# Vapor Pressure Measurement and Correlation or Prediction for Water, 1-Propanol, 2-Propanol, and Their Binary Mixtures with [MMIM][DMP] Ionic Liquid

Junfeng Wang,<sup>†</sup> Daoguang Wang,<sup>†</sup> Zhibao Li,<sup>\*,†</sup> and Fan Zhang<sup>‡</sup>

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and School of Mechanical Electronic & Information Engineering, China University of Mining & Technology, Beijing 100083, China

This work presents vapor pressure data for water, 1-propanol, and 2-propanol as well as their binary mixtures in the presence of ionic liquid (IL) 1,3-dimethylimidazolium dimethylphosphate ([MMIM][DMP]) at different temperatures and IL content ranging from mass fraction 0.10 to 0.70 using a quasi-static ebulliometer method. Activity coefficients of these solvents in the IL have been determined from the vapor pressure data of binary systems and correlated by the nonrandom two-liquid (NRTL) equation with an average relative deviation (ARD) within 0.013. The resulting binary NRTL parameters were used for the prediction of vapor pressure of ternary systems with fair accuracy. Furthermore, the isobaric vapor—liquid equilibrium data for ternary systems water + 1-propanol + [MMIM][DMP] and water + 2-propanol + [MMIM][DMP] at different IL mass fractions were predicted. It is shown that the relative volatility of 1-propanol and 2-propanol is enhanced and that the azeotrope of water + 1-propanol and water + 2-propanol mixtures is eliminated completely.

### Introduction

Room temperature ionic liquids (RTILs), as the name implies, are a new kind of molten electrolyte at temperatures lower than 373 K and possess many attractive properties, such as negligible vapor pressure, solubility of a wide range of organic and inorganic compounds, wide electrochemical window, and tunability of properties through the change in the combination of cation and anion. ILs have been considered as the separating agent in extractive distillation.<sup>1,2</sup> The most important reason why ILs are promising for the application of separation processes is that they have no detectable vapor pressure, which decreases the risk of worker exposure and the loss of solvent to the atmosphere. Additionally, ILs are easily regenerated from volatile compounds by distillation.

Vapor-liquid equilibria (VLE) data for azeotropic or closeboiling systems containing ILs are essential for a better understanding of the thermodynamic behavior of such systems, for the development of thermodynamic models, and for separation design purpose. Meanwhile, in screening feasible IL entrainers in an extractive or salt distillation process for the separation of azeotropic or close-boiling mixtures, some factors with respect to the IL should be taken into account, for example, its cost, stability, toxicity, and corrosiveness, as well as its potential risk to the environment and ecosphere. ILs with dialkylphosphate anions are probable for practical applications because they can be produced in an one-pot reactor under mild conditions with very high yield. More importantly, they are biodegradable, less toxic, and greener than other ILs.<sup>3</sup>

For these reasons, VLE data for several dialkylphosphate ILcontaining systems have been measured.<sup>4-8</sup> The results show that the kind of ILs can enhance the relative volatility of ethanol in water + ethanol and ethanol + methanol mixtures and eliminate completely the azeotrope of the both binaries. In this paper, we study the possibility of separating the azeotropic mixtures water + 1-propanol and water + 2-propanol using an IL, 1,3-dimethylimidazolium dimethylphosphate ([MMIM][D-MP]). For this purpose, vapor pressure data for three binary and two ternary systems composed of water, 1-propanol, 2-propanol, and [MMIM][DMP] were determined by a quasistatic method. The experimental vapor pressure data of binary systems were correlated with the nonrandom two-liquid (NRTL) model, and the resulting model parameters were used to predict the vapor pressure data of ternary systems and the isobaric vapor-liquid equilibrium data for ternary systems water + 1-propanol + [MMIM][DMP] and water + 2-propanol + [MMIM][DMP].

## **Experimental Section**

*Materials.* 1-Propanol and 2-propanol were purchased from Beijing Red Star Reagents Company, China. The purities of these compounds were 99.7 % according to specification. The IL used was prepared and purified in the laboratory according to literature procedures,<sup>6</sup> and its purity was more than 98 % in terms of NMR analysis. Before used, the IL was subjected to vacuum evaporation at 353 K over 12 h to remove possible traces of solvents and moisture. The water mass fraction was within  $5.2 \cdot 10^{-4}$  as measured by the Karl Fischer method (CBS-1A).

*Apparatus and Procedure.* A detailed description of the equipment and the measurement procedure can be found in literature.<sup>8</sup> The apparatus is composed of a working ebulliometer filled with liquid mixture and a reference one filled with a pure liquid (such as water). The equilibrium temperatures of the two ebulliometers were measured using two-channel four-wire 25

<sup>\*</sup> Corresponding author. E-mail: zhibaoli@home.ipe.ac.cn. Phone: 86-10-62551557.

<sup>&</sup>lt;sup>†</sup> Chinese Academy of Sciences.

<sup>&</sup>lt;sup>‡</sup> China University of Mining & Technology.

Table 1. Vapor Pressure Data of the Binary System Water (1) + [MMIM][DMP] (2)

 Table 2. Vapor Pressure Data of the Binary System 1-Propanol (1)

 + [MMIM][DMP] (2)

| T/K                               | P/kPa   | $P/kPa P^{NRTL}/kPa \gamma_1^{exp}$ |        | $\gamma_1^{\rm NRTL}$ |  |  |  |  |  |
|-----------------------------------|---------|-------------------------------------|--------|-----------------------|--|--|--|--|--|
| $x_1 = 0.9911$                    |         |                                     |        |                       |  |  |  |  |  |
| 329.215                           | 16.236  | 16.312                              | 0.9915 | 0.9961                |  |  |  |  |  |
| 338.913                           | 25.394  | 25.494                              | 0.9926 | 0.9965                |  |  |  |  |  |
| 346.990                           | 36.093  | 36.192                              | 0.9940 | 0.9968                |  |  |  |  |  |
| 353.535                           | 47.352  | 47.443                              | 0.9950 | 0.9970                |  |  |  |  |  |
| 359.060                           | 59.162  | 59.110                              | 0.9980 | 0.9971                |  |  |  |  |  |
| 364.383                           | 72.914  | 72.538                              | 1.0024 | 0.9972                |  |  |  |  |  |
| 369.074                           | 87.100  | 86.405                              | 1.0054 | 0.9974                |  |  |  |  |  |
| 373.030                           | 100.776 | 99.757                              | 1.0076 | 0.9974                |  |  |  |  |  |
|                                   |         | $x_1 = 0.9664$                      |        |                       |  |  |  |  |  |
| 328.936                           | 15.045  | 15.004                              | 0.9548 | 0.9522                |  |  |  |  |  |
| 338.650                           | 23.528  | 23.582                              | 0.9543 | 0.9564                |  |  |  |  |  |
| 346.576                           | 33.254  | 33.381                              | 0.9558 | 0.9595                |  |  |  |  |  |
| 352.987                           | 43.412  | 43.645                              | 0.9566 | 0.9617                |  |  |  |  |  |
| 359.121                           | 55.445  | 55.837                              | 0.9569 | 0.9637                |  |  |  |  |  |
| 364.782                           | 68.977  | 69.511                              | 0.9580 | 0.9654                |  |  |  |  |  |
| 370.206                           | 84.737  | 85.133                              | 0.9624 | 0.9669                |  |  |  |  |  |
| 374.804                           | 100.434 | 100.576                             | 0.9667 | 0.9681                |  |  |  |  |  |
| $x_1 = 0.9250$                    |         |                                     |        |                       |  |  |  |  |  |
| 330.756                           | 13.834  | 13.500                              | 0.8416 | 0.8212                |  |  |  |  |  |
| 339.860                           | 20.960  | 20.761                              | 0.8417 | 0.8337                |  |  |  |  |  |
| 347.585                           | 29.328  | 29.302                              | 0.8440 | 0.8433                |  |  |  |  |  |
| 356.167                           | 41.905  | 42.104                              | 0.8489 | 0.8530                |  |  |  |  |  |
| 363.087                           | 55.141  | 55.590                              | 0.8532 | 0.8602                |  |  |  |  |  |
| 368.733                           | 68.680  | 69.118                              | 0.8601 | 0.8656                |  |  |  |  |  |
| 374.860                           | 85.822  | 86.805                              | 0.8613 | 0.8712                |  |  |  |  |  |
| 379.411                           | 101.270 | 102.252                             | 0.8667 | 0.8751                |  |  |  |  |  |
| $ARD(P)^a = 0.007$ , rmsd = 0.009 |         |                                     |        |                       |  |  |  |  |  |
|                                   |         |                                     |        | 2 12                  |  |  |  |  |  |

<sup>*a*</sup> ARD(*P*) = 
$$(\sum_{i=1}^{n} |P^{\text{NRTL}} - P|/P)/n$$
; rmsd =  $([\sum_{i=1}^{n} (P^{\text{NRTL}}/P - 1)^2]/n)^{1/2}$ .

Ω calibrated platinum resistance thermometers (type CST6601) with an uncertainty of ± 0.02 K. The reference system and the working system share the same equilibrium pressure. The equilibrium pressure of the reference system was determined by the temperature–pressure relation represented by the Antoine equation<sup>9</sup> at system temperature. The uncertainty of the vapor pressure arising from the uncertainty of temperature measurement was estimated within ± 0.04 kPa, and the vapor pressure reproducibility for a replicate sample was within ± 0.07 kPa. The vapor phase condensers of the ebulliometers were cooled with chilling glycol aqueous solution at 275 K to minimize the vapor phase loss during the measurement and hence the composition variation of the solution. The uncertainty of the mole fraction in the liquid phase prepared by weighting was estimated within 0.002.

# **Results and Discussion**

*Binary Systems.* The experimental vapor pressure data for three binary systems of water + [MMIM][DMP], 1-propanol + [MMIM][DMP], and 2-propanol + [MMIM][DMP] at IL mass fractions from 0.10 to 0.70 (mole fraction from 0.0089 to 0.3869) were measured and listed in Tables 1 to 3, respectively.

For an IL-containing binary system, that is, solvent (1) + IL (2), the experimental activity coefficients of solvent,  $\gamma_1$ , were calculated using the following equation:<sup>10</sup>

$$\gamma_1 = P y_1 \hat{\phi}_1^{\rm v} / (P_1^{\rm s} x_1) \tag{1}$$

where *P* and  $P_1^s$  are vapor pressure of liquid mixture and pure solvent at system temperature, respectively.  $y_1$  and  $x_1$  represent the mole fraction of solvent in the vapor phase and liquid phase, respectively.  $\varphi_1^v$  is the fugacity coefficient of solvent in the vapor mixture.

| T/K     | P/kPa   | P <sup>NRTL</sup> /kPa | $\gamma_1^{\exp}$ | $\gamma_1^{ m NRTL}$ |
|---------|---------|------------------------|-------------------|----------------------|
|         |         | $x_1 = 0.9708$         |                   |                      |
| 333.635 | 20.354  | 20.254                 | 0.9994            | 0.9945               |
| 338.495 | 25.756  | 25.652                 | 0.9989            | 0.9949               |
| 344.055 | 33.341  | 33.269                 | 0.9976            | 0.9954               |
| 349.713 | 42.918  | 42.889                 | 0.9966            | 0.9960               |
| 355.775 | 55.621  | 55.679                 | 0.9955            | 0.9966               |
| 361.332 | 69.901  | 70.061                 | 0.9949            | 0.9972               |
| 366.936 | 87.180  | 87.566                 | 0.9934            | 0.9978               |
| 370.757 | 100.935 | 101.465                | 0.9931            | 0.9983               |
|         |         | $x_1 = 0.8961$         |                   |                      |
| 330.478 | 15.244  | 14.779                 | 0.9496            | 0.9206               |
| 337.904 | 21.980  | 21.378                 | 0.9500            | 0.9240               |
| 345.631 | 31.556  | 30.734                 | 0.9522            | 0.9273               |
| 353.900 | 45.281  | 44.341                 | 0.9506            | 0.9308               |
| 359.885 | 58.267  | 57.067                 | 0.9529            | 0.9333               |
| 364.536 | 70.313  | 68.938                 | 0.9538            | 0.9351               |
| 369.607 | 85.754  | 84.150                 | 0.9550            | 0.9372               |
| 373.797 | 100.631 | 98.727                 | 0.9569            | 0.9388               |
|         |         | $x_1 = 0.7871$         |                   |                      |
| 343.306 | 19.076  | 19.578                 | 0.7286            | 0.7478               |
| 349.250 | 25.182  | 25.801                 | 0.7361            | 0.7542               |
| 357.220 | 36.070  | 36.688                 | 0.7401            | 0.7625               |
| 363.347 | 46.131  | 47.470                 | 0.7469            | 0.7686               |
| 368.688 | 57.380  | 58.913                 | 0.7536            | 0.7738               |
| 374.178 | 71.200  | 72.977                 | 0.7600            | 0.7790               |
| 378.875 | 85.632  | 87.121                 | 0.7699            | 0.7833               |
| 382.701 | 100.449 | 100.306                | 0.7883            | 0.7872               |
|         |         | $x_1 = 0.6131$         |                   |                      |
| 349.026 | 11.094  | 12.003                 | 0.4204            | 0.4549               |
| 357.418 | 16.251  | 17.672                 | 0.4300            | 0.4676               |
| 365.949 | 24.282  | 25.601                 | 0.4554            | 0.4801               |
| 374.409 | 34.880  | 36.223                 | 0.4739            | 0.4921               |
| 381.830 | 48.399  | 48.357                 | 0.5028            | 0.5024               |
| 387.587 | 61.624  | 59.949                 | 0.5244            | 0.5102               |
| 394.777 | 78.786  | 77.571                 | 0.5279            | 0.5197               |
| 401.916 | 99.563  | 99.096                 | 0.5315            | 0.5290               |
|         |         |                        |                   |                      |

ARD(P) = 0.022, rmsd = 0.030

Vapor pressure  $P_1^s$  of pure compounds can be calculated with the Antoine equation

$$\ln(P_i^{\rm s}/{\rm kPa}) = A - \frac{B}{(T/{\rm K}+C)}$$
(2)

where *A*, *B*, and *C* are Antoine coefficients. The Antoine constants for 1-propanol, 2-propanol, and water were those given in literature<sup>9</sup> and summarized in Table 4. The assumption of an ideal behavior is adopted for the vapor at a low pressure. Therefore, the fugacity coefficient is equal to unity. Equation 1 could be written as

$$\gamma_1 = P y_1 / (P_1^s x_1) \tag{3}$$

It should be noted that the IL does not appear in the vapor phase due to its nonvolatility. The vapor pressure of IL is safely assumed to be zero, thus  $y_1 = 1$ . Therefore, eq 3 can be simplified as follows:

$$\gamma_1 = P/(P_1^s x_1) \tag{4}$$

According to eq 4, the experimental activity coefficients of the solvent in an IL-containing binary system can be calculated from the vapor pressure data, which were noted as  $\gamma_1^{exp}$  and listed

Table 3. Vapor Pressure Data of the Binary System 2-Propanol (1)+ [MMIM][DMP] (2)

|         | ······ ] (=) |                        |                  |                          |
|---------|--------------|------------------------|------------------|--------------------------|
| T/K     | P/kPa        | P <sup>NRTL</sup> /kPa | $\gamma_1^{exp}$ | $\gamma_1^{\text{NRTL}}$ |
|         |              | $x_1 = 0.9708$         |                  |                          |
| 317.341 | 16.832       | 17.104                 | 0.9898           | 1.0058                   |
| 324.261 | 24.337       | 24.565                 | 0.9992           | 1.0085                   |
| 332.024 | 35.611       | 36.072                 | 0.9987           | 1.0116                   |
| 338.007 | 47.121       | 47.805                 | 0.9998           | 1.0143                   |
| 343.105 | 59.198       | 60.212                 | 0.9996           | 1.0167                   |
| 347.838 | 72.654       | 74.059                 | 0.9998           | 1.0191                   |
| 352.377 | 87.726       | 89.766                 | 0.9983           | 1.0215                   |
| 356.066 | 101.869      | 104.511                | 0.9977           | 1.0236                   |
|         |              | $x_1 = 0.8961$         |                  |                          |
| 316.402 | 14.437       | 13.959                 | 0.9672           | 0.9352                   |
| 325.260 | 22.869       | 22.255                 | 0.9672           | 0.9413                   |
| 333.239 | 33.802       | 33.017                 | 0.9695           | 0.9469                   |
| 339.310 | 44.731       | 43.914                 | 0.9691           | 0.9514                   |
| 345.028 | 57.668       | 56.822                 | 0.9700           | 0.9557                   |
| 350.294 | 72.116       | 71.408                 | 0.9694           | 0.9598                   |
| 355.052 | 87.776       | 87.183                 | 0.9702           | 0.9637                   |
| 358.667 | 101.485      | 101.040                | 0.9709           | 0.9667                   |
|         |              | $x_1 = 0.7871$         |                  |                          |
| 324.277 | 14.941       | 14.991                 | 0.7560           | 0.7585                   |
| 332.836 | 23.100       | 23.129                 | 0.7688           | 0.7697                   |
| 341.816 | 35.256       | 35.443                 | 0.7773           | 0.7814                   |
| 348.988 | 48.578       | 48.914                 | 0.7853           | 0.7907                   |
| 354.658 | 61.855       | 62.418                 | 0.7909           | 0.7981                   |
| 359.125 | 74.635       | 75.201                 | 0.7984           | 0.8045                   |
| 363.015 | 87.832       | 88.045                 | 0.8079           | 0.8098                   |
| 366.603 | 102.082      | 101.484                | 0.8197           | 0.8148                   |
|         |              | $x_1 = 0.6131$         |                  |                          |
| 333.981 | 11.149       | 11.296                 | 0.4513           | 0.4573                   |
| 342.619 | 16.446       | 17.278                 | 0.4492           | 0.4720                   |
| 348.812 | 23.043       | 23.072                 | 0.4818           | 0.4824                   |
| 355.800 | 31.660       | 31.522                 | 0.4963           | 0.4941                   |
| 362.591 | 42.945       | 42.117                 | 0.5154           | 0.5055                   |
| 370.120 | 58.353       | 57.240                 | 0.5281           | 0.5181                   |
| 377.929 | 78.826       | 77.524                 | 0.5400           | 0.5311                   |
| 384.177 | 99.599       | 97.823                 | 0.5514           | 0.5416                   |
|         | ARD(P        | ) = 0.014, rmsd =      | 0.018            |                          |

Table 4. Antoine Coefficients A, B, and C in Equation 2<sup>9</sup>

|            |         | Antoine coefficients |          |  |  |  |
|------------|---------|----------------------|----------|--|--|--|
| component  | Α       | В                    | С        |  |  |  |
| 1-propanol | 16.0353 | 3415.56              | -70.7330 |  |  |  |
| 2-propanol | 16.4089 | 3439.60              | -63.4170 |  |  |  |
| water      | 16.5700 | 3984.92              | -39.7240 |  |  |  |

in Tables 1 to 3, respectively. As it can be observed in these tables, the activity coefficients of water, 1-propanol, and 2-propanol in the binary systems studied are less than one ( $\gamma < 1$ ), showing a negative deviation from the Raoult's law. The result usually indicates that intermolecular attraction forces between different molecules, that is, solvent–IL, are stronger than between similar ones, that is, solvent–solvent.

The experimental vapor pressure data were then correlated using the NRTL equation.<sup>11</sup> To simplify, the IL was treated as a nondissociating component, and the assumption of an ideal behavior of the vapor phase was employed. For the binary water + [MMIM][DMP] system, the experimental vapor pressure data were predicted using the available NRTL parameters taken from the literature<sup>6</sup> as listed in Table 5. The vapor pressure ( $P^{\text{NRTL}}$ ) and activity coefficients ( $\gamma^{\text{NRTL}}$ ) can be calculated through the NRTL equation and listed in Table 1. As shown in Table 1, the parameters closely reflect the experimental vapor pressure data with the ARD of 0.007. It can be concluded from the results that the experimental procedure for measuring the vapor pressure data was considered to be reliable. The parameters for the binary systems 1-propanol + [MMIM][DMP] and 2-propanol +

Table 5. NRTL Parameters Fitted for IL-Containing BinarySystems for the Vapor Pressure Prediction of the IL-ContainingTernary Systems

|                                     |        | $g_{12} - g_{22}$  | $g_{21} - g_{11}$  |
|-------------------------------------|--------|--------------------|--------------------|
| system                              | α      | $J \cdot mol^{-1}$ | $J \cdot mol^{-1}$ |
| water $+ [MMIM][DMP]^4$             | 0.4116 | 5065.44            | -9565.90           |
| 1-propanol + [MMIM][DMP]            | 0.1473 | 202060             | -9138.41           |
| 2-propanol + [MMIM][DMP]            | 0.1059 | 218635             | -9744.88           |
| water $+ 1$ -propanol <sup>13</sup> | 0.4770 | 7896.70            | 1648.80            |
| water $+ 2$ -propanol <sup>14</sup> | 0.3000 | 6900.81            | 77.4900            |

[MMIM][DMP],  $\alpha_{ij}$  and  $(g_{ij} - g_{jj})$ , were obtained by fitting the experimental vapor pressure data in the whole temperature and composition range using the least-squares method and listed in Table 5. As can be shown in Tables 2 and 3, the experimental vapor pressure can be well-correlated by NRTL equation with average relative deviation (ARD) of 0.022 and 0.014, respectively. The results showed that the NRTL model satisfactorily represents the vapor pressure data for the binary systems.

For the binary 1-propanol + [MMIM][DMP] system, the variation trend of vapor pressure with temperature at different compositions of IL content was shown in Figure 1, while the



**Figure 1.** Experimental and correlative vapor pressure data of the binary system 1-propanol (1) + [MMIM][DMP] (2) at different mass fractions of [MMIM][DMP]. Legend: ----, pure 1-propanol; ---, calculated by NRTL equation. Symbols are experimental data at different mass fractions of [MMIM][DMP]:  $\blacksquare$ , 0.10;  $\blacktriangle$ , 0.30;  $\bigoplus$ , 0.50;  $\bigtriangleup$ , 0.70.



**Figure 2.** Predicted activity coefficients of water, 1-propanol, and 2-propanol in [MMIM][DMP] at different mole fractions of [MMIM][DMP] and 350 K. Legend:  $\triangle$ , water;  $\diamondsuit$ , 1-propanol;  $\Box$ , 2-propanol.

| Table 6. | Experimer | ntal and  | Predictive | Vapor      | Pressure | Data of the          |  |
|----------|-----------|-----------|------------|------------|----------|----------------------|--|
| Ternary  | System Wa | ter (1) - | + 1-Propan | ol $(2)$ + | - IMMIM  | [][ <b>DMP</b> ] (3) |  |

Table 7. Experimental and Predictive Vapor Pressure Data of theTernary System Water (1) + 2-Propanol (2) + [MMIM][DMP] (3)

| T/K                          | P/kPa   | P <sup>NRTL</sup> /kPa | $\gamma_1^{\mathrm{NRTL}}$ | $\gamma_2^{\rm NRTL}$ | <i>T</i> /K | P/kPa                | P <sup>NRTL</sup> /kPa | $\gamma_1^{\mathrm{NRTL}}$ | $\gamma_2^{\rm NRTL}$ |
|------------------------------|---------|------------------------|----------------------------|-----------------------|-------------|----------------------|------------------------|----------------------------|-----------------------|
| $x_1 = 0.2472, x_2 = 0.6669$ |         |                        |                            |                       | $x_1 =$     | $0.2472, x_2 = 0.66$ | 69                     |                            |                       |
| 331.458                      | 20.304  | 19.952                 | 1.1232                     | 1.1831                | 317.212     | 16.452               | 16.498                 | 1.2731                     | 1.1751                |
| 337.477                      | 27.196  | 26.844                 | 1.1578                     | 1.1805                | 322.666     | 21.819               | 21.949                 | 1.2989                     | 1.1727                |
| 343.101                      | 35.142  | 35.006                 | 1.1886                     | 1.1781                | 330.794     | 32.586               | 32.875                 | 1.3338                     | 1.1694                |
| 349.476                      | 46.605  | 46.691                 | 1.2218                     | 1.1754                | 337.443     | 44.373               | 44.945                 | 1.3594                     | 1.1670                |
| 355.004                      | 58.938  | 59.316                 | 1.2492                     | 1.1732                | 343.359     | 57.662               | 58.634                 | 1.3799                     | 1.1651                |
| 359.551                      | 71.053  | 71.730                 | 1.2706                     | 1.1714                | 348.173     | 70.852               | 72.208                 | 1.3952                     | 1.1637                |
| 364.590                      | 86.898  | 87.943                 | 1.2934                     | 1.1694                | 353,220     | 87.224               | 89,164                 | 1.4099                     | 1.1624                |
| 368.665                      | 101.152 | 103.176                | 1.3110                     | 1.1678                | 357.191     | 102.205              | 104.728                | 1.4206                     | 1.1615                |
|                              | $x_1 =$ | $0.5509, x_2 = 0.38$   | 53                         |                       |             | $x_1 =$              | $0.5509, x_2 = 0.38$   | 53                         |                       |
| 322.085                      | 15.296  | 14.590                 | 1.1064                     | 1.6804                | 311.361     | 13.038               | 12.903                 | 1.0959                     | 1.8214                |
| 329.351                      | 22.025  | 21.239                 | 1.1279                     | 1.6732                | 318,489     | 19.053               | 18.896                 | 1.1125                     | 1.8031                |
| 336.582                      | 31.137  | 30.249                 | 1.1472                     | 1.6662                | 327.197     | 29.430               | 29.290                 | 1.1301                     | 1.7821                |
| 344.240                      | 43,988  | 43,116                 | 1.1656                     | 1.6589                | 335,362     | 43.119               | 43.074                 | 1.1444                     | 1.7636                |
| 350.196                      | 56.805  | 56.057                 | 1.1786                     | 1.6533                | 341.624     | 56.852               | 57.026                 | 1.1540                     | 1,7503                |
| 355 768                      | 71 558  | 70 959                 | 1 1897                     | 1 6482                | 347 323     | 72 646               | 72.838                 | 1 1618                     | 1 7387                |
| 360 776                      | 87 386  | 87 042                 | 1 1990                     | 1.6437                | 351 669     | 86 839               | 87 220                 | 1 1672                     | 1 7302                |
| 364.850                      | 102.156 | 102.260                | 1.2060                     | 1.6400                | 355.734     | 102.115              | 102.735                | 1.1719                     | 1.7225                |
|                              | $x_1 =$ | $0.7303, x_2 = 0.21$   | 89                         |                       |             | $x_1 =$              | $0.7303, x_2 = 0.21$   | 89                         |                       |
| 320 289                      | 15 049  | 13.873                 | 1 0747                     | 2 4010                | 313 530     | 14 296               | 14 681                 | 1 0145                     | 2 9231                |
| 327 543                      | 21.627  | 20 179                 | 1 0845                     | 2 4002                | 320 642     | 20.716               | 21 232                 | 1 0231                     | 2 8760                |
| 335.088                      | 31.079  | 29.172                 | 1.0013                     | 2 3981                | 327 404     | 28.943               | 29.607                 | 1.0303                     | 2 8333                |
| 342.052                      | 12 531  | 40.277                 | 1.1002                     | 2.3951                | 333 8/8     | 39 208               | 40.027                 | 1.0364                     | 2.0555                |
| 347.885                      | 54 759  | 52 134                 | 1.1054                     | 2.3932                | 3/0 698     | 53 200               | 5/ 319                 | 1.0304                     | 2.7549                |
| 353 881                      | 70.238  | 67 244                 | 1.1004                     | 2.3922                | 346 375     | 67.862               | 60 102                 | 1.0462                     | 2.7547                |
| 350.086                      | 86 431  | 83 168                 | 1.1100                     | 2.3840                | 352.010     | 85 407               | 87.166                 | 1.0402                     | 2.7234                |
| 363 362                      | 101 053 | 08 480                 | 1.1150                     | 2.3849                | 356 151     | 100 940              | 102 707                | 1.0499                     | 2.0934                |
| 505.502                      | 101.955 | 0.0400 0.10            | 1.1102                     | 2.3017                | 550.151     | 100.940              | 0.0400 0.10            | 1.0525                     | 2.0719                |
| 217 104                      | $x_1 =$ | $0.8488, x_2 = 0.10$   | 91                         | 2 0727                | 212 701     | $x_1 =$              | $0.8488, x_2 = 0.10$   | .91                        | 1.0(10                |
| 317.104                      | 13.002  | 11.492                 | 1.0124                     | 3.8/3/                | 312.791     | 13.362               | 13.292                 | 0.9606                     | 4.9619                |
| 325.851                      | 20.266  | 18.132                 | 1.0186                     | 3.8842                | 321.525     | 20.879               | 20.764                 | 0.9681                     | 4.8060                |
| 334.284                      | 30.308  | 27.378                 | 1.0235                     | 3.8872                | 328.684     | 29.662               | 29.292                 | 0.9734                     | 4.6859                |
| 341.614                      | 42.173  | 38.390                 | 1.02/1                     | 3.8847                | 334.958     | 39.680               | 39.022                 | 0.9776                     | 4.5859                |
| 348.325                      | 56.227  | 51.530                 | 1.0299                     | 3.8788                | 343.024     | 56.530               | 55.384                 | 0.9823                     | 4.4640                |
| 353.956                      | 70.856  | 65.286                 | 1.0319                     | 3.8/15                | 348.407     | 70.765               | 69.212                 | 0.9851                     | 4.3867                |
| 359.309                      | 87.510  | 81.075                 | 1.0336                     | 3.8627                | 353.323     | 86.243               | 84.238                 | 0.9874                     | 4.3187                |
| 363.231                      | 101.681 | 94.552                 | 1.0347                     | 3.8552                | 357.258     | 100.525              | 98.1262                | 0.9892                     | 4.2661                |
|                              | $x_1 =$ | $0.9329, x_2 = 0.03$   | 11                         |                       |             | $x_1 =$              | $0.9329, x_2 = 0.03$   | 11                         |                       |
| 320.486                      | 13.551  | 12.147                 | 0.9610                     | 7.5657                | 319.258     | 13.794               | 13.964                 | 0.9436                     | 8.3865                |
| 327.956                      | 19.615  | 17.694                 | 0.9652                     | 7.5261                | 327.383     | 20.918               | 20.713                 | 0.9489                     | 8.0202                |
| 335.678                      | 28.248  | 25.559                 | 0.9689                     | 7.4687                | 334.755     | 29.619               | 29.047                 | 0.9531                     | 7.7130                |
| 343.525                      | 40.001  | 36.390                 | 0.9723                     | 7.3964                | 343.277     | 43.445               | 42.040                 | 0.9575                     | 7.3847                |
| 351.180                      | 55.100  | 50.440                 | 0.9752                     | 7.3149                | 349.287     | 56.092               | 53.880                 | 0.9603                     | 7.1690                |
| 357.363                      | 70.552  | 64.864                 | 0.9772                     | 7.2426                | 354.644     | 69.742               | 66.666                 | 0.9625                     | 6.9868                |
| 362.916                      | 87.266  | 80.603                 | 0.9789                     | 7.1736                | 359.795     | 84.827               | 81.249                 | 0.9646                     | 6.8201                |
| 367.081                      | 101.831 | 94.379                 | 0.9801                     | 7.1199                | 364.314     | 100.969              | 96.1369                | 0.9662                     | 6.6803                |
|                              | ARD(P)  | = 0.052, rmsd =        | 0.063                      |                       |             | ARD(P)               | = 0.018, rmsd $=$      | 0.021                      |                       |

*T*, *P*, *x* diagrams for the other binary systems were not shown as they were very similar to Figure 1. It is obvious that the vapor pressure decreases with an increasing mole fraction of IL. Graphically speaking, it is true that the  $\ln(P/kPa)$  against 1/(T/K + C) relation for a given concentration is linear over the pressure and temperature studied, which is similar to the vapor pressure behavior of the pure solvent.

To exhibit the effect of the IL on the phase behavior of the three solvents, activity coefficients of these solvents in the IL were predicted by use of the available NRTL parameters with various mole fraction of IL at 350 K. The results were plotted in Figure 2. It is obvious that the activity coefficient of the three solvents decreases with an increasing mole fraction of IL and that the addition of IL has a slightly stronger effect on the decrease of activity coefficients of these solvents. It can be also observed that the interactions of IL with solvents are in the order of water > 1-propanol > 2-propanol.

*Ternary Systems.* The experimental vapor pressure data for two ternary systems of water + 1-propanol + [MMIM][DMP] and water + 2-propanol + [MMIM][DMP] at an IL mass fraction of 0.30 were measured and listed in Tables 6 and 7, respectively. The vapor phase is still approximately ideal; hence, the vapor pressure for a ternary system, that is, solvent (1) + solvent (2) + IL (3), can be calculated by eq 5. The vapor phase mole fraction of component *i* at equilibrium can be calculated with eq 6.

$$p = p_1^{s} x_1 \gamma_1 + p_2^{s} x_2 \gamma_2 \tag{5}$$

$$y_{i} = \frac{p_{i}^{s} x_{i} \gamma_{i}}{p_{1}^{s} x_{1} \gamma_{1} + p_{2}^{s} x_{2} \gamma_{2}}$$
(6)

The binary NRTL parameters listed in Table 5 were used together to predict the vapor pressure of the two ternary systems water + 1-propanol + [MMIM][DMP] and water + 2-propanol + [MMIM][DMP] at varying liquid composition and temperature. The estimated values and ARD were listed in Tables 6 and 7, respectively. It is seen that the agreement between the



**Figure 3.** Isobaric VLE diagram for water (1) + 1-propanol (2) + [MMIM][DMP] (3) ternary systems at atmospheric pressure. Legend: ----, IL-free mixture of water and 1-propanol;  $\triangle$ , water + 1-propanol mixture at a mass fraction of [MMIM][DMP] of 0.30;  $\Box$ , water + 1-propanol mixture at a mass fraction of [MMIM][DMP] of 0.50.



**Figure 4.** Isobaric VLE diagram for water (1) + 2-propanol (2) + [MMIM][DMP] (3) ternary systems at atmospheric pressure, Legend: ----, IL-free mixture of water and 2-propanol;  $\triangle$ , water + 2-propanol mixture at a mass fraction of [MMIM][DMP] of 0.30;  $\Box$ , water + 2-propanol mixture at a mass fraction of [MMIM][DMP] of 0.50.

experimental and the predicted values is fairly good with an ARD of 0.052 and 0.018, respectively. From the point of view of practical application, the conventional NRTL model for nonelectrolyte solution is applicable for representing the vapor—liquid equilibrium of IL-containing multicomponent systems, as indicated by Shi et al. and Doker and Gmehling.<sup>11,12</sup>

To show the salt effect of [MMIM][DMP] on the distillation separation of the two binary mixtures, namely, water + 1propanol and water + 2-propanol, isobaric VLE for such mixtures with mass fractions of [MMIM][DMP] of 0.3 and 0.5 were predicted in the whole concentration range. The results were plotted in Figures 3 and 4, respectively, on a salt-free basis and compared with the VLE curves in the absence of IL.

As can be seen from Figure 3, the azeotropic point for the water + 1-propanol binary mixture is shifted upward with the addition of IL, and even the azeotropic phenomena could be totally eliminated at the mass fraction of IL of 0.5. Figure 4 indicates that the azeotrope in the water + 2-propanol mixture can be completely eliminated at the mass fraction of IL of 0.3. The addition of IL to the two binary azeotropic mixtures leads to a noticeable increase in the mole fraction of solute in the

vapor phase, breaking the azeotropic behavior of the two systems. This phenomena may be attributed to the interaction between water and [MMIM][DMP], which is stronger than the interaction between 1-propanol/2-propanol and [MMIM][DMP].

In addition, a complicated salt effect was observed for the VLE of the two systems. In the water-rich region, with the increase of the mass fraction of IL, more and more 1-propanol or 2-propanol molecules are bonded, and thus the relative volatility of 1-propanol or 2-propanol to water decreases. In the water-lean region, an increase of the IL content leads to a higher relative volatility of 1-propanol or 2-propanol or 2-propanol and thus shows a salt-out effect for 1-propanol or 2-propanol. This may be attributed to the ions resulting from dissociation of IL have a stronger attraction to water than to 1-propanol or 2-propanol due to the polar difference of ion solvation energy, which leads to a preferential salvation of ions and enhancement of relative volatility of 1-propanol or 2-propanol.

### Conclusions

The influence of the IL [MMIM][DMP] on the phase behavior of the aqueous azeotropic systems: 1-propanol + water and 2-propanol + water were investigated. Vapor pressure data for three binary and two ternary IL-containing systems at varying temperature and IL content were measured using a quasi-static method. The results indicate that the IL [MMIM][DMP] can reduce the vapor pressure of water, 1-propanol, and 2-propanol due to the affinity difference between [MMIM][DMP] and different solvents.

The vapor pressure data of binary systems can be wellcorrelated with the NRTL equation, and the NRTL parameters obtained can be applied for the prediction of vapor pressure of multicomponent systems and the isobaric VLE data with the mass fraction of [MMIM][DMP] of 0.3 and 0.5. It can be concluded that the addition of [MMIM][DMP] results in a increase of relative volatility of the low boiling component and eliminates the azeotropic system behavior in water + 1-propanol and water + 2-propanol mixtures. Therefore, the IL [MMIM]-[DMP] might be a favorable candidate as a solvent for the separation of the water + 1-propanol and water + 2-propanol mixtures by extractive distillation.

## Literature Cited

- (1) Calvar, N.; Gonzalez, B.; Gomez, E.; Dominguez, A. Vapor-liquid equilibria for the ternary system ethanol + water + 1-butyl-3methylimidazolium chloride and the corresponding binary systems at 101.3 kPa. J. Chem. Eng. Data 2006, 51, 2178–2181.
- (2) Maduro, R. M.; Aznar, M. Liquid-liquid equilibrium of ternary systems 1-butyl-3-methylimidazolium hexafluorophosphate + aromatic + aliphatic. *Fluid Phase Equilib.* 2008, 265, 129–138.
- (3) Holbrey, J. D.; Reichert, W. M.; Swatloski, R. P.; Broker, G. A.; Pitner, W. R.; Seddon, K. R.; Rogers, R. D. Efficient, halide free synthesis of new, low cost ionic liquids: alkylimidazolium salts containing methyl- and ethyl-sulfate anions. *Green Chem.* 2002, *4*, 407–413.
- (4) Jiang, X. C.; Wang, J. F.; Li, C. X.; Wang, L. M.; Wang, Z. H. Vapor pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. J. Chem. Thermodyn. 2007, 39, 841–846.
- (5) Wang, J. F.; Li, C. X.; Wang, Z. H. Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. *Fluid Phase Equilib.* 2007, 255, 186–192.
- (6) Zhao, J.; Li, C. X.; Wang, Z. H. Vapor pressure measurement and prediction for ethanol + methanol and ethanol + water systems containing ionic liquids. J. Chem. Eng. Data 2006, 51, 1755–1760.
- (7) Zhao, J.; Dong, C. C.; Li, C. X.; Meng, H.; Wang, Z. H. Isobaric vapor-liquid equilibria for ethanol-water system containing different ionic liquids at atmospheric pressure. *Fluid Phase Equilib.* 2006, 242, 147–153.

- (8) Zhao, J.; Jiang, X. C.; Li, C. X.; Wang, Z. H. Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. *Fluid Phase Equilib.* **2006**, *247*, 190–198.
- (9) Gmehling, J.; Onken, U. Vapor-liquid equilibrium data collection; DECHEMA: Frankfurt, 1977.
- (10) Sandler, S. I. *Chemical and Engineering Thermodynamics*; John Wiley & Sons: Singapore, 1989; p 382, 372.
- (11) Shi, Q. B.; Zheng, F. C.; Li, C. X. Calculation of vapor-liquid equilibrium for ionic liquid-containing systems with NRTL equation. J. Chem. Ind. Eng. (China) 2005, 56, 751–756.
- (12) Doker, M.; Gmehling, J. Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids. *Fluid Phase Equilib.* 2005, 227, 255–266.
- (13) Ernesto, V.; Francisco, J. R.; Antoni, M.-A. Isobaric vapor-liquid equilibria for 1-propanol + water + calcium nitrate. J. Chem. Eng. Data 1999, 44, 1216–1221.
- (14) Marzal, P.; Montón, J. B.; Rodrigo, M. A. Isobaric vapor-liquid equilibria of water + 2-propanol system at 30, 60 and 100 kPa. *J. Chem. Eng. Data* **1996**, *41*, 608.

Received for review May 9, 2010. Accepted July 9, 2010. The authors are grateful to the financial support from PetroChina Innovation Fund and National Basic Research Program of China (973 Program, 2009CB219904) that allows the authors to accomplish the research presented herein.

JE100483D