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In this paper we apply a recursive neural network (RNN) model to the prediction of the standard Gibbs
energy of solvation in water of mono- and polyfunctional organic compounds. The proposed model is able
to directly take as input a structured representation of the molecule and to model a direct and adaptive
relationship between the molecular structure and the target property. A data set of 339 mono- and
polyfunctional acyclic compounds including alkanes, alkenes, alkynes, alcohols, ethers, thiols, thioethers,
aldehydes, ketones, carboxylic acids, esters, amines, amides, haloalkanes, nitriles, and nitroalkanes was
considered. As a result of the statistical analysis, we obtained for the predictive capability estimated on a
test set of molecules a mean absolute residual of about 1 kJ ·mol-1 and a standard deviation of 1.8 kJ ·mol-1.
This results is quite satisfactory by considering the intrinsic difficulty of predicting solvation properties in
water of compounds containing more than one functional group.

Introduction

During the past decade a quantitative structure-activity (or
quantitative structure-property) QSAR/QSPR method1,2 on the
basis of the direct treatment of the molecular structure by a
recursive neural network (RNN) has been developed by our
group. Standard QSAR/QSPR approaches correlate, by a proper
mapping function, a target property to the structure of the
molecule encoded by problem specific molecular descriptors.
The innovative feature of RNN is its ability to directly deal
with hierarchically structured representations of molecules in
the form of labeled graphs which are a vehicle of richer
information than the flat vectors of descriptors used in the
traditional QPSR/QSAR models. The RNN itself maps the
representation of the molecule to the target property. Of course,
the possibility of processing structured information is particularly
appealing in the context of prediction tasks in chemistry where
the compounds can naturally be represented as labeled graphs.

In this context, we proposed a rational approach to the
representation of chemical structures by using a limited number
of fundamental atomic groups ordered as the corresponding two-
dimensional graph.3 The problems tackled by our earlier RNN-
QSAR/QSPR studies range from the prediction of simple
physical properties, such as the boiling points of alkanes1,5 and
the standard Gibbs energy of solvation of monofunctional
compounds,3 to the prediction of the pharmacological activity
of substituted benzodiazepines.1,2,5 More recently, we applied
this technique to the prediction of the glass transition temper-
ature (Tg) of (meth)acrylic polymers and copolymers,4,6,7 the
melting point (Tfus) of ionic liquids,7,8 and the acute toxicity of
simple aromatic molecules.9

In this paper we focus our attention on the prediction of the
standard Gibbs energy of solvation in water, ∆solvG°, of poly-

functional compounds. The prediction of Gibbs energies of
solvation for small organic molecules is of considerable interest
in drug design,10 in the analysis of protein folding and binding,11

and in the development of force fields by computer simulation.12,13

In a previous paper3 we applied our RNN-QSPR model to the
analysis of the ∆solvG° in water of 179 monofunctional acyclic
organic compounds. Our model showed a better descriptive and
predictive ability than group contribution methods or usual
QSPR approaches using multilinear regression analysis and
matched the performances obtained by standard neural network
based QSPR methods, which are tuned by the background
knowledge carried by known molecular descriptors.

More extensive experiments would refine the comparison with
group contribution methods. Therefore we decided to extend
the study to sets of compounds spanning over a widespread
survey of chemical structures and functionalities and including
polyfunctional compounds where it is known that the theoretical
limitations of the group contributions method are stronger and
the method requires the introduction of corrective terms. In fact,
the ultimate goal is the extension of the applicability of the
prediction methods to compounds and problems not covered
by the standard methods. A new research was carried out in
existing literature, collecting all available material on ∆solvG°,
obtained by using either different experimental methods or data
derived from different thermodynamic quantities related to
∆solvG° (i.e., Henry’s law constants).

Method

In this section we give an outline of the main aspect of our
RNN model for QSAR/QSPR analysis. A detailed description
of the model is reported elsewhere.1-9

RNNs directly deal with a hierarchically structured repre-
sentation of molecules in the form of labeled rooted ordered
trees. Moreover, RNNs can adaptively encode the input
structures by learning from the given structure-property training
examples. The learning algorithm allows the model to tune the
free parameters of the encoding process. The use of an adaptive
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recursive model does not need an a priori definition of
descriptors and does not require a similar size of the structured
data.

Chemical compounds are represented as labeled rooted
ordered trees by a 2D graph that can be easily obtained from
their structural formula. Molecules are fragmented into atomic
groups that constitute the vertices of the tree (see Figure 1).
The rules for the representation of the molecular structure are
described in detail in ref 3 and shortly sketched below. A priority
scale is defined among the fragments to determine the root and
the relative ordering of the subtrees. The tree root is always
placed on the highest priority group, and its children were
ordered according to the group priority rules. A label is assigned
to each vertex, that is, a tuple of variables categorically
distinguishing the symbol of the atomic group. Though labels
are conventionally defined, they can convey chemical informa-
tion through orthogonality or similarity to other labels. The tree
representation, though based on a 2D graph, can also describe
3D features by defining appropriate rules, for example, the
children ordering can be used to indicate chirality in analogy
with Fisher’s projections. The direction of the ordering (i.e.,
clockwise or counter-clockwise) is the one that assigns the
lowest position to the group with highest priority. In the case
of two or more groups with identical priority, the direction is
determined by the subsequent group in the priority scale until
the ambiguity is solved.

For each structure, the neural model encodes, through a
recursive process, the substructures according to their molecular
topology and to the content of each vertex label (see Figure 1).
Finally, the code developed by the model is mapped to the
property values by the output part of the neural network. It is
worth it to stress that the training of the output mapping part is
made together with the training of the encoding part to realize
a direct and adaptive structure-property relationship. An
incremental process progressively adds neural hidden units, HU,
until the error among the outputs of the training examples and
their target values is below a previously determined threshold
or training error tolerance, TET.

The chemical groups used in this work are: CH3, CH2, C, H,
CdC, CtC, OH, O, CdO, NH2, NH, N, SH, S, CN, NO2, F,
Cl, Br, and I. They coincide, even though not completely, with
the functional groups identifying the various classes of organic
compounds. In particular the groups COOH, COOs, CONH2,
COsN<, and COX (X ) Cl, Br, I) are represented as subtrees
constituted by two atomic groups. Moreover, the CsH group
is formed by C and H. In this way we maintain the same
approach in describing the CsH bond independently of the
hybridization of the carbon atom.

As exemplified above, this kind of structure-based representa-
tion has the advantage of generality, as it can adequately
represent any sort of chemical compound.4 Moreover, its

flexibility allows the tuning of the level of structural detail to
the characteristics of the investigated molecular data set.

Results and Discussion

In this work we deal with a data set of 339 mono- and poly
functional acyclic compounds including alkanes, alkenes,
alkynes, alcohols, ethers, thiols, thioethers, aldehydes, ketones,
carboxylic acids, esters, amines, amides, haloalkanes, nitriles,
and nitroalkanes. The experimental data were taken from refs
14 to 19. Seven tasks were performed in this study, and 16 trials
were carried out in each task. As the data set includes data of
∆solvG°, derived from different thermodynamic quantities, it is
affected by high noise. As a consequence, the system’s TET
was set accordingly to avoid overtraining phenomena, namely,
to 1 kJ ·mol-1 in tasks 1 to 4 and 6 and to 5 kJ ·mol-1 in tasks
5 and 7 to assess the tolerance and fitting conditions. The target
∆solvG° values in the training set ranged from (-40.63 to 14.94)
kJ ·mol-1.

For each task the whole data set was divided into three disjoint
training, test, and guess test sets. The training set (236
compounds) and test set (60 compounds) were used for the
learning and validation processes, respectively, while the guess
test set (12 compounds) was settled on to test the performance
of the RNN model in some challenging conditions. The
compounds were selected so that the test set was representative
of the different molecular sizes, topologies, and functional
groups. The complete list of investigated compounds, the
corresponding values of the target property, ∆solvG°, and
the mean residual for each performed task are reported in the
Supporting Information. To have a significant outcome, in each
task 16 trials were carried out on the same training/test split,
and the results were averaged over the different trials. The main
statistics computed over all of the tasks are shown in Table 1,
which indicates the number of recursive HU, the mean absolute
residual, MAR, the correlation coefficients, R, and the standard
deviation, S, as obtained by computing the mean output over
the performed trials.

The experimental Gibbs energies of solvation of the molecules
included in the guess test set are reported in Table 2 together
with the mean residuals, δi, evaluated as the difference between
the mean predicted values over the 16 trials and the experimental
one. In fact, for this guess test set the results have to be evaluated
individually and not statistically. The guess test set was formed
by 12 compounds selected within a list of 13 (1-buten-3-yne,
2-propen-1-ol, trans,trans-2,4-hexadienal, 3-buten-2-one, 1-me-
thylethenyl ethanoate, propenoic acid, trimethoxymetane, 1,1,1-
trimethoxyethane, di(2-chloroethyl)sulphide, trichloronitromethane,
N,N-dimethylformamide, 1,2,3-propanetriol, 1,2-ethanediol),
with only one polyalcohol being chosen at a time in the
experiments. The structures of these compounds were scarcely
represented in the whole data set. In fact they contain two or
more atomic groups whose combination is not represented in
any molecule of the training set. In the following we will analyze
the statistical results of every task as well as the specific
residuals for the guess test set compounds.

Only two polyalcohols (1,2-ethanediol and 1,2,3-propanetriol)
are present in the whole data set, beside a significant number
of monoalcohols. In tasks 1 and 3 we put 1,2,3-propanetriol in
the training set and 1,2-ethanediol in the guess test set, while
in tasks 2 and 4 to 7 we moved 1,2-ethanediol to the training
and 1,2,3-propanetriol to the guess test set. As the triol solvation
properties in water are much more strongly affected by the
interactions among the OH groups than those of alcohols and
diols, we planned task 1 to test the influence of the triol on the

Figure 1. Representation of molecular graph for acrylic acid, as a chemical
tree and an input data file. Boxes on the chemical tree exemplify the
recursive processing of RNN.
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RNN performance, whereas task 2 was performed to assess the
RNN capability to extrapolate the solvation properties of this
compound from those of monoalcohols and diols. If we compare
the test set statistics of tasks 1 and 2 reported in Table 1, we
can observe that the substitution of 1,2,3-propanetriol in the
training set with 1,2-ethanediol improves the regression param-
eters of the test set even though slightly increasing the MAR
(less than 0.03 kJ ·mol-1).

The same training and test sets of tasks 1 and 2 were used in
tasks 3 and 4, respectively, to investigate the influence of the
N label modification on the RNN performances. To improve
the RNN prediction of the ∆solvG° of N,N-dimethylformamide,
in tasks 3 and 4 we modified the label of the N group by
considering it similar, instead that orthonormal, to the NH2 and
NH groups. This modification resulted in a sharp decrease of
the amide residuals from about (10 to 1) kJ ·mol-1 (see Table
2). Furthermore, their standard deviation calculated over the 16
trials decreased more than 1 kJ ·mol-1, remaining almost
constant from task 3 to 7 (see Supporting Information). If we
compare the statistics of test set results in tasks 1 and 3 and in
tasks 2 and 4, we can see that the modification of the N label
improves the MAR of 0.2 kJ ·mol-1 by also improving the
regression parameters. Moreover, the stability of the mean
predicted output of the N,N-dimethylformamide, ∆solvG°, and
of its standard deviation throughout very different learning levels
shows that in this case the RNN learning process was success-
fully precise and accurate. This is a very important result by
considering that the amide group is of great biological signifi-
cance, being characteristic of the peptide bond in proteins.
Finally, a comparison of test set results in tasks 3 and 4 indicates
that the similarity imposed to N, NH, and NH2 labels reduces
the influence of the triol on the RNN prediction performance.

On the basis of the results obtained in tasks 1 to 4 we decided
to use the same data splitting of tasks 2 and 4 and the new N
label in the last three tasks.

Tasks 6 and 7 were planned to investigate the robustness of
the model with respect to the noise of the data. In these tasks
we put into the training set 31 new molecules with a greatest
uncertainty in the target values. Surprisingly, we obtained a
better statistics in the test set, while that of the training set
remained almost unchanged. Apparently, despite the increased
uncertainty on the target values, the benefits introduced by the
greater the number of data in the training set prevail for the
improvement of the RNN performances. The robustness of the
model to the noise and the uncertainty of the experimental data
is thus confirmed.

In tasks 5 and 7 we used the same data split as in tasks 4 and
6, but the RNN learning process was stopped when a higher
error threshold (5 kJ ·mol-1) was attained and a corresponding
lower number of HUs was involved in the calculation. The test
set MAR of these tasks are only slightly worse than those of
the corresponding task where TET was 1 kJ ·mol-1. Hence, an
early stopping of training does not improve the general
performance of the model, showing that overtraining conditions
have been avoided.

The analysis of the residuals of the guess test set compounds,
reported in Table 2, shows that the residuals of the first six
compounds are quite satisfactory, proving that the RNN is able
to give good prediction on the ∆solvG° of molecules containing
conjugate double bonds even in the absence of similar com-
pounds in the training set (Table 2). Also in these cases, the
MAR and the standard deviations are not affected by different
learning conditions.

Table 1. Mean and Maximum Absolute Residual (MAR, MaxAR), Standard Deviation of Residuals (S), Correlation Coefficient (R), Number of
RNN HU, and Number of the Molecules (N) in the Training and Test Set of the Different Tasks

training set test set

MAR MaxAR S Rb MAR MaxAR S Rb

task HUa N kJ ·mol-1 kJ ·mol-1

1 57 236 tr 60 ts 0.09 0.55 0.14 0.999 1.17 10.2 2.03 0.982
2 58 236 tr 60 ts 0.09 0.64 0.14 0.999 1.20 8.51 1.86 0.985
3 59 236 tr 60 ts 0.09 0.65 0.14 0.999 0.99 8.38 1.68 0.987
4 65 236 tr 60 ts 0.09 0.54 0.14 0.999 1.00 6.46 1.62 0.988
5 13 236 tr 60 ts 0.61 3.52 0.84 0.997 1.08 9.39 1.82 0.985
6 61 267 tr 60 ts 0.09 0.63 0.14 0.999 0.97 8.78 1.69 0.987
7 14 267 tr 60 ts 0.58 3.38 0.79 0.997 1.12 7.28 1.86 0.985

a Number of HUs calculated as the average of the number of HUs over the trials. b Linear correlation coefficient between experimental and calculated
values.

Table 2. Experimental ∆solvG° Values and Mean Residualsa, δi, of the Guess Set Compounds for Tasks 1 to 7

∆solvG° δ1 δ2 δ3 δ4 δ5 δ6 δ7

compound kJ ·mol-1

1-buten-3-yne 0.17 -0.04 0.44 -0.64 0.84 -0.76 -0.73 -0.64
2-propen-1-ol -21.06 -1.85 -1.88 -1.71 -1.96 -3.69 -1.19 -2.31
trans,trans-2,4-hexa-dienal -19.39 4.79 4.52 2.38 3.24 3.48 3.65 2.01
3-buten-2-one -20.77 2.93 4.84 5.79 6.46 4.71 5.40 5.14
1-methylethenyl ethanoate -11.69 -3.27 -4.94 -1.12 -3.93 -3.29 11.72 -2.72
propenoic acid -25.96 0.25 1.14 -5.32 -0.76 -0.98 -0.75 -0.93
trimethoxymethane -18.47 14.78 10.33 -1.67 9.99 11.60 12.12 10.23
1,1,1-trimethoxyethane -18.30 14.60 10.66 12.52 10.42 12.35 -1.04 11.59
di(2-chloroethyl) sulphide -16.40 3.29 5.63 13.22 3.91 2.69 0.40 -1.17
trichloronitromethane -6.17 -4.97 -6.02 4.10 -5.22 -2.91 -5.31 -4.44
N,N-dimethyl- formamide -32.70 8.57 9.23 1.00 1.02 0.93 1.26 1.93
1,2,3-propanetriol -38.60 nd 11.76 nd 12.76 12.92 11.84 12.24
1,2-ethanediol -32.03 -2.48 nd -2.67 nd nd nd nd

a Calculated as the difference between predicted and experimental values; nd ) not determined because the compound is not included in the guess set
of the corresponding task.
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We obtain good results also for 1,2-ethanediol, while 1,2,3-
propanetriol shows residuals of about 12 kJ ·mol-1. We ascribe,
in this case, the disagreement between experimental and
calculated value to the need of a better RNN training because
of the scarce sampling of polyalcohols in the training set. On
the other hand, the stability of the mean predicted output and
standard deviation of 1,2,3-propanetriol ∆solvG° throughout very
different learning conditions (tasks 2 and 4 to 7) is an indication
of the robustness of our RNN model.

Insufficiency of sampling also affect the ∆solvG° prediction
for orthoesthers. Moreover, in this case, the large errors (Table
2) could reflect the uncertainty of ∆solvG° experimental data.
The measurements can actually be affected by the hydrolysis
of the orthoesther in water.

Conclusions

There is an intrinsic difficulty in the prediction of solvation
properties of polyfunctional compounds in water. In fact, water
enhances the existing intramolecular correlation among func-
tional groups pertaining to the same structure, probably by
setting up structured extramolecular domains involving a
variable number of water molecules. As a consequence, standard
group contribution methods that usually reproduce well the
solvation properties of monofunctional compounds fail when
treating polyfunctional molecules, unless specific parameters are
introduced to account for interactions among two or more
functional groups in the same structure. This, of course, reduces
their generality and their predictive ability. The advantage of
our RNN is that it is able to automatically take into account
the interactions among groups provided that a sufficient number
of training examples are present in the data set. Moreover, we
proved that the performance of our method can be greatly
improved by extending the data set and that it is slightly affected
by the noise of experimental data. This offers some opportunity
in the prediction task, by allowing the exploitation, even if with
great care, of also less accurate experimental data.

Supporting Information Available:

The complete list of investigated compounds, the corresponding
values of the target property, ∆solvG°, and the mean residual for
each performed task are reported. This material is available free of
charge via the Internet at http://pubs.acs.org.
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