8005	0.9842	0.9894	0.9942	1.0031	1.0114	1.0193
0.9028	1.0232	1.0282	1.0328	1.0415	1.0497	1.0574
$T / \mathrm{K}=303.15$						
0.1010	0.7869	0.7914	0.7960	0.8045	0.8121	0.8190
0.1993	0.8069	0.8117	0.8165	0.8253	0.8334	0.8407
0.3026	0.8304	0.8354	0.8404	0.8495	0.8579	0.8654
0.3999	0.8541	0.8592	0.8644	0.8738	0.8823	0.8901
0.5001	0.8812	0.8864	0.8916	0.9012	0.9099	0.9178
0.5996	0.9101	0.9154	0.9206	0.9303	0.9391	0.9472
0.7039	0.9441	0.9493	0.9545	0.9641	0.9728	0.9809
0.8005	0.9774	0.9826	0.9877	0.9971	1.0058	1.0138
0.9028	1.0158	1.0209	1.0258	1.0350	1.0436	1.0514
$T / \mathrm{K}=308.15$						
0.1010	0.7812	0.7861	0.7908	0.7995	0.8074	0.8146
0.1993	0.8014	0.8065	0.8114	0.8205	0.8287	0.8363
0.3026	0.8244	0.8297	0.8348	0.8442	0.8528	0.8606
0.3999	0.8479	0.8534	0.8586	0.8683	0.8771	0.8852
0.5001	0.8748	0.8803	0.8856	0.8955	0.9044	0.9127
0.5996	0.9034	0.9089	0.9142	0.9242	0.9333	0.9417
0.7039	0.9369	0.9423	0.9477	0.9576	0.9667	0.9750
0.8005	0.9697	0.9751	0.9804	0.9902	0.9993	1.0076
0.9028	1.0086	1.0137	1.0188	1.0284	1.0373	1.0454
$T / \mathrm{K}=313.15$						
0.1010	0.7756	0.7808	0.7856	0.7948	0.8029	0.8105
0.1993	0.7958	0.8013	0.8062	0.8158	0.8242	0.8321
0.3026	0.8185	0.8241	0.8293	0.8392	0.8480	0.8562
0.3999	0.8419	0.8477	0.8530	0.8632	0.8722	0.8807
0.5001	0.8686	0.8744	0.8798	0.8902	0.8994	0.9080
0.5996	0.8967	0.9026	0.9081	0.9185	0.9279	0.9367
0.7039	0.9297	0.9355	0.9410	0.9514	0.9608	0.9695
0.8005	0.9623	0.9680	0.9735	0.9838	0.9931	1.0019
0.9028	1.0011	1.0066	1.0119	1.0218	1.0309	1.0394

excess molar volumes were found to decrease with pressure. The temperature dependence of $V_{\mathrm{m}}^{\mathrm{E}}$ and comparison with the literature values ${ }^{30}$ are demonstrated in Figure 3 under the pressure of 0.1 MPa. As can be seen, the excess molar volumes increased with the increasing of temperature at a fixed pressure and mixture composition. The discrepancies between our work and the literature data are maybe mainly due to the difference in material purity.

The $V_{\mathrm{m}}^{\mathrm{E}}$ data were fitted to the following Redlich-Kister polynomial equation ${ }^{31}$

$$
\begin{equation*}
V_{\mathrm{m}}^{\mathrm{E}}=x_{1}\left(1-x_{1}\right)\left[\sum_{i=0}^{n} A_{i}\left(2 x_{1}-1\right)^{i}\right] \tag{3}
\end{equation*}
$$

Table 3. Coefficients \boldsymbol{B} and \boldsymbol{C} of Tait Equation Fitted to the Experimental Densities and Standard Deviations $\sigma(\rho)$

x	B	C	$10^{5} \sigma(\rho)$
	MPa		$\mathrm{g} \cdot \mathrm{cm}^{-3}$
$T / \mathrm{K}=293.15$			
0.0000	126.9	0.1312	7.4
0.1010	119.1	0.1275	7.0
0.1993	113.8	0.1246	6.7
0.3026	110.2	0.1214	6.2
0.3999	106.7	0.1181	5.9
0.5001	104.7	0.1142	5.6
0.5996	103.1	0.1097	5.3
0.7039	101.9	0.1045	5.0
0.8005	100.9	0.0994	4.7
0.9028	100.6	0.0930	4.7
1.0000	99.1	0.0861	4.6
$T / \mathrm{K}=298.15$			
0.0000	62.8	0.0736	3.2
0.1010	63.5	0.0770	3.3
0.1993	64.0	0.0791	3.3
0.3026	65.3	0.0807	4.1
0.3999	66.8	0.0824	4.8
0.5001	68.4	0.0828	5.2
0.5996	70.6	0.0829	5.7
0.7039	73.6	0.0826	6.6
0.8005	77.4	0.0825	7.1
0.9028	83.0	0.0823	8.0
1.0000	90.2	0.0822	8.7
$T / \mathrm{K}=303.15$			
0.0000	68.7	0.0819	4.4
0.1010	69.7	0.0870	6.1
0.1993	69.4	0.0887	5.2
0.3026	69.9	0.0897	5.1
0.3999	70.4	0.0904	4.2
0.5001	71.3	0.0900	3.7
0.5996	73.0	0.0899	2.8
0.7039	75.6	0.0886	2.4
0.8005	78.4	0.0875	1.7
0.9028	82.6	0.0859	1.2
1.0000	89.3	0.0843	0.7
$T / \mathrm{K}=308.15$			
0.0000	63.2	0.0799	0.4
0.1010	63.5	0.0844	0.3
0.1993	64.4	0.0866	0.5
0.3026	65.6	0.0887	0.6
0.3999	66.9	0.0900	0.6
0.5001	68.9	0.0908	1.0
0.5996	71.2	0.0915	1.2
0.7039	74.7	0.0915	1.7
0.8005	79.1	0.0921	2.2
0.9028	85.5	0.0922	2.8
1.0000	96.0	0.0930	3.8
$T / \mathrm{K}=313.15$			
0.0000	61.1	0.0808	6.6
0.1010	60.2	0.0847	8.3
0.1993	61.2	0.0870	7.9
0.3026	62.2	0.0891	6.9
0.3999	63.3	0.0901	6.4
0.5001	65.2	0.0910	5.3
0.5996	66.9	0.0913	4.4
0.7039	70.0	0.0912	3.3
0.8005	73.1	0.0907	2.3
0.9028	78.7	0.0900	1.0
1.0000	87.9	0.0893	0.8

where A_{i} are adjustable parameters and x_{1} is the mole fraction of dimethyl carbonate.

Although typical data reported in the literature justify no more than two or at most three parameters, very accurate and extensive data are needed to warrant the use of four or more empirical coefficients. ${ }^{32}$ Therefore, $n=5$ is selected in this work to obtain better fitting results. The coefficients A_{i} and the standard deviations $\sigma\left(V_{\mathrm{m}}^{\mathrm{E}}\right)$ are summarized in Table 5.

Isothermal compressibilities κ and isobaric expansivities α were derived from the experimental densities. The calculated isothermal compressibilities κ and isobaric expansivities α at

Table 4. Excess Molar Volumes $\left(V_{\mathrm{m}}^{\mathrm{E}}\right)$ for the Binary Mixture of Dimethyl Carbonate (1) + Cyclohexane (2) at Different Temperatures and Pressures

x_{1}	$V_{\mathrm{m}}^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ at p / MPa					
	0.1	5	10	20	30	40
$T / \mathrm{K}=293.15$						
0.1010	0.573	0.536	0.512	0.466	0.430	0.385
0.1993	0.981	0.937	0.879	0.805	0.738	0.663
0.3026	1.200	1.140	1.089	0.981	0.900	0.812
0.3999	1.395	1.331	1.251	1.134	1.039	0.950
0.5001	1.352	1.288	1.217	1.107	1.013	0.915
0.5996	1.208	1.155	1.093	0.991	0.908	0.823
0.7039	0.980	0.937	0.884	0.800	0.738	0.665
0.8005	0.743	0.710	0.673	0.614	0.560	0.505
0.9028	0.342	0.327	0.306	0.279	0.259	0.230
$T / \mathrm{K}=298.15$						
0.1010	0.655	0.629	0.590	0.529	0.483	0.429
0.1993	1.074	1.025	0.965	0.862	0.789	0.711
0.3026	1.297	1.230	1.153	1.041	0.946	0.850
0.3999	1.472	1.400	1.307	1.185	1.071	0.969
0.5001	1.441	1.367	1.283	1.157	1.049	0.945
0.5996	1.305	1.240	1.166	1.057	0.956	0.861
0.7039	1.059	1.004	0.950	0.859	0.776	0.692
0.8005	0.808	0.761	0.715	0.648	0.589	0.523
0.9028	0.415	0.393	0.371	0.336	0.301	0.270
$T / \mathrm{K}=303.15$						
0.1010	0.751	0.724	0.671	0.593	0.534	0.476
0.1993	1.175	1.113	1.040	0.933	0.822	0.728
0.3026	1.411	1.333	1.243	1.114	0.984	0.882
0.3999	1.562	1.480	1.376	1.226	1.101	0.981
0.5001	1.538	1.455	1.362	1.207	1.080	0.967
0.5996	1.447	1.364	1.282	1.135	1.016	0.901
0.7039	1.148	1.087	1.017	0.899	0.811	0.716
0.8005	0.877	0.826	0.775	0.691	0.620	0.550
0.9028	0.504	0.471	0.447	0.395	0.348	0.311
$T / \mathrm{K}=308.15$						
0.1010	0.864	0.806	0.764	0.685	0.611	0.552
0.1993	1.242	1.162	1.099	0.980	0.881	0.785
0.3026	1.521	1.422	1.341	1.200	1.070	0.965
0.3999	1.673	1.558	1.472	1.313	1.177	1.054
0.5001	1.646	1.541	1.453	1.292	1.165	1.039
0.5996	1.561	1.465	1.387	1.235	1.107	0.990
0.7039	1.280	1.206	1.128	1.009	0.904	0.815
0.8005	1.026	0.960	0.901	0.808	0.722	0.650
0.9028	0.575	0.544	0.511	0.455	0.406	0.367
$T / \mathrm{K}=313.15$						
0.1010	0.966	0.906	0.849	0.752	0.663	0.589
0.1993	1.323	1.228	1.164	1.026	0.915	0.815
0.3026	1.618	1.517	1.423	1.262	1.119	0.998
0.3999	1.759	1.641	1.545	1.364	1.218	1.079
0.5001	1.729	1.622	1.525	1.341	1.195	1.063
0.5996	1.672	1.563	1.467	1.301	1.156	1.021
0.7039	1.411	1.323	1.240	1.095	0.974	0.869
0.8005	1.145	1.076	1.003	0.885	0.794	0.696
0.9028	0.667	0.625	0.582	0.517	0.465	0.410

different temperatures and pressures for the binary mixtures can be found as the Supporting Information.

The isothermal compressibility κ can be calculated from the following equation by differentiating eq 1

$$
\begin{equation*}
\kappa=\left\{1 /\left[1-C \ln \left((D+p) /\left(D+p_{0}\right)\right)\right]\right\}[C /(D+p)] \tag{4}
\end{equation*}
$$

with the coefficients from Table 3.
Curves of isothermal compressibility κ for the binary system against mole fraction x_{1} of dimethyl carbonate at constant temperature $T / \mathrm{K}=298.15$ and constant pressure $p / \mathrm{MPa}=0.1$ are shown in Figures 4 and 5, respectively. Obviously κ increases with temperature and decreases with pressure at a fixed mole fraction.
Isobaric expansivity α can be calculated from $\rho(T, p)$ data from its own definition. To obtain $(\partial \rho / \partial T)_{p}$, the experimental

Figure 2. Excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ against mole fraction x_{1} for dimethyl carbonate (1) + cyclohexane (2) at constant temperature $T / \mathrm{K}=298.15$ and pressure $p: \square, 0.1 \mathrm{MPa} ; \bigcirc, 5 \mathrm{MPa} ; \Delta, 10 \mathrm{MPa} ; \nabla, 20 \mathrm{MPa} ; \diamond, 30$ $\mathrm{MPa} ; \star, 40 \mathrm{MPa}$. The symbols represent experimental values, and the solid lines are calculated with the Redlich-Kister equation.

Figure 3. Excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ against mole fraction x_{1} for dimethyl carbonate (1) + cyclohexane (2) at constant pressure $p / \mathrm{MPa}=0.1$ and temperature T : $\square, 293.15 \mathrm{~K} ; \bigcirc, \bigcirc, 298.15 \mathrm{~K} ; \Delta, 303.15 \mathrm{~K} ; \nabla, \nabla, 308.15$ $\mathrm{K} ; \diamond, 313.15 \mathrm{~K}$. The symbols represent experimental values (unfilled points, this work; solid points, Aminabhavi and Banerjee ${ }^{30}$), and the solid lines are calculated with the Redlich-Kister equation in this work.
densities of pure substances were correlated by the following Tait equation

$$
\begin{equation*}
\rho(T, p)=\frac{\rho_{0}\left(T, p_{0}\right)}{1-A \ln \frac{B(T)+p}{B(T)+p_{0}}} \tag{5}
\end{equation*}
$$

with the reference pressure p_{0} equal to 0.1 MPa . The ρ_{0} and B parameters were assumed to be dependent on temperature according to the following equations:

$$
\begin{equation*}
\rho_{0}\left(T, p_{0}\right)=\rho_{00}+\rho_{01}(T / K)+\rho_{02}(T / K)^{2}+\rho_{03}(T / K)^{3} \tag{6}
\end{equation*}
$$

Table 5. Coefficients A_{i} of the Redlich-Kister Equation for $V_{\mathrm{m}}^{\mathrm{E}}$ of Dimethyl Carbonate (1) + Cyclohexane (2) and Standard Deviations $\sigma\left(V_{\mathbf{m}}^{\mathrm{E}}\right)$

p							$10^{2} \sigma\left(V_{\mathrm{m}}^{\mathrm{E}}\right)$
MPa	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	$\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$
$T / \mathrm{K}=293.15$							
0.1	5.3854	1.7963	-0.3584	-3.4050	0.1203	4.5894	0.2574
5	5.1278	1.7103	-0.3413	-3.2423	0.1147	4.3702	2.246
10	4.8764	1.6265	-0.3247	-3.0832	0.1093	4.1560	2.108
20	4.4226	1.4751	-0.2945	-2.7964	0.0992	3.7692	1.860
30	4.0301	1.3443	-0.2683	-2.5484	0.0903	3.4348	1.655
40	3.6745	1.2256	-0.2446	-2.3234	0.0822	3.1316	1.467
$T / \mathrm{K}=298.15$							
0.1	5.7585	1.5888	-0.4501	-1.2754	1.5156	2.0319	0.2074
5	5.4514	1.5041	-0.4261	-1.2079	1.4347	1.9242	1.981
10	5.1571	1.4229	-0.4032	-1.1426	1.3574	1.8203	1.869
20	4.6389	1.2799	-0.3626	-1.0280	1.2210	1.6377	1.667
30	4.1975	1.1582	-0.3281	-0.9304	1.1047	1.4819	1.496
40	3.7944	1.0469	-0.2964	-0.8408	0.9982	1.3394	1.339
$T / \mathrm{K}=303.15$							
0.1	6.2240	1.2160	-0.7428	1.3696	3.2103	-1.0205	0.1921
5	5.8474	1.1424	-0.6979	1.2868	3.0162	-0.9587	1.805
10	5.5052	1.0756	-0.6569	1.2115	2.8394	-0.9027	1.699
20	4.8890	0.9552	-0.5833	1.0761	2.5214	-0.8019	1.509
30	4.3688	0.8535	-0.5212	0.9615	2.2532	-0.7164	1.348
40	3.8896	0.7599	-0.4640	0.8558	2.0059	-0.6375	1.200
$T / \mathrm{K}=308.15$							
0.1	6.6405	1.3353	-0.1743	-1.7498	3.7698	3.8808	0.2105
5	6.2508	1.2569	-0.1640	-1.6467	3.5484	3.6526	1.963
10	5.8965	1.1857	-0.1546	-1.5531	3.3472	3.4451	1.857
20	5.2587	1.0574	-0.1378	-1.3849	2.9851	3.0721	1.670
30	4.7202	0.9491	-0.1237	-1.2429	2.6793	2.7572	1.511
40	4.2241	0.8494	-0.1107	-1.1126	2.3978	2.4678	1.366
$T / \mathrm{K}=313.15$							
0.1	7.0469	1.2874	0.4525	-2.8209	4.3353	5.9332	0.2390
5	6.6168	1.2089	0.4248	-2.6491	4.0710	5.5715	2.459
10	6.2087	1.134	0.3985	-2.4854	3.8201	5.2276	2.331
20	5.4797	1.0011	0.3518	-2.1933	3.3714	4.6133	2.114
30	4.8747	0.8906	0.3129	-1.9511	2.9993	4.1039	1.926
40	4.3208	0.7894	0.2774	-1.7293	2.6584	3.6373	1.756

$$
\begin{equation*}
B(T)=B_{0}+B_{1}(T / \mathrm{K})+B_{2}(T / \mathrm{K})^{2} \tag{7}
\end{equation*}
$$

The number of terms in the above expressions was determined statistically. The fitted parameters and the standard deviations are presented in Table 6.
The mixture densities were correlated by the following sixparameter equation ${ }^{33}$

$$
\begin{equation*}
\rho\left(T, p, x_{1}\right)=\frac{M_{1} x_{1}+M_{2} x_{2}}{\frac{M_{1} x_{1}}{\rho_{1}^{0}(T, p)}+\frac{M_{2} x_{2}}{\rho_{2}^{0}(T, p)}+\frac{a(T, p) x_{1} x_{2}}{b(T, p) x_{1}+x_{2}}} \tag{8}
\end{equation*}
$$

Figure 4. Isothermal compressibility κ against mole fraction x_{1} for dimethyl carbonate (1) + cyclohexane (2) at constant temperature $T=298.15 \mathrm{~K}$ and pressure $p: \square, 0.1 \mathrm{MPa} ; \bigcirc, 5 \mathrm{M} \mathrm{Pa} ; \Delta, 10 \mathrm{MPa} ; \nabla, 20 \mathrm{MPa} ; \diamond, 30$ $\mathrm{MPa} ; \star, 40 \mathrm{MPa}$. Lines for κ are arbitrary ones, only to show tendencies.
where M_{i}, x_{i}, and ρ_{i}^{0} present the molecular weight, mole fraction, and density of component i, respectively, and $a(T, p)$ and $b(T$, p) are the parameters linearly dependent on T and p according to the formulas

$$
\begin{align*}
& {\left[a(T, p) / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right]=a_{0}+a_{1}[(p / \mathrm{MPa})-0.1]+} \\
& \quad a_{2}[(T / \mathrm{K})-273.15] \tag{9}\\
& b(T, p)=b_{0}+b_{1}[(p / \mathrm{MPa})-0.1]+b_{2}[(T / \mathrm{K})-273.15] \tag{10}
\end{align*}
$$

It was confirmed statistically that the higher-order terms in the above expansions could be neglected. The correlation equation requires six adjustable parameters $\left(a_{0}, a_{1}, a_{2}, b_{0}, b_{1}\right.$, b_{2}) which were adjusted to the experimental densities with the overall standard deviation of $0.000683 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. These parameters are given in Table 7.

Equations 5 to 10 enable one to calculate the isobaric expansivities of the mixture. The results show that α increases with increasing temperature and decreases with elevated pressure for a fixed mole fraction. Meanwhile, α increases to a maximum as the mole fraction of dimethyl carbonate equal to 0.3 and then decreases.

For dimethyl carbonate at 293.15 K , we compared the isothermal compressibilities and isobaric expansivities obtained in this work with those obtained by Fernández et al. ${ }^{18} \mathrm{~A}$ comparison with the literature data for isothermal compress-

Table 6. Coefficients of the Tait Equations 5 to 7 Fitted to the Experimental Densities of Dimethyl Carbonate and Cyclohexane and the Root of Mean Squared Deviations σ

				σ
	$A \cdot 10^{2}$	B_{i}	$\rho_{0 i}$	$\mathrm{g} \cdot \mathrm{cm}^{-3}$
dimethyl carbonate	7.83524	$B_{0} / \mathrm{MPa}=310.206$	$\rho_{00} / \mathrm{g} \cdot \mathrm{cm}^{-3}=1.3577$	0.00028
		$B_{1} / \mathrm{MPa} \cdot \mathrm{~K}^{-1}=-1.3871$	$\rho_{01} / \mathrm{g} \cdot \mathrm{~cm}^{-3} \cdot \mathrm{~K}^{-1}=-6.4709 \cdot 10^{-4}$	
		$B_{2} / \mathrm{MPa} \cdot \mathrm{K}^{-2}=2.1375 \cdot 10^{-3}$	$\rho_{02} / \mathrm{g} \cdot \mathrm{~cm}^{-3} \cdot \mathrm{~K}^{-2}=-1.1429 \cdot 10^{-6}$	
			$\rho_{03} / \mathrm{g} \cdot \mathrm{~cm}^{-3} \cdot \mathrm{~K}^{-3}=1.2423 \cdot 10^{-18}$	
cyclohexane	8.81027	$B_{0} / \mathrm{MPa}=315.479$	$\rho_{00} / \mathrm{g} \cdot \mathrm{cm}^{-3}=6.6246$	0.00034
		$B_{1} / \mathrm{MPa} \cdot \mathrm{K}^{-1}=-1.8326$	$\rho_{01} / \mathrm{g} \cdot \mathrm{cm}^{-3} \cdot \mathrm{~K}^{-1}=-5.6075 \cdot 10^{-2}$	
		$B_{2} / \mathrm{MPa} \cdot \mathrm{K}^{-2}=3.5318 \cdot 10^{-3}$	$\rho_{02} / \mathrm{g} \cdot \mathrm{cm}^{-3} \cdot \mathrm{~K}^{-2}=1.8189 \cdot 10^{-4}$	
			$\rho_{03} / \mathrm{g} \cdot \mathrm{cm}^{-3} \cdot \mathrm{~K}^{-3}=-2.0000 \cdot 10^{-7}$	

Figure 5. Isothermal compressibility κ against mole fraction x_{1} for dimethyl carbonate (1) + cyclohexane (2) at constant pressure $p=0.1 \mathrm{MPa}$ and temperature $T: \square, 293.15 \mathrm{~K} ; \bigcirc, 298.15 \mathrm{~K} ; \Delta, 303.15 \mathrm{~K} ; \nabla, 308.15 \mathrm{~K} ; \diamond$, 313.15 K. Lines for κ are arbitrary ones, only to show tendencies.

Table 7. Coefficients of Equations 8 to 10 Fitted to the Experimental Densities of the Dimethyl Carbonate (1) + Cyclohexane (2) Systems as a Function of Molar Fraction, Temperature, and Pressure and the Root of Mean Squared Deviations σ

i	a_{i}	b_{i}	σ
	$\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$		$\mathrm{g} \cdot \mathrm{cm}^{-3}$
0	7.2123	4.12432	0.000683
1	$-4.12338 \cdot 10^{-2}$	$7.94739 \cdot 10^{-3}$	
2	$3.11928 \cdot 10^{-2}$	$-1.51031 \cdot 10^{-2}$	

ibility and isobaric expansivity results in an absolute mean difference of $1.36 \cdot 10^{-5} \mathrm{MPa}^{-1}$ and $7.3 \cdot 10^{-6} \mathrm{~K}^{-1}$, respectively. As for cyclohexane, we compared the isothermal compressibilities at 298.15 K and isobaric expansivities at 303.15 K with those obtained by Morávková et al. ${ }^{3}$ and Sun et al., ${ }^{25}$ respectively. The absolute mean deviation in isothermal compressibility is $2.68 \cdot 10^{-5} \mathrm{MPa}^{-1}$ and in isobaric expansivity is $7.25 \cdot 10^{-6}$ K^{-1}.

Conclusions

Densities of dimethyl carbonate, cyclohexane, and their mixtures have been determined from (293.15 to 313.15) K and at pressures from (0.1 to 40) MPa. A modified Tait equation was used to fit each experimental density. The molar volumes V_{m}, excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$, isothermal compressibilities κ, and isobaric expansivities α were derived from the experimental densities. The excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ were correlated using the Redlich-Kister polynomial equation. The excess molar volumes for the binary system were positive over the whole composition, temperature, and pressure range. This indicates a positive deviation from ideal liquid mixtures.

Supporting Information Available:

Calculated molar volumes, isothermal compressibilities, and isobaric expansivities for the binary system studied here. This material is available free of charge via the Internet at http:// pubs.acs.org.

Literature Cited

(1) Keller, N.; Rebmann, G.; Keller, V. Catalysts, Mechanisms and Industrial Processes for the Dimethylcarbonate Synthesis. J. Mol. Catal. A: Chem. 2010, 317, 1-18.
(2) Li, H. L.; Zhu, R. J.; Tian, Y. L.; Xu, H. F.; Dong, Z. L. VaporLiquid Equilibrium Data of the Binary Systems in Oxidative Carbonylation of Dimethyl Ether Synthesizing Dimethyl Carbonate. J. Chem. Eng. Data 2008, 53, 2095-2100.
(3) Morávková, L.; Wagner, Z.; Linek, J. ($p V_{\mathrm{m}}, T$) Measurements of (Cyclohexane + Nonane) at Temperatures from 298.15 to 328.15 K and at Pressures up to 40 MPa . J. Chem. Thermodyn. 2007, 39, 16371648.
(4) Kermanpour, F.; Jahani, H.; Iloukhani, H. Excess Molar Volume and Derived Thermodynamic Properties of Binary Mixtures of 2-Methyl-1-Butanol and 2-Ethyl-1-Butanol + Different Ethers at the Temperature Range of 293.15 to 313.15 K. J. Mol. Liq. 2009, 146, 29-34.
(5) Iloukhani, H.; Rostami, Z. Densities and Derived Thermodynamic Properties of Binary Mixtures of Diethylcarbonate, Acetophenone, and 1-Hexanol at $T=(293.15$ to 323.15$) \mathrm{K}$ for the Liquid Region and at Ambient Pressure. J. Chem. Thermodyn. 2007, 39, 1231-1240.
(6) Zarei, H. A.; Jalili, F. Densities and Derived Thermodynamic Properties of (2-Methoxyethanol + 1-Propanol, or 2-Propanol, or 1,2-Propandiol) at Temperatures from $T=(293.15$ to 343.15$)$ K. J. Chem. Thermodyn. 2007, 39, 55-66.
(7) Henni, A.; Tontiwachwuthikul, P.; Chakma, A. Densities, Viscosities, and Derived Functions of Binary Mixtures: (Tetraethylene Glycol Dimethyl Ether plus Water) from 298.15 to 343.15 K. J. Chem. Eng. Data 2004, 49, 1778-1781.
(8) Yang, Y. Y.; Zhu, Y. M.; Peng, J. L.; Chen, J. C.; Feng, P. P.; Huang, Z. Q. Excess Thermodynamic Functions Derived from Densities and Surface Tensions of (p - or o-Xylene plus Ethylene Glycol Dimethyl Ether) between the Temperatures (298.15 and 308.15) K. J. Chem. Thermodyn. 2009, 41, 1000-1006.
(9) Iglesias-Otero, M. A.; Troncoso, J.; Carballo, E.; Romani, L. Densities and Excess Enthalpies for Ionic Liquids plus Ethanol or plus Nitromethane. J. Chem. Eng. Data 2008, 53, 1298-1301.
(10) Lu, C. M.; Tian, Y. L.; Xu, W.; Li, D.; Zhu, R. J. High-Pressure Phase Equilibrium for the Binary Systems of \{Carbon Dioxide (1) + Dimethyl Carbonate (2) \} and \{Carbon Dioxide (1) + Diethyl Carbonate (2) \} at Temperatures of 273 K, 283 K, and 293 K. J. Chem. Thermodyn. 2008, 40, 321-329.
(11) Romano, E.; Trenzado, J. L.; González, E.; Matos, J. S.; Segade, L. E. Thermophysical Properties of Four Binary Dimethyl Carbonate + 1-Alcohol Systems at 288.15-313.15 K. Fluid Phase Equilib. 2003, 211, 219-240.
(12) Yang, C. S.; Xu, W.; Ma, P. S. Excess Molar Volumes and Viscosities of Binary Mixtures of Dimethyl Carbonate with Chlorobenzene, Hexane, and Heptane from (293.15 to 353.15) K and at Atmospheric Pressure. J. Chem. Eng. Data 2004, 49, 1802-1808.
(13) Bi, S. S.; Wu, J. T.; Liu, Z. G.; Meng, X. Y. Experimental Investigation of the Viscosity of Saturated Liquid Dimethyl Carbonate. Xi'an Jiaotong Daxue Xuebao 2003, 37, 903-905.
(14) Comelli, F.; Francesconi, R.; Bigi, A.; Rubini, K. Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide plus Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure. J. Chem. Eng. Data 2006, 51, 665-670.
(15) Rodríguez, A.; Canosa, J.; Tojo, J. Physical Properties of Binary Mixtures (Dimethyl Carbonate + Alcohols) at Several Temperatures. J. Chem. Eng. Data 2001, 46, 1476-1486.
(16) Pardo, J. M.; Tovar, C. A.; Troncoso, J.; Carballo, E.; Romani, L. Thermodynamic Behaviour of the Binary Systems Dimethyl Carbonate plus n-Octane or n-Nonane. Thermochim. Acta 2005, 433, 128-133.
(17) Troncoso, J.; Bessieres, D.; Cerdeirina, C. A.; Carballo, E.; Romani, L. $p \rho T_{\mathrm{x}}$ Data for the Dimethyl Carbonate + Decane System. J. Chem. Eng. Data 2004, 49, 923-927.
(18) Lugo, L.; Comunãs, M. J. P.; López, E. R.; Fernández, J. (p, V_{m}, T, x) Measurements of Dimethyl Carbonate + Octane Binary Mixtures I. Experimental Results, Isothermal Compressibilities, Isobaric Expansivities and Internal Pressures. Fluid Phase Equilib. 2001, 186, 235255.
(19) Comunãs, M. J. P.; Baylaucq, A.; Boned, C.; Fernández, J. HighPressure Measurements of the Viscosity and Density of Two Polyethers and Two Dialkyl Carbonates. Int. J. Thermophys. 2001, 22, 749-768.
(20) Silva, A. A.; Reis, R. A.; Paredes, M. L. L. Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2009, 54, 2067-2072.
(21) Pardo, J. M.; Tovar, C. A.; Cerdeiriña, C. A.; Carballo, E.; Romaní, L. Excess Quantities of Dialkyl Carbonate + Cyclohexane Mixtures at a Variable Temperature. Fluid Phase Equilib. 2001, 179, 151-163.
(22) Beg, S. A.; Tukur, N. M.; Al-Harbi, D. K. Densities and Excess Volumes of Cyclohexane + Hexane between 298.15 and 473.15 K . Fluid Phase Equilib. 1995, 113, 173-184.
(23) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Dimethyl Carbonate with

Methanol, Chloroform, Carbon Tetrachloride, Cyclohexane, and Dichloromethane in the Temperature Interval (298.15-308.15) K. J. Chem. Eng. Data 1998, 43, 1096-1101.
(24) Rathnam, M. V.; Mankumare, S.; Kumar, M. S. S. Density, Viscosity, and Speed of Sound of (Methyl Benzoate + Cyclohexane), (Methyl Benzoate $+n$-Hexane), (Methyl Benzoate + Heptane), and (Methyl Benzoate + Octane) at Temperatures of (303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2010, 55, 1354-1358.
(25) Sun, T. F.; Kortbeek, P. J.; Trappeniers, N. J.; Biswas, S. N. Acoustic and Thermodynamic Properties of Benzene and Cyclohexane as a Function of Pressure and Temperature. Phys. Chem. Liq. 1987, 16, 163-178.
(26) Takagi, T.; Sakura, T. Speed of Sound in Liquid Cyclic Alkanes at Temperatures between (283 and 343) K and Pressures up to 20 MPa . J. Chem. Thermodyn. 2002, 34, 1943-1957.
(27) Jonas, J.; Hasha, D.; Huang, S. G. Density Effects on Transport Properties in Liquid Cyclohexane. J. Phys. Chem. 1980, 84, 109112.
(28) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids, 2nd ed.; Wiley-Interscience: New York, 1964.
(29) Matos, J. S.; Trenzado, J. L. Volumetric Properties and Viscosities of the Methyl Butanoate $+n$-Heptane $+n$-Octane Ternary System and

Its Binary Constitutions in the Temperature Range from 283.15 to 313.15 K. Fluid Phase Equilib. 2001, 186, 207-234.
(30) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Dimethyl Carbonate with Methanol, Chloroform, Carbon Tetrachloride, Cyclohexane, and Dichloromethane in the Temperature Interval (298.15-308.15) K. J. Chem. Eng. Data 1998, 43, 1096-1101.
(31) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1980, 40, 345-348.
(32) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, 1999.
(33) Hofman, T.; Gołdon, A.; Nevines, A.; Letcher, T. M. Densities, Excess Volumes, Isobaric Expansivities, and Isothermal Compressibilities of the 1-Ethyl-3-Methylimidazolium Ethylsulfate + Methanol System at Temperatures (283.15 to 333.15) K and Pressures from (0.1 to 35) MPa. J. Chem. Thermodyn. 2008, 40, 580-591.

Received for review April 12, 2010. Accepted November 2, 2010.
JE100353J

[^0]: * Corresponding author. Tel.: +86-22 27406140. Fax: + 86-22 27403475 .

 E-mail: yltian@tju.edu.cn.
 ${ }^{\dagger}$ Tianjin University.
 $\stackrel{\mp}{*}$ Tianjin Institute of Urban Construction.

