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Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have
been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The
simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the
statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is
good agreement of the calculated viscosities and densities with available experimental data, and thus, the
simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length,
temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for
different chain lengths and propose minimal production times required for convergence of the transport
properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation
models are applicable in the short-chain regime investigated.

1. Introduction

Poly(ethylene oxide) (PEO) oligomers have applications as
surfactants,1 polymer electrolytes,2 and drug delivery carriers
in medical and biological areas.3 They are also frequently used
as model systems in connecting theories and experiments in
polymer physics.4,5 Recently, two new classes of novel hybrid
materials have been developed, namely, nanoparticle ionic
materials (NIMs)6,7 and nanoparticle organic hybrid materials
(NOHMs);8 repeating “oxyethylene” structures are an important
component of these materials and contribute to their unique
dynamic and transport properties. Establishment of accurate
structure-property relations of pure PEO forms the basis for
the development of new composites in which PEO or its
oligomers are a major constituent.

During the past decade, molecular simulations have frequently
been used to model PEO chains. Different force fields have been
studied, including those based on quantum chemistry,9 OPLS,10

and TraPPE and its variations.11-13 Prior studies have reported
good agreement between simulation predictions and experi-
mental results for conformer populations,10,11,14 spectra,15-17

thermodynamic properties,12,13,18 and structural relaxations.9,19

While many atomistic simulations have investigated monodis-
perse PEO melts of low to moderate molar mass, there are
relatively few studies of higher-molar-mass PEO as polydisperse
mixtures13 or in solution.20 Structural properties and diffusivities
of aqueous PEO mixtures are also frequently studied to test the
transferabilityofforcefieldsandcoarse-grainingtechniques.11,21-23

In contrast to the extensive investigations of static properties,
studies of PEO chain dynamics have generally been limited by
the long time necessary for motion decorrelation on longer
length scales. Dynamic properties explored most frequently are
the local correlations of bond, segmental, and subchain motions,
which relax on time scales of (10 to 100) ps.9,11,13,16,18,19 Prior
diffusivity calculations have been limited to melts of short chains

or aqueous solutions of oligomers5,9,11 because diffusivity relates
to the slower dynamics of whole chains. Few studies have
looked into the properties of long PEO chains in the bulk.13 As
a property determined by collective chain motions, viscosity
has been even less explored using atomistic models, with values
reported at only a few state points for 12-mers.9 It is thus
worthwhile to use current force fields to obtain systematic
information about the transport properties of PEO, especially
their dependence on chain length, despite the need for long
simulation times.

Transport coefficients can be obtained through either equi-
librium methods, which use fluctuation-dissipation formulas,
or nonequilibrium methods that measure the response of the
system to external perturbations.24-26 Equilibrium methods are
free from the theoretical and practical issues affecting nonequi-
librium methods, such as temperature inhomogeneities induced
by the perturbation27 and the validity of schemes for extrapola-
tion to the equilibrium state.28 On the other hand, equilibrium
methods have convergence problems in applications to systems
characterized by slow relaxations. Previous papers have either
reported the successful application of the Green-Kubo (GK)
formalism to simple systems29-34 or merely stated qualitatively
the difficulty of converging the GK integrals for large
molecules.24,25,35 They have not quantitatively explored the
limits of convergence for chains as a function of their length.

In this work, the TraPPE-UA force field36,37 with a corrected
dihedral potential11,38 was chosen for simulations of
CH3O(CH2CH2O)nCH3 for chain lengths n from 1 to 12.
Diffusion coefficients and viscosities were obtained using
equilibrium methods. This study provides a test of the ap-
plicability of the TraPPE force field, which was originally
parametrized with phase-equilibrium properties of small mol-
ecules, to the transport properties of chains. Unlike previous
simulation studies,9,11,13 which have reported viscosity data for
a single chain length or diffusivities for low-molar-mass chains,
here we systematically studied the chain-length dependence of
these two transport properties. In addition, we sought to quantify
the GK integration divergence for longer chains on the basis of
the relative errors of the calculated transport properties.

† Part of the “Sir John S. Rowlinson Festschrift”.
* Author for correspondence. E-mail: azp@princeton.edu.
‡ Princeton University.
§ Cornell University.

J. Chem. Eng. Data 2010, 55, 4273–4280 4273

10.1021/je100430q  2010 American Chemical Society
Published on Web 06/22/2010



The paper is organized as follows. Section 2 describes the
model details and simulation methodology. Section 3 presents
the calculated volumetric and transport properties as functions
of chain length and compares the results with experimental data
and theoretical predictions. The feasibility of transport property
calculations using GK methods for longer chains is also
discussed in this section. Finally, section 4 summarizes the
conclusions from this work.

2. Methods

2.1. Simulation Details and Potential Models. All of the
simulations were performed using GROMACS version 4.0.3.39

Each CH3O(CH2CH2O)nCH3 system with n from 1 to 12 was
simulated in the NPT ensemble at a pressure of (0, 0.1, or 1)
MPa for an initial simulation time of (3 to 18) ns, depending
on the chain length. Strictly speaking, zero pressure corresponds
to a metastable liquid; however, for liquids far from the critical
point, the difference in the densities of the liquid at the saturation
(vapor) pressure and zero pressure is negligible, and simulated
systems started from liquid densities never vaporized. The
density averaged over the last one-third of each simulation was
compared with experimental values as a measure of accuracy
for the chosen force field. Each system was then reset at the
experimental density (except for 12-mers), and simulations in
the NVT ensemble were performed for transport property
calculations using equilibration times from (1 to 120) ns and
production times from (2 to 40) ns, with longer simulations used
for higher molar masses. Table 1 gives the input parameters
for the simulations, namely, the number of chains (N), the
compressibility (κT) used for the barostat in the NPT runs, and
the simulation box size (L) for the NVT runs, for each chain
length studied.

The configurations were updated via the leapfrog algorithm40

using a time step of 2 fs. The system pressure was coupled to
a Parrinello-Rahman barostat41,42 with a relaxation time of 5
ps, and the compressibilities for different chain systems were
set as shown in Table 1. The Nosé-Hoover thermostat43,44 with
a relaxation time of 2.5 ps was used to maintain the system at
temperatures around 300 K. Interpolation between the experi-
mental melting points for long PEO chains45 and oligomers (n
e 4)46 and the chain lengths covered in our simulations
suggested a melting point a little below or around 300 K. Hence,
under the assumption that the force fields we used give melting
points not far away from the corresponding experimental values,
all of the simulated systems were in the stable liquid region.

Interactions between the three types of united atoms in the
chains (i.e., CH3, CH2, and O) were described by the TraPPE-

UA force field,36,37 a set of transferable potentials developed
via fitting to the liquid-vapor coexistence curves of pure
substances. Nonbonded interactions in TraPPE-UA include
pairwise Lennard-Jones (LJ) and Coulombic potentials. The like-
pair LJ diameters (σ) and well depths (ε) were σ(CH3) ) 0.375
nm, σ(CH2) ) 0.395 nm, σ(O) ) 0.280 nm and ε(CH3) )
0.8148 kJ ·mol-1, ε(CH2) ) 0.3825 kJ ·mol-1, ε(O) ) 0.4593
kJ ·mol-1. Unlike-pair interaction parameters were obtained from
the Lorentz-Berthelot combining rules26 (arithmetic mean for
the diameters and geometric mean for the well depths). Partial
charges of 0.25e, 0.25e, and -0.50e were used for the CH3,
CH2 and O centers, respectively. Both van der Waals and
electrostatic interactions were truncated at 0.9 nm. The LJ
interactions within the cutoff were determined between a central
atom and the atoms stored in a Verlet neighbor list that was
updated every 10 fs, while long-tail dispersion corrections were
treated analytically.26 The long-range electrostatics were cal-
culated via the particle-mesh Ewald method47,48 using fourth-
order interpolation and a Fourier grid spacing of 0.12 nm.
Nonbonded interactions between beads separated by three or
fewer bonds within one molecule were not present, as these
effects have been incorporated into the angle and torsional
potential parameters. Bond lengths were fixed at 0.154 nm for
CHx-CHy (x, y ) 2, 3) and 0.141 nm for CHx-O using the
SHAKE algorithm with a relative tolerance of 10-4. Harmonic
bond bending potentials were modeled as uijk ) kθ(θijk - θ0)2,
where θijk is the angle between the three consecutive atoms along
two bonds. The force constant kθ and equilibrium angle θ0 were
kθ ) 502.194 kJ ·mol-1 and θ0 ) 112° for CHx-O-CHy and
kθ ) 418.218 kJ ·mol-1 and θ0 ) 112° for CHx-CHy-O.

Fischer et al11,38 suggested a modification of the torsional
potentials in the TraPPE-UA force field in order to match the
conformer population distribution to ab initio data for 1,2-
dimethoxyethane (DME, n ) 1). The new torsion potential
function in the modified TraPPE potential is given by eq 1:

utorsion(φ) ) ∑
i)0

7

ki[1 + cos(iφ)] (1)

The values of the parameters ki are listed in Table 2. For small
molecules (e.g., DME), TraPPE and modified TraPPE are
approximately equivalent with respect to the experimental
liquid-vapor coexistence curves: over the temperature range
of available experimental data,49 the original TraPPE force field
overestimates the saturated liquid density of DME by (1 to 2)
%,37 while the modified TraPPE underestimates it by around 2
%.11,50 Differences between the two force fields increase with
the number of -CH2CH2O- units.

Figure 1 presents our results for the F-P-T relationship in
dodecaethylene glycol dimethyl ether [(EO)12DME, n ) 12] at
(0 and 100) MPa using the two force fields. The simulation
statistical uncertainties (error bars), which were obtained by
dividing the samples at each state point into 10 blocks, are
smaller than the symbols. Also included in Figure 1 are the
experimentally measured curves51 for poly(ethylene oxide)
dimethyl ether (PEODME) mixtures with a number-average
molar mass (Mn) of about 0.6 kg ·mol-1. The data are better
reproduced by the modified TraPPE potential over the entire
temperature range at both pressures. The experimental data at
0.1 MPa9 for PEODME with Mn ≈ 0.398 kg ·mol-1 are
represented by triangles in Figure 1; these should have negligible
differences from data at 0 MPa because of the small compress-
ibility. The system we simulated consisted of monodisperse
chains having a molar mass between the Mn values of the two
experimental systems. We thus confirmed that the modified

Table 1. Simulation Parameters

κT Ld

n N 10-4 MPa-1 nm

1 216 11.1560 3.34570a (296.15 K, 0.1 MPa)
3.3390a (298.15 K, 0.1 MPa)
3.3534a (303.15 K, 1 MPa)

3 216 7.3161 4.0300a (303.15 K, 1 MPa)
5 50 6.661 2.7880a (303.15 K, 1 MPa)

200 4.4257a (303.15 K, 1 MPa)
400 5.5760a (303.15 K, 1 MPa)

9 150 5.5c 4.7070a (303.15 K, 1 MPa)
4.7114a (318 K, 0.1 MPa)

12 100 5.0c 4.4819b (298.15 K, 0.1 MPa)
4.4672b (303.15 K, 1 MPa)

a Determined according to the experimental density. b Determined
from the NPT simulation density. c Extrapolated from n ) 1 to 5. d The
temperature and the pressure given in parentheses are the experimental
state points at which the density was reached.
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TraPPE force field better reproduces the volumetric properties
of PEO, and we employed it in the simulations of transport
properties presented here.

2.2. DiffusiWity and Viscosity Calculations. The diffusion
coefficient can be obtained using two equivalent equilibrium
methods.26 The Green-Kubo (GK) integration over the velocity
autocorrelation function is given by eq 2:

D ) 1
3 ∫0

∞
〈Vi(t + t0) · Vi(t0)〉 dt (2)

In the Einstein relation, the diffusion coefficient is related to
the slope of the mean-square displacement (MSD) of one particle
over time:

D ) 1
6

lim
tf∞

d
dt

〈[ri(t + t0) - ri(t0)]
2〉 (3)

where ri(t) is the coordinate of the center of mass of the ith
molecule at time t. The averages in eqs 2 and 3 are over different
time origins and particles in the system. To fully capture the
shape of this correlation function from our simulations, velocity
files were stored every 0.1 ps when GK integration was used.
The sampling frequency could be considerably reduced using
eq 2, as the transition from the subdiffusive region to the
diffusive region observed from the MSD is less abrupt than the
fluctuation of the velocity autocorrelation function. Center-of-
mass positions were sampled every 1 ps.

Similarly, equilibrium methods for shear viscosity determi-
nation include (1) GK integration over the autocorrelation
function of PR�, the off-diagonal elements of the pressure tensor
(eq 4),

η ) V
kBT ∫0

∞
〈PR�(t + t0) ·PR�(t0)〉 dt (4)

and (2) the MSD of LR�, where LR� is defined as

LR�(t) ) ∑
i)1

N

riR(t)pi�(t) (5)

where pi� is the �-component of the momentum of atom i. The
average in eq 4 is taken over different time origins t0. In
applications to systems with periodic boundary conditions, the
second method needs to be modified to remove discontinuities
when a particle jumps across the boundary.52,53 Recently, an
adaptation of eq 5 has been derived and tested for systems where
all of the potentials obey the minimum-image convention.53

Because the relevant modifications of such a method to handle
electrostatic interactions are still unclear, in this work only the
boundary-condition-independent GK integral of eq 4 was used.
Fully capturing the fastest vibrational mode of the pressure
correlation function required PR� to be sampled every 0.01 ps.
To gain higher accuracy, the right-hand side of eq 4 was further
averaged over the three off-diagonal elements, since PEO melts
are isotropic (the isotropy was confirmed during our simula-
tions).

The statistical errors of the quantities in eqs 2 to 4 were
obtained by dividing the time origins into Nb ) 5 blocks for
the diffusion coefficient calculation and Nb ) 10 blocks for the
viscosity calculation. For each block i, we averaged the
correlation functions or MSD over the time origins in i and
used eqs 2 and 3 to obtain the self-diffusion coefficient or
viscosity, denoted as xi in eq 6. The statistical uncertainty with
95 % confidence (Er) was then determined using

Er ) 2[ ∑
i)1

Nb

(xi - xj)2

Nb(Nb - 1) ]1/2

(6)

where xj is the mean of the series xi.
2.3. System Size Effects. We performed NPT and NVT

simulations on systems with 50 and 400 (EO)5DME chains in
addition to the base case of 200 (EO)5DME chains. The system
sizes and calculated transport properties for all of the systems
studied are shown in Tables 1 and 3, respectively. The statistical
uncertainties in the densities, viscosities, and diffusivities tended
to decrease with system size. Differences between the calculated
values for different sizes were within the statistical uncertainties,
indicating that system size effects on the data presented in this
paper are not significant.

3. Results and Discussion

3.1. Calculation of Transport Properties. As indicated by
eq 4, viscosity is the value to which the integration converges
at infinite time. The pressure autocorrelation functions were
obtained from averaging over different time origins separated
by a 10 fs interval. Figure 2 presents the normalized values of
the PR� (R� ) xy, xz, yz) correlation functions for DME and
(EO)12DME at T ) 303.15 K at the experimental P ) 1 MPa
densities. The curves representing the three directions have
perfect overlap with each other on the scale of the graph,
confirming that the system is isotropic. Figure 2a gives the
autocorrelation functions at short times. A comparison between
the two panels in Figure 2a shows that the fastest vibration

Table 2. Dihedral Parameters in the Modified TraPPE-UA Force Field

ki/(kJ ·mol-1)

i ) 0 1 2 3 4 5 6 7

CHx-O-CHy-CHy -0.25390 -5.15997 -0.69711 5.35013 0.80312 0.28307 0.09526 -0.05797
O-CHx-CHx-O -7.75967 7.58526 6.70523 8.40071 0.63221 0.11063 0.35962 0.01683

Figure 1. Density vs temperature for (EO)12DME: 9, modified TraPPE at
0 MPa; b, modified TraPPE at 100 MPa; 0, TraPPE at 0 MPa; O, TraPPE
at 100 MPa; solid line, experimental data for PEODME (Mn ≈ 0.6 kg ·mol-1

and Mw/Mn ) 1.06, where Mw is the weight-average molar mass) at 0 MPa;51

dashed line, experimental data for PEODME (Mn ≈ 0.6 kg ·mol-1, Mw/Mn

) 1.06) at 100 MPa;51 3, experimental data for PEODME (Mn ≈ 0.398
kg ·mol-1, Mw/Mn ) 1.16) at 0.1 MPa.9
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modes last longer than 1 ps for DME but are quickly suppressed
for the longer (EO)12DME chains. The difference arises from
the fact that the backbone atoms or the shortest segments, which
are responsible for the fast vibrations in (EO)12DME, are
connected to longer, more inertial backbone chains and therefore
move less freely. The pressure autocorrelation functions for the
two systems at long times (Figure 2b) behave in opposite ways.
For the DME melt, the vibrations become small after ∼3 ps
and then fluctuate randomly around zero (blue line). The decay
of the correlation function for the (EO)12DME melt (violet line)
decays slowly and monotonically, taking ∼300 ps to reach 1
% of the value at t ) 0.

The viscosity as a function of integration time is given in
Figure 3 for DME and (EO)12DME under the same conditions
as for Figure 2. One would expect the viscosity to converge as
the integration time increases and the pressure correlation
functions decay. In practice, however, statistical noise in the
long-time tail of the pressure correlation functions (Figure 2b)
conceals the decay, leading to poorly converging integrals. In
Figure 3, convergence is indicated by a plateau after the initial
increase of the viscosity curves. The increasing error bars and
deviations from the plateau at longer times for the bottom panel
illustrate the poor convergence due to contributions from the
noise in the long-time tails of the correlation functions. Similar
behavior was also reported in a study of viscosity for the LJ
liquid and SPC water.24 Therefore, it is very important to choose
a suitable integration time, which should be long enough to
cover the main decay region of the pressure correlation functions

Table 3. Densities (G), Viscosities (η), and Diffusivities (D) of CH3O(CH2CH2O)nCH3 (n ) 1 to 12)

F/(g · cm-3)a η/(mPa · s) D/(10-5 cm2 · s-1)

n state point simb exptlc sim exptl sim exptl

1 296.15 K, 0.1 MPa 0.852 ( 0.001 0.863162 3.15 ( 0.02 3.211,63

298.15 K, 0.1 MPa 0.8481 ( 0.0008 0.8613,64 0.8637,65 0.862666 0.35 ( 0.02 0.39467 3.13 ( 0.04
303.15 K, 1 MPa 0.843 ( 0.001 0.851868 0.34 ( 0.07 0.40268 3.47 ( 0.04

3 303.15 K, 1 MPa 0.968 ( 0.001 0.976868 1.7 ( 0.4 1.76168 0.61 ( 0.02
5 303.15 K, 1 MPa N ) 50 1.016 ( 0.002 1.020468 4.4 ( 3.3 4.58868 0.15 ( 0.03

N ) 200 1.0155 ( 0.0006 5.0 ( 2.1 0.181 ( 0.008
N ) 400 1.0160 ( 0.0003 4.8 ( 2.5 0.187 ( 0.009

9 303.15 K, 1 MPa 1.056 ( 0.001 16.3 ( 9.5 0.041 ( 0.005
318 K, 0.1 MPa 1.0398 ( 0.0006 1.054, 1.048, 1.0389 11.9 ( 7.0 13.349 0.062 ( 0.005

12 298.15 K, 0.1 MPa 33.3 ( 15.0 0.017 ( 0.005
303.15 K, 1 MPa 1.070 ( 0.001 1.06713,d 41.1 ( 17.3 0.018 ( 0.002

a Statistical uncertainties in the last digit are displayed. b Simulation results. c Experimental data. d At 303.05 K, 0.1 MPa.

Figure 2. (a) Normalized autocorrelation functions of off-diagonal elements
of the pressure tensors for (top) DME and (bottom) (EO)12DME. The curves
representing the xy, xz, and yz directions overlap quite well. (b) Enlarged
view of the long-time tail of the pressure autocorrelation functions for DME
(dashed blue line) and (EO)12DME (solid violet line).

Figure 3. Effective viscosities and their statistical uncertainties vs integration
time for (top) DME and (bottom) (EO)12DME.
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but short enough to avoid the onset of divergence. The need
for a suitable integration time was also emphasized in ref 34,
where viscosities of LJ fluids and water were obtained from
GK calculations.

Self-diffusion coefficients were calculated using both the GK
integral (eq 2) and the MSD method (eq 3). Figure 4 gives the
results for DME at 303.15 K at the experimental density
corresponding to a pressure of 1 MPa. Both the velocity
autocorrelation function and MSD were averaged over time
origins separated by 1 ps intervals, but the velocity files were
stored every 0.1 ps in order to record precisely the initial decay
of the correlation function. Consequently, the MSD method used
10 times less disk space than the GK integral, although the two
methods are mathematically equivalent and the derivative of
the MSD-versus-time curve is expected to match the integration
of the velocity autocorrelation function. On the other hand, the
GK method applied to diffusivity calculations has considerably
better convergence (shown by the negligible error bars in the
upper panel of Figure 4) than its application to viscosity
calculations (integration over the pressure correlation function).
This is because D is a one-particle property and the average of
the velocity autocorrelation function in eq 2 is performed not
only over time origins but also over all of the molecules
involved. For DME, the GK integration could be stopped at
around 7 ps, at which point the subdiffusive regime ended, but
the MSD had to be recorded well beyond 7 ps before the slope
of the diffusive regime was properly measured. Thus, the GK
integral is preferred over the MSD method in terms of
computing-time economy.

Table 3 summarizes the data obtained for density, viscosity,
and diffusivity for different chain lengths. The volumetric data,
as also suggested by previous studies covering a narrower range
of chain lengths and conditions,11,13,37 are in excellent agreement
with available experimental data. For short chains, for which
good sampling is easy to obtain, the simulated viscosities match
the experimental results quite well. For longer chains, the
relaxation modes in the pressure autocorrelation functions that
correspond to whole-molecule motions decay slowly and
become sensitive to fluctuations arising from insufficient
sampling. Consequently, the errors in the simulated viscosities
increase dramatically with chain length. For the longest chain,
(EO)12DME, the production period was extended to 40 ns to
diminish fluctuations, but the results still had uncertainties of
(40 to 50) %. Much longer simulations would have had to be
used to obtain significantly more accurate predictions. For even

longer chains, the simulation time necessary for good sampling
becomes prohibitive given current computational resources. The
table also suggests that current equilibrium-based atomistic
simulations are likely only feasible for viscosity calculations
in systems no more viscous than ∼100 mPa · s. The relation
between the uncertainties and the simulation time is discussed
in section 3.3.

Experimental self-diffusion coefficients for CH3O(CH2-
CH2O)nCH3 are not currently available for n > 2. On the basis
of the agreement of the calculated diffusivity for DME with
experimental measurements and the good match between the
mean viscosity values and the experimental data, our calculated
diffusivities for longer chains can be considered as predictions
to be validated by future experiments. The results also indicate
that modified TraPPE is a force field of good quality, giving
excellent agreement with experimental data not only for the
thermodynamic properties for which it was optimized but also
for transport properties.

3.2. Scaling Laws. Our results for the viscosities and
diffusivities of the PEO chains are plotted as functions of chain
length in Figures 5 and 6, respectively. The viscosity scales
with the chain length with an exponent between 1.5 and 2.4,
and the diffusivity scales with an exponent between -1.9 and
-2.5. In polymer theories, unentangled and entangled chain
dynamics are usually described by the Rouse and reptation
models, respectively, which give η ∝ M, D ∝ M-1 for M < Mc

and η ∝ M3.3-3.4, D ∝ M-2 for M > Mc, where Mc is the critical
molar mass beyond which the entanglements take effect.54 The
scaling exponent for viscosity is thus between the predicted
values before and after entanglements. The relation η ∝ M
(Rouse model) describes a melt of ideal chains, whereas in our
simulations and experiments, the chains are driven away from
ideal configurations not only by the bonded interactions (the
angle and torsional potentials), which bring in stiffness, but also
the nonbonded interactions, which prevent the chains from
crossing each other. These interactions slow the chain motions,
resulting in a more viscous system. However, the limits imposed
on the chain motions by such interactions are still smaller than
that of long-chain entanglements. The entanglements, as de-
scribed by the reptation model, reduce the chain motions to one-
dimensional movements along their contours, whereas non-

Figure 4. Calculation of the self-diffusion coefficient of DME from (top)
GK integration and (bottom) the MSD method. The slope of the MSD-vs-t
curve fitted at (10 to 20) ps is (3.45 ( 0.03) · 10-5 cm2 · s-1. Figure 5. Chain-length dependence of the shear viscosity: 9, present

simulations of CH3O(CH2CH2O)nCH3 at 303.15 K, 1 MPa;], experimental
data for CH3O(CH2CH2O)nCH3 at 303.15 K, 1 MPa;68 b, experimental data
for n-alkanes at 298.15 K, 0.1 MPa;69 O, experimental data for n-alkanes
at 323.15 K, 0.1 MPa.69
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bonded interactions alone still allow chains to have freedom to
move laterally. The difference explains the smaller simulated
exponent in comparison with the reptation model prediction.
The scaling exponent for the self-diffusion coefficient is almost
the same as that of the reptation model.

We have included in Figures 5 and 6 experimental data for
liquid n-alkanes with chain lengths n from 4 to 18. The
viscosities and diffusivities of n-alkanes scale in a similar fashion
to those of PEO oligomers. The closeness of the slopes suggests
that inter- and intramolecular interactions play a similar role in
these oligomers. Previous simulations55,56 of fully flexible LJ-
generated scaling factors [η ∝ n0.6-0.7 and D ∝ n-(0.5-0.8)] were
significantly different from the present results, suggesting an
important but still unclear effect of the chain stiffness on the
scaling behavior of short chains. Although the reported expo-
nents for the flexible chains were obtained at constant density,
while in the present work we used fixed pressure, it seems
unlikely that this is the cause of the discrepancy. For n-alkanes,
it is known57,58 that the crossover to ideal-chain statistics takes
place when number of methylene groups is greater than 100.
With stronger electrostatic interactions, PEO chains are expected
to be stiffer. As a result, PEO needs more backbone repeat units
than n-alkanes to have an independently rotating segment and
enter the Gaussian-chain regime. The critical length of a polymer
for the entanglement to take effect, however, depends in a
nontrivial way on the backbone stiffness. Chain stiffness has
been shown to accelerate the onset of the reptation regime for
LJ chains.59 It would be interesting to test whether that
counterintuitive relation between stiffness and entanglement
length remains true for longer PEO and n-alkane chains.

3.3. ConWergence of Transport Properties. In section 3.1,
we stated that the integration time in eq 4 needs to be suitably
chosen in order to cover the main relaxation region of the
pressure correlation functions and avoid the divergence region
(large errors or deviation from the plateau). It has also been
pointed out that insufficient sampling brings large fluctuations
into the long-tail decay part and leads to early divergence of
the integration. How can we determine whether the sampling
is sufficient and whether the integration time is neither too long
nor too short? There should be a relation between integration
time, number of samples, and the quantity measuring the degree
of divergence.

We introduce for the pressure correlation function a relaxation
time τ, defined as t0.1% - t0, where t0.1% is the time at which the

long-tail normalized correlation function is reduced to 0.1 %
of the value at t0. The relaxation times for chains with n ) 1,
3, 5, 9, and 12 were obtained from our simulations as (3, 15,
50, 200, and 500) ps, respectively. The degree of divergence
of the integration is measured by the relative error (er), which
is defined as the ratio of the statistical uncertainty (Er from eq
6) for a quantity x to its mean value: er ) Er/xj. Figure 7 presents
the relation between the relative error in viscosity and the
number of samples (ns) obtained using an integration time of
10τ. Results for both the pentamer and dodecamer indicate a
rapid decrease in er with increasing ns when ns is still small.
Once er gets to around 50 %, the convergence of the GK
integration cannot be improved by additional sampling as
effectively as before. This flattening tendency reveals the
computational difficulty of realizing better convergence (e.g.,
< 30 % relative error), especially for long chains.

For the choice of 60 % relative error as the point separating
convergence and divergence (any choice in the 50-80 % range
would give similar conclusions), the rough number of samples
necessary for the GK integral to be convergent as a function of
chain length is shown in Figure 8. The number of samples can
be considered to be roughly proportional to CPU time, and
therefore, it is an indirect measure of the minimal production
time tm needed to converge the GK integral. Fitting the data in

Figure 6. Chain-length dependence of the self-diffusion coefficient: 9,
present simulations of CH3O(CH2CH2O)nCH3 at 303.15 K, 1 MPa; O,
experimental data for n-alkanes at 298.15 K, 0.1 MPa.70,71

Figure 7. Relative errors (er) in the calculated viscosity vs number of
samples (ns) for (EO)5DME (left) and (EO)12DME (right) for an integration
time of 10τ. In each panel, the symbols O, 0, and 4 represent data from
three independent runs under the same conditions, and the solid lines and
b symbols show the average for the three runs.

Figure 8. Number of samples (ns) as a function of chain length n. This
reflects an approximate relation between the minimal production time tm
and n.
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Figure 8 gave tm ∝ nR with R ≈ 1.2 at the short-chain end and
R ≈ 2.4 when n approaches 12. The exponents are very close
to those for the τ ∝ n� relation, where τ is the relaxation time
of the pressure autocorrelation function defined above and � ≈
1.7 to 2.6 as n goes from 1 to 12. The time τ can also be viewed
as being roughly proportional to the time to fully equilibrate
the chain melts. Assuming a characteristic monomer relaxation
time of ∼10-10 s16 gave a relaxation time of ∼80 ns for
(EO)12DME, confirming that our simulations were long enough.

In ref 26, a relation was derived for the standard error of the
normalized correlation function in the form of trun

1/2, where trun

is the length of production time. This scaling provides an
alternative for estimating the minimal run length needed in order
to reduce the noise in the correlation functions. It is applicable
to different correlation functions and easy to use for quick
estimations with any new system. However, the errors in the
transport properties originate from two factors: correlation
function calculation and integration. The method of ref 26 leaves
the second factor unaddressed. On the contrary, though the
scaling relations obtained in this paper are confined to the PEO
melt system, they take into account both factors and relate the
final degree of divergence directly to run length.

4. Conclusions

Atomistic molecular dynamics simulations using the modified
TraPPE-UA force field have been carried out to investigate the
transport properties of PEO oligomers CH3O(CH2CH2O)nCH3

with 1e ne 12. We have demonstrated that transport properties
for this class of molecules can be obtained from equilibrium
molecular dynamics simulations. As a single-particle property,
diffusivity could be calculated with fast convergence and high
accuracy for all chain lengths of interest using the Green-Kubo
formula. Viscosities, however, were less satisfactorily deter-
mined via the GK integral because of significant sampling
difficulties. Although the method could be used for short chains,
insufficient sampling for the pressure autocorrelation functions
resulted in poor GK integral convergence. The method is not
suitable for viscosity calculations of chains longer than the ones
studied here.

Through the exploration of how sampling affects the con-
vergence or relative errors, we have obtained a rough relation
estimating the minimal production time necessary to obtain
relative errors less than a given tolerance as a function of chain
length. We have also obtained a relation between equilibrium
(preproduction) time and chain length that enabled us to ensure
that the systems had been fully equilibrated before the properties
of interest were sampled, an issue that most prior studies have
not addressed.9,11,13,31,58 The methodology proposed here for
estimating the simulation time for long chains on the basis of
the scaling relation for short chains can be extended to other
polymer systems. It gives useful information for assessing when
the equilibrium methods are effective, when they break down,
and how much additional computational effort may be required
to improve the predictions.

No prior systematic investigations of viscosity or diffusivity
in the melt had been performed for PEO chains. This work has
obtained the chain-length dependence of viscosity and diffusivity
for PEO oligomers and compared it to experimental results for
PEO and to the behavior of n-alkanes. The similar scaling factors
of the two systems reflect the influences of intra- and intermo-
lecular interactions on the dynamics of these oligomers. In
comparison with the Rouse and reptation models, the exponents
also suggest that the chain lengths of interest in this paper are
far from ideal-chain statistics and the region where entangle-

ments take effect. Finally, our simulations have confirmed the
applicability of the TraPPE-based force field, which has been
widely tested for structural and thermodynamic properties, to
transport properties of PEO melts.
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