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Activity coefficients for the primitive model electrolyte, containing a high concentration of neutral hard
spheres, are calculated for the modified Poisson—Boltzmann (MPB), hypernetted chain (HNC), and mean
spherical approximation (MSA) theories. Comparisons are made with Monte Carlo (MC) simulation results
for a 1:1 electrolyte having a common ion diameter with the neutral molecule diameter equal or different
to that of the ions. Various electrolyte concentrations are treated with the overall packing fraction held fixed
at 0.3. A very good agreement with simulation for the MPB theory is found for the charging parameter
approach, that via the virial route being less accurate. The MSA activity coefficients via the energy route
also give a good representation of the simulation values, while the HNC theory is adequate only for low

volume fractions of added neutral particles.

Introduction

Debye and Hiickel (DH)* initiated the first fundamental
approach to determine the thermodynamic properties of strong
electrolytes. Subsequently, their approach has become the basis
of numerous theoretical and practical applications.?™*° Because
of the inherent approximations in their theory and electrolyte
model, the classical DH approach is restricted mainly to uni-
univalent salts at low concentrations. The basic model developed
from their approach, which has been the subject of numerous
investigations, is the restricted primitive model (RPM). This
model is a system of charged hard spheres of equal diameter
moving in a dielectric medium of constant permittivity. Allow-
ing the cations and anions to have unequal sizes gives the
primitive model (PM). An extensive investigation of the
applicability of the PM to analyze the thermodynamic properties
of various salts has recently been carried out using Monte Carlo
(MC) simulations.**

A principal objection to the use of the PM is the neglect of
the molecular nature of the solvent. A first step to mimic the
solvent molecular structure is the solvent primitive model
(SPM), where the solvent molecules are treated as uncharged
hard spheres moving in a dielectric medium.** The solvent hard
spheres, because of their large concentrations, tend to drive the
structural properties of the solution leading to damped oscillatory
ion and solvent radial distribution functions. The influence of
the hard sphere solvent on structural properties in the SPM is
also observed in inhomogeneous situations such as the planar
electric double layer.*3*®
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An alternate interpretation of the uncharged hard spheres is
that of a neutral cosolute. This has enormous relevance for many
industrial chemical processes and biological sciences. Many
biologically significant ion—ion or ion—protein reactions take
place in solutions with a crowded environment of inert
macromolecules. Terms such as macromolecular crowding are
used to describe the effects of the addition of neutral cosolutes
on the equilibrium and nonequilibrium behavior of the
solution.*®*° Lack of available space for reacting ions in the
solution can lead to important consequences such as protein
precipitation, protein folding, and oligomerization.*” Mixtures
of electrolytes and neutral cosolutes at low to moderate
concentrations of the components have been recently studied®®—2°
using MC simulations and other analytical approaches such as
the symmetric Poisson—Boltzmann (SPB) theory,?® the modified
Poisson—Boltzmann (MPB) theory,?”?® and the hypernetted
chain (HNC) integral equation.*?® One interesting finding in
these studies is the phenomenon of like-charge attraction that
is manifest at sufficiently high concentrations of the neutral
species. Further improvements in the charged fluid models, by
the incorporation of dipoles and higher-order multipoles, are
required to treat polarization effects. Such models provide a
theoretical and simulation challenge.

Recently Lamperski and Phuciennik®® have calculated, using
MC simulations, the activity coefficients for a 1:1 SPM
electrolyte at various electrolyte concentrations. They considered
a high concentration of neutral particles, which mimics a
crowded environment, at a constant value of the total packing
fraction equal to 0.3. Comparisons were also made with the
mean spherical approximation (MSA)® and the SPB theory.
We compare here the results of the MPB theory and the HNC
and MSA integral equations with these MC results. The MPB
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improves upon the SPB theory and is found to be in very good
agreement with the simulation results. The HNC is seen to be
somewhat poor relative to the simulations and other theories at
the high packing fraction.

Model and Theory

The electrolyte model treated in this work is a three-
component system of charged hard spheres (cations and anions)
of diameter d and uncharged hard spheres of diameter ds, moving
in a dielectric continuum of constant permittivity &. For
reference we will denote this model by SPM. To compute the
activity coefficients of the SPM, we use the MPB, HNC, and
MSA approaches. The MPB theory is based on correcting the
two approximations inherent in the classical PB theory, namely,
the fluctuation and the exclusion volume terms.?® The basic
equation in the MPB approach is Poisson’s equation satisfied
by the mean electrostatic potential W,(r) a distance r from the
center of a molecule of species a, namely

V2y(r) = —$ Y epgul®) )

where t is the sum over the ion species, & the vacuum
permittivity, p; the mean number density of species t, and gu(r)
the radial distribution function for two molecules of species a
and t a distance r apart. We consider the special case of a 1:1
electrolyte with a common ion diameter d so that 1,(r) = 0 for
the neutral molecules and 1,(r:e, = 0) = 0 for the ions. Within
the MPB theory an approximate radial distribution function
between two ions i and j is*®
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where y = «d, k = [(1/KeTeoer)X02p]"? is the DH parameter,
ks is the Boltzmann constant, T the absolute temperature, and
gl(r) is the exclusion volume term. The PB equation is obtained
by putting d = 0 in L(u) and replacing gi(r) by the unit step
function.

Combining the result for g;(r) with Poisson’s equation gives,
for an ion a,
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To obtain a closed system of equations for u, we approximate
gl(r) by the Percus—Yevick (PY) uncharged hard sphere value
for mixtures,®? together with the generalization to mixtures®
of the Verlet and Weis** (VW) correction for a single component
system. Note that gl(r) is not the pure uncharged hard sphere
radial distribution function but the radial distribution function
of two uncharged ions moving in a sea of fully charged ions
and neutral molecules. Similarly, the radial distribution function
of the neutral molecules is approximated by the PY + VW value
for mixtures. The mean electrostatic potential and its first
derivative are continuous for r > 0 with u, — 0 as r — oo,

The HNC theory is based on the Ornstein—Zernike equation

Oy —1=Cy Tt zptfcut(gtﬁ — 1) adv, (6)
t

with the closure
NGy = —UuslKeT + gog — 1 — Cyp @)

where the sum in t is over all species, Cy is the direct correlation
function, and u,g is the spherically symmetric pair potential for
species o and . Combining the closure ¢,z = —Uqs/kgT with
the Ornstein—Zernike equation leads to the MSA integral
equation. The MSA equation has proved to be very useful as it
has an analytical solution and provides closed form thermody-
namic properties.

Results and Discussion

The MPB equation for the mean electrostatic potential was
solved numerically using the previously developed quasi-
linearization iteration technique, while the PY uncharged hard
sphere radial distribution function was determined by Perram’s®
technique which is based on the work of Baxter.®” Solving for
the mean electrostatic potential means that the iteration technique
is robust and requires few iterations for convergence. The virial
and the charging (or coupling) parameter routes were considered
for calculating the MPB activity coefficient. In the charging
route the individual activity coefficient y, for an ion a is derived
from?®

Iny, = Iny™S +Iny? (8)

where In y5S is the hard sphere contribution, and the electrical
contribution is given by

4mie,
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The expression for the electrical activity corresponds to that
derived by the Giintelberg charging process. To calculate In S
we use the uncharged hard sphere individual activity coefficient
derived by Ebeling and Scherwinski®*(ES). Lamperski and
Ptuciennik have demonstrated the accuracy of the ES formula
for the present SPM parameters. In the virial route a version of
the Gibbs—Duhem equation for three species®® provides a
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Table 1. Natural Logarithm In y. of the Mean Activity Coefficient of the Electrolyte and of the Neutral Species In y. for Equal lon and

Neutral Diameters of (0.3, 0.4, and 0.5) nm at Varying Electrolyte Concentrations cgec With 7 = 0.3%

d=di=03nm d=d;=04nm d=d;=05nm
Celec Iny. In ys Iny. In s In vy, In s
mol-dm™ MSA. MPBg, HNC MC ES MSA. MPB,, HNC MC ES MSA. MPB;, HNC MC ES
0.05 4.65 4.64 491 46507  4.87 4.67 4.65 5.00 46645 4.87 4.68 4.66 5.06 46868  4.87
0.1 4.58 4.56 4.84 45681 4.87 4.60 4.58 493 46010 4.87 4.62 4.60 4.99 46214  4.87
0.25 4.47 4.43 4,71 44323  4.87 4.50 4.47 4.82 44935 4.87 4.53 4.50 4.90 45135 4.87
0.50 4.36 4.31 4.59 43288 4.87 4.41 4.37 4.72 43875 4.87 4.46 441 481 44354  4.87
1 4.24 4.17 4.46 41982 4.87 4.32 4.26 4.61 42861 4.87 4.37 4.32 4,72 43353  4.87
15 4.16 4.08 4.37 41147 487 4.26 4.19 4.54 42123  4.87 4.32 4.26 4.66 42765 4.87
2 4.11 4.02 4.31 40466  4.87 4.21 4.14 4.49 41634  4.87 4.29 4.22 4.61 42269  4.87
2.5 4.06 3.97 4.26 3.9965 4.87 4.18 4.10 4.45 41179 487 4.26 4.19 4.58 41934  4.87
3 4.03 3.93 4.22 3.9637 4.87 4.15 4.06 4.42 4.0912 4.87 4.24 4.16 4.55 41437  4.87

2 Under the In y. column, MSA, denotes the energy route, MPB, the charging parameter route, and HNC via eq 10 and MC the simulation results of
ref 30, strictly only accurate to three significant figures. The ES results for In y; are calculated from the formula of ref 38.

procedure for calculating the mean activity coefficient y.. of
the electrolyte.

The numerical solution of the HNC equation was also
determined using a previously developed technique.*® Because
of the long-range nature of the Coulomb interactions, the integral
equations have first to be renormalized before being solved using
a fast Fourier transform technique. The activity coefficient in
the HNC approach is calculated via**

Iy, =— 2, pCoi(0) + 0.5 o [ [(Gu = D(Ges —
1- C(xt)] th (10)

where c%;(0) is the Fourier transform of the short-range part of
the direct correlation function evaluated at k = 0. Note that eq
10 is only valid for the HNC equation. The MSA activity
coefficients were calculated from the analytical formula derived
via the energy route.®84243 This route provides the most accurate
MSA thermodynamic properties.

Calculations were carried out for the SPM parameters
corresponding to the simulation results of Lamperski and
Ptuciennik with T=298.15 K and ¢, = 78.5. These simulations
were done using a modification of the grand canonical Monte
Carlo (GCMC) techniques called the inverse GCMC method,**
where unlike in the GCMC, the activity coefficient can be
evaluated for a given solution concentration. This allows a
straightforward calculation of the individual activity coefficients
of the constituent species in a mixture. Simulations were
performed at the constant packing fraction » = 0.3 where

n = (2/6) Y. p (11)

Keeping # constant means that, as the electrolyte concentration
Celec IS Changed, the neutral species concentration also changes.

We first consider the situation when all of the diameters are
equal with d = d; = (0.3, 0.4, or 0.5) nm. Table 1 gives the
activity results for the electrolyte and neutral species at various
electrolyte concentrations, with the corresponding electrolyte
plots shown in Figure 1. For these parameters the neutral species
In ys are essentially independent of the electrolyte concentration
and diameter d. In the limit of zero electrolyte concentration
the electrolyte In y. tends to that of the neutral species as the
solution then becomes a one-component hard sphere system.
At all three diameter values the MPB activity coefficient derived
from the charging route agrees with those of the MC. The MSA
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Figure 1. Natural logarithm In . of the mean activity coefficient of the
electrolyte for d = ds. Graphs a, b, and c are for diameters of (0.3, 0.4, and
0.5) nm, respectively. Solid line, MPB charging; dashed line, MSA energy;
dashed—dotted line, MPB virial; dotted line, HNC eq 10; symbols, MC.*°

is in good agreement with the MC values, only beginning to
deviate from them at the higher electrolyte concentrations. The
MPB virial activity coefficient is less accurate than that of the
MSA, while the HNC activity coefficient is comparatively
poorer even at low Cqe. The deviation of the HNC results from
simulation is not entirely unexpected as the overestimation of
the HNC osmotic coefficient in the presence of a neutral
component has been seen earlier.?>®> The HNC closure is a
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Figure 2. RPM and SPM radial distribution functions g;(r) with d = ds =
0.4 nm and Cgec = 2 mol-dm~3 and for SPM, neutral species concentration
= 10.866 mol-dm~2. Solid line, MPB; dotted line, HNC. Panel a, ion—ion
distribution; Panel b, ion—neutral species distribution.

very good approximation for Coulomb interactions, but it under-
performs for harsh, short-range, forces. Note that the concentra-
tions of the components used here are much bigger than those
in the earlier works,?>72* and hence it is not surprising to see
the deviations displayed by the HNC theory.

Figure 2a illustrates, for d = 0.4 nm and Cgec = 2 mol-dm™3,
the influence the uncharged hard spheres have on the MPB and
HNC ion radial distribution functions relative to those of the
RPM. At this value of cq the value of y is equal to 1.8595 so
that in the RPM small damped charge oscillations occur in
g(r)*® which are too small to be seen in the figure. Also for
small ion separation g;(r) predicts the expected like ion repulsion
or unlike ion attraction. When the neutral species is present
having a concentration of 10.866 mol-dm™2, corresponding to
n = 0.3, a pronounced structure occurs in g;(r). The high density
of the neutral species drives the ion structure and leads to the
interesting phenomenon of like ion attraction arising from
depletion effects,*® with g;(d) > 1 and a small maximum in
gij(r) at approximately two molecular diameters. Panel b of
Figure 2 shows the ion—neutral species distribution correspond-
ing to the SPM parameters of panel a. The neutral—neutral
species distribution is not shown as the HNC distribution is very
close to the ion—neutral species distribution,?* while the MPB
theory does not differentiate between the two distributions. The
structural similarities between the ion and the neutral species
distributions can be clearly seen. The HNC and MPB radial
distributions for both the RPM and the SPM are quite close
overall. However, a closer inspection reveals the HNC contact
values of the various distributions to be somewhat bigger than
those of the corresponding MPB theory. This seems to be one
of contributing factors to the higher HNC osmaotic coefficients
and hence the higher activity coefficients noted above.
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Figure 3. MPB In g from the charging route for the SPM and RPM
electrolytes, the DH In y§ and corresponding In " for the RPM, with d
= d, = (0.3, 0.4, and 0.5) nm. Solid line, SPM MPB; dashed line, RPM
MPB; dashed—dotted line, DH; dashed—two dots line, RPM uncharged hard
sphere.

The equal size situation, ds = d, provides a contact with the
RPM electrolyte mean activity coefficients at the same elec-
trolyte concentrations as the SPM. Figure 3 compares the SPM
In ¢ for the MPB theory and the corresponding RPM In y§
for the MPB theory and DH theory with size. The graphs
illustrate the fairly small influence the SPM high packing
fraction of the neutral species has on the value of the RPM
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Figure 4. RPM In y. for the MPB, MSA, and DH theories at d = (0.3,
0.4, and 0.5) nm. Solid line, MPB charging; dashed—dotted line, MSA
energy; dashed line, DH.
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Table 2. Natural Logarithm In y.. of the Mean Activity Coefficient of the Electrolyte and of the Neutral Species In y for the lon Diameter d =
0.4 nm and the Neutral Diameter ds; Taking the Values (0.3 and 0.5) nm at Varying Electrolyte Concentrations cqec With = 0.3%

d=0.4nm, dg= 0.3 nm

d=0.4nm, dg=0.5nm

Celec Iny. In s Iny. In ys
mol-dm™3 MSA, MPB, HNC MC ES MSA, MPB, HNC MC ES
0.05 8.28 8.27 8.90 8.3259 4.86 3.11 3.09 3.31 3.1037 4.89
0.1 8.19 8.17 8.80 8.1979 4.84 3.05 3.03 3.25 3.0417 4.90
0.25 8.01 7.98 8.61 7.9975 4.80 2.98 2.95 3.18 2.9671 4.95
0.50 7.79 7.75 8.36 7.7784 4.74 2.94 2.90 3.13 2.9182 5.04
1 7.43 7.38 7.97 7.4055 4.60 2.95 2.88 3.13 2.9021 5.20
15 7.11 7.06 7.62 7.0683 4.47 2.99 2.92 3.17 2.9461 5.37
2 6.81 6.76 7.29 6.7451 433 3.05 2.97 3.23 2.9932 5.54
2.5 6.52 6.47 6.98 6.4551 4.20 3.12 3.03 3.30 3.0497 5.71
3 6.25 6.19 6.67 6.1844 4.07 3.19 3.10 3.38 3.1116 5.88

2The notation is as in Table 1.

Table 3. Natural Logarithm In y. of the Mean Activity Coefficient of the Electrolyte and of the Neutral Species In ys for a Neutral Diameter ds
= 0.4 nm and lon Diameters of (0.3 and 0.5) nm at Varying Electrolyte Concentrations Cge With 7 = 0.3%

d=0.3nm, dg= 0.4 nm

d=0.5nm, dg= 0.4 nm

Celec In Y+ In Vs In Y+ In Vs
mol-dm~3 MSA. MPBg, HNC MC ES MSA, MPBg, HNC MC ES
0.05 2.76 2.74 2.90 2.7623 4.88 7.24 7.23 7.86 7.2361 4.85
0.1 2.70 2.67 2.83 2.6706 4.89 7.15 7.13 7.76 7.1516 4.83
0.25 2.59 2.55 2.72 2.5770 4.92 6.95 6.92 7.54 6.9340 4.76
0.50 251 2.46 2.62 2.4832 4.97 6.69 6.66 7.26 6.6554 4.65
1 2.44 2.37 2.54 2.3993 5.06 6.26 6.21 6.77 6.2097 4.44
15 241 2.33 251 2.3658 5.16 5.86 5.81 6.33 5.8025 4.23
2 2.40 2.32 2.50 2.3478 5.25 5.48 5.43 591 5.4336 4.02
2.5 242 2.32 251 2.3519 5.35 5.12 5.06 5.51 5.0290 3.82
3 2.43 2.33 2.52 2.3614 5.45 4.76 4.71 511 4.6783 3.62

2The notation is as in Table 1.
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Figure 5. SPM In y. for d = 0.4 nm and d; = 0.3 nm, curves a; d; = 0.4
nm, curves b; ds = 0.5 nm, curves c. Solid line, MPB charging; dashed
line, MSA energy; dashed—dotted line, MPB virial; dotted line, HNC eq
10; symbols, MC.*°

0.0 0?2

electrical activity. Also shown is In y"S corresponding to the
RPM electrolyte concentrations. An important feature of the
plots is the dominance of the hard sphere contribution to the
activity coefficient, which is especially true at higher concentra-
tions. In our calculations we have also found the trend to carry
over to the SPM where such dominance of the hard sphere
activity is even more substantial. Combining the electrical and
hard sphere activity coefficients, see eq 8, gives the overall RPM
activity coefficients shown in Figure 4. The MPB activity
coefficients for the RPM are known to accurately follow the
simulation data.®® Since the DH and MPB In »¢ in Figure 3
only differ appreciably at the larger d and higher cqe., a good
estimate of the SPM In y.. can be obtained by adding the SPM
In y to the DH electrical value.

Next we compare with the simulation results for the cases
where the ion and neutral species differ in size. In Table 2 the

04 06 08 10 12 14 16 1.8

¢"? | (mol/dm?)"

Figure 6. SPM In y. for d; = 0.4 nm and d = 0.3 nm, curves ¢; d = 0.4
nm, curves b; d = 0.5 nm, curves a. The remainder of the notation is as in
Figure 5.

activity coefficients are calculated at various electrolyte con-
centrations for d = 0.4 nm with ds = 0.3 or 0.5 nm, while Table
3 gives the activity results for ds = 0.4 nm with d = 0.3 or 0.5
nm. The activity plots corresponding to Tables 2 and 3 are
shown in Figures 5 and 6, respectively. Variations in the
molecular sizes are seen to have a profound effect on the activity
coefficients. Simulation indicates that when d is fixed at 0.4
nm and d varies, the ion activity decreases as d, increases from
(0.3 to 0.5) nm. Furthermore, at the smallest value of d, In y.
decreases monotonically with cge in contrast to the eventual
upturn in In y . as Cee increases when d; = 0.5 nm. A somewhat
analogous picture holds for d varying with d; fixed, except that
in contrast the ion activity now increases as d increases. The
reason for this behavior is that it requires less effort to insert a
small sphere into a system of larger spheres than to insert a
larger sphere into a system of smaller spheres. Because of the
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high density of the uncharged hard spheres relative to the ions,
the effect of inserting an ion into the system is dominated by
the size of the uncharged molecules. Hence for d fixed and d;
varying, In y.. decreases in the order ds < d, d; = d, and d; > d.
Similarly for d fixed and d varying, In y.. increases in the order
d<ds, d=d, and d > d;. The activity of the uncharged species
for d = ds depends on the electrolyte concentration and is
accurately given by the ES formula.

The overall agreement of the theoretical predictions and
their comparative behavior parallel closely those of the equal
diameter case. As before the MPB activity coefficients
calculated via eq 8 are in very good agreement with the
corresponding simulation values. The remaining theories tend
to overestimate In y.. especially at the higher values of Cgec,
and reduce in accuracy in the order MSA, virial MPB, and
HNC, respectively. All of the theories increase in accuracy
as the ions reduce in size, plots a — c in the figures,
corresponding to the situation when it becomes easier to insert
an ion into the solution.

Conclusion

The MPB activity coefficient derived via eq 8, using the
charging process for the electrical contribution and the ES
formula for the hard sphere contribution, has been proven to
accurately describe the ion activity coefficients at the
parameters of the present SPM electrolyte. A good description
of the activity coefficients is also given by the MSA analytical
results and to a lesser extent at the smaller ion diameters by
the HNC theory. Lamperski and Ptuciennik had earlier shown
that the SPB theory gave an adequate description of In y..
The potential theories thus seem a viable approach to treat
more complex electrolytes than the present RPM plus
uncharged hard spheres.

Within the potential approaches and the MSA, the calculation
of the mean activity coefficient conveniently decouples into a
hard sphere part and an electrical part (eq 8). The hard sphere
contribution, which tends to dominate, is also well-described
by the ES formalism and hence the very good predicted mean
activity. In the HNC integral equation approach the closure is
applied, on an equal footing, to all of the species. The HNC
closure (eq 7) works very well for pure Coulombic systems,
but its performance in the presence of a high density neutral
species is less successful. Another study is thus required to
assess the feasibility of other, for example, mixed (HNC—PY
or HNC—MSA), closures for such mixtures. We hope to take
up such a project in the near future.
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