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The central theme in this series of papers is the development of a coherent and consistent equation-of-state
model of fluids in the frame of solvation thermodynamics. Two main ingredients will be used for this purpose:
the first will be the successful conductor-like screening model (COSMO) type group-contribution models
with their quantum-mechanical description of fluids, and the second, our recent nonrandom hydrogen-bonding
(NRHB) equation-of-state framework. The bridge between the two is the quasi-chemical treatment of the
nonrandom distribution of molecular entities in the system, a treatment used by Henry Kehiaian in his
DISQUAC group-contribution model. In this first part we develop the solvation formalism of NRHB and
propose a first approach for turning the COSMO model into an equation-of-state model in a straightforward
and consistent manner. Although the formalism is general, the focus is on the self-solvation of fluids. This
development permits the calculation of the various components of solvation Gibbs energy, such as the
cavitation and charging components or the enthalpic and the entropic ones. It permits, in particular, their
study over a broad range of external conditions. The strength of the intermolecular forces and its role on the
variation of these components, as well as their interdependence, are critically discussed.

Introduction

Henry V. Kehiaian has developed, among others, one of the
most successful group-contribution models, the well-known
DISQUAC,1,2 which is widely used for the prediction of phase
equilibria and related properties. DISQUAC is an extended
quasi-chemical3 group contribution model and belongs to the
broader family of incompressible-lattice models of the liquid
state. Over the years, a large number of functional groups have
been considered, and their group-interaction parameters have
been determined by Kehiaian and his co-workers. DISQUAC
is applicable to systems consisting of groups with known
interaction parameters. Kehiaian was alert, however, for a
cautious use of these parameters, since changes of the functional
group properties may occur due to the intermolecular environ-
ment of the group (push-pull effect or proximity effect).

More recently, a significant step forward in solution thermo-
dynamics was doubtlessly the development of the COSMO-RS
or COSMOtherm group-contribution model by Klamt and
co-workers4-8 and, subsequently, of the COSMO-SAC model
by Sandler and Lin.9 In these COSMO models, a remarkable
distillate of hard-core quantum mechanics and ab initio calcula-
tions was succinctly mixed with a group-contribution thermo-
dynamic framework identical again to the quasi-chemical
framework.10 The backbone of the COSMO models allocates
them into the broader family of dielectric continuum solvation
models. COSMO, then, stands for COnductor-like Screening
MOdel. Extension of this backbone approach with a thermo-
dynamic treatment of the molecular interactions led to the
COSMO for Realistic Solvation (COSMO-RS) model or to the
COSMOtherm model, a truly predictive tool for phase equilibria
and related thermodynamic calculations. Particularly important
for understanding and utilizing the COSMO models was the
segment-activity-coefficient approach as implemented in the
COSMO-SAC model.9 This later approach was another excellent

bridge between quantum-chemists and thermodynamicists,
especially chemical engineers.

An ever-increasing interest is found in recent literature for
the extension of COSMO-type models to equation-of-state
models.10-14 In these attempts, the solvation thermodynamics
is combined with widely used equations of state to calculate or
even predict phase equilibria and related thermodynamic proper-
ties over a relatively extended range of external conditions. As
already mentioned, however, an intrinsic component of the
COSMO approach is nonrandomness as treated and expressed
by the quasi-chemical model. The key question then is: are these
equation-of-state extensions fulfilling the basic rules of any
consistent nonrandom theory of mixtures?

A first attempt to incorporate in a consistent manner the quasi-
chemical theory3 in an equation-of-state model had appeared
in early 1980s15-17 and is known as the PV model. A
preliminary attempt to cast the COSMO approach into a quasi-
chemical + equation-of-state framework has also appeared
recently.10 Solvation thermodynamics, however, is not widely
used by chemical engineers, although in recent years there is
an increasing interest in it, especially in predicting the charging
component of the solvation Gibbs energy.18,19

The purpose of this work is two-fold: first, to develop a
coherent equation-of-state solvation model encompassing the
quasi-chemical approach, and second, to compare calculations
for both cavitation and charging energy of solvation with the
corresponding quantities calculated by a simple but consistent
COSMO + equation-of-state model. The first task will involve
the derivation of the key solvation equations from NRHB
(nonrandom hydrogen-bonding),20,21 a recent equation-of-state
model rooted in the PV model.17 The second task will involve
the derivation of the corresponding solvation equations from a
COSMO + equation-of-state model rooted in a recent analogous
model.10 Since we want to perform calculations and make
comparisons up to the critical point, we will focus in this first
part in the self-solvation of a number of representative fluids.
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The Model

Before proceeding to the solvation formalism, let us recall
the main elements of the NRHB model.20,21 Let us consider a
system of N1 molecules of type 1, N2 molecules of type 2, ...,
Nt molecules of type t, and N0 empty sites or voids of no
screening charge, whose number depends on the external
temperature, T, and pressure, p. Each molecule of type i is
considered to be divided in ri equal segments of size Vi* (set
equal to 9.75 cm3 ·mol-1),17,20,21 and is characterized by two
scaling constants, the hard-core density, Fi* ) 1/Vsp,i*, and the
average per segment interaction energy, εi*. If Mi is the molar
mass of component i, the above constants are related through
the equation:

The scaling temperature and pressure are related through the
equations:

k being the Boltzmann’s constant. The corresponding reduced
quantities are defined as the following:

while for the volume or density of pure component i the
following relation holds:

The holes of equal size (the reference size V*) are assumed to
be noncollapsible. The molecular segments and holes are
arranged on a quasi-lattice of coordination number z, set here
equal to 10. It is further assumed that an encounter of two
segments of empty sites or of one molecular segment and one
empty site lead to a zero energy change.

In the case of a mixture, equations analogous to eqs 1 through
4 are obtained by applying the appropriate mixing and com-
bining rules. Quantities pertinent to mixture will be indicated
without subscript i. The composition of the mixture may be
represented either by the mole fraction

or the segment (or volume) fraction

or the (contact) surface area fraction

where zqi is the total number of external contacts per molecule
i. A measure of the sphericity or compactness of the molecule
is obtained through Stavermann’s parameter,22 defined by the
equation:

When the molecule is linear, li ) 0. In NRHB the intermolecular
interactions are divided into physical and chemical or hydrogen-
bonding interactions.

By adopting the picture and nomenclature of Ben-Naim23 for
the solvation process, we may write for the chemical potential
of component i in our mixture

The first term at the right-hand side of this equation is the so-
called “pseudo-chemical” potential of molecule i at a fixed
location in the mixture. The second term is the “liberation” free-
energy, namely, the work gained after releasing the molecule
from its fixed location. Fi in eq 9 is the number density (Ni/V)
and Λi the de Broglie’s wavelength of component i. {N} ) N1,
N2, ..., Nt is a concise description of the constitution of the
mixture. The solvation Gibbs energy is then given by:18,23

The superscript IG stands for ideal gas state, while Φi is the
fugacity coefficient of component i and Z is the compressibility
factor

The NRHB model may provide with the expressions for the
chemical potential in the mixture, or:

where ωi is a characteristic quantity for each fluid that takes
into account the flexibility and the symmetry of the molecule,
and Γii and Γ00 are the nonrandomness factors17,20,21 for the
distribution of molecular segment i around a central segment i
and for the distribution of an empty site around a central empty
site, respectively. The hydrogen-bonding contribution to the
chemical potential is given by:
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T̃

-
qi

T̃i

+
µi,H

RT
(12)

5454 Journal of Chemical & Engineering Data, Vol. 55, No. 12, 2010



where νH is the total number of hydrogen bonds per segment,
dR

i is the number of donors of type R in molecule i, a�
i is the

number of acceptors of type � in molecule i, νd
R the number of

donors of type R per segment, νa
� the number of acceptors of

type � per segment, and

νij being the number of hydrogen bonds between donor i and
acceptor j per segment.

The chemical potential for the ideal gas is given by:

and the compressibility factor by:

The last equation is the NRHB equation of state.20,21 The above
equations provide, then, with the full expression for the Gibbs
energy of solvation of component i in the mixture. In the case
of pure component i, this expression becomes:

where

or, equivalently

and

di and ai are the number of proton-donor and proton-acceptor
groups, respectively, in pure i (when one type of hydrogen bonds
is present).

It is worth rewriting eq 20 in terms of the “segment” activity
coefficients,9,10 Γi, defined by:

or

This equation may act as bridge between COSMO and NRHB
approaches. The solvation equations for the COSMO approach
are derived in the Appendix.

To appreciate the meaning of each term in eqs 19 and 20 or
22, it is worth writing them in the limit of the plain LFHB
model,24 where q ) r and where there is no nonrandomness
(Γij ) 1), or

and

From an alternative point of view of the solvation process,23

the work of cavitation may be obtained from the probability πi

to find a cavity of a volume riV* in the system that will host
the guest molecule i, or:

By comparing eqs 23 and 25 we obtain:

Since (1 - F̃i) is the probability to find an empty site in the
system, eq 26 simply says that the probability to find a cavity
appropriate for the guest molecule i, which consists of ri
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segments of volume V* each, is equal to the combined
probability to find ri empty sites in a series.

Let us now return to eq 19b for NRHB. This equation says
that the probability to find a cavity appropriate for the guest
molecule i consists of three contributions given by its three
terms: The first term gives the probability to find an empty site
to place the first segment of the guest molecule. Once we locate
one empty site, the probability to find one empty site in its
immediate neighborhood is θ0Γ00. Thus, the second term in eq
19b gives the probability to find the remaining ri - 1 consecutive
empty sites required to host the guest molecule. This is, however,
true if the molecule is a linear one. The last term in eq 19b
corrects for the nonlinearity or compactness of the molecule.
As already mentioned, the factor l in this term is a measure of
this compactness. Finally, by setting Γ00 ) 1 in eq 19b, one
may obtain from the difference the influence of the charging
process to the work of cavitation.

Let us now turn to eq 24. The first term in this equation is
the contribution of the dispersive interactions to the charging
Gibbs energy of solvation. According to this term, each of the
ri segments of the guest molecule interacts with its z neighbors
with a van der Waals type energy, (εii/Ṽi), which is scaled with
the thermal energy kT. The second and third terms are the
hydrogen-bonding contributions to the charging Gibbs energy.

Compared to eq 24, eq 20 has an extra term, the first term.
This term accounts for the contribution of nonrandomness in
the distribution of the host molecules (and empty sites) around
the guest molecule. It is the contribution for the rearrangement
of solvent in the neighborhood of the guest molecule upon
charging the molecules of the system (allowing for nonzero
intermolecular interactions).

The Gibbs energy of solvation may be broken down to its
enthalpic and entropic components through the equation

In the case of self-solvation, the entropic component is given
by the following equation (subscript i is omitted for clarity):

where

and

The derivatives from the hydrogen bonding term are:

where

The thermal expansion coefficient is given by:

The enthalpic component is, then, obtained from eq 27 as:

Let us now turn to mixtures to complete the solvation
formalism. In an earlier version of NRHB21 the nonrandom
distribution of molecular segments was considered to be due,
primarily, to the hydrogen-bonding interactions, while the
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remaining van der Waals interactions were considered the main
cause for the nonrandom distribution of free-volume in the
system. The advantage of this approach is its simplicity as it
leads to analytical expressions for many systems of practical
interest. In this case and for a binary mixture, the equation for
the chemical potential is given by:

where

On the basis of eqs 16 and 35, and disregarding the contribution
from factors ω, we obtain for the solvation Gibbs energy:

From this equation we may obtain the equation of self-solvation
(eq 18) by setting x1 ) 1. We may also obtain the equation for
the solvation Gibbs energy of component 1 in solvent 2 by
taking eq 37 in the limit of pure 2. Thus,

The activity coefficient at infinite dilution of component 1 in
solvent 2 is then obtained from the relation

Substituting from eqs 18 and 39 we obtain

Sometimes, it is more practical to use the activity coefficient
based on the weight fraction rather than the mole fraction. Their
relation at infinite dilution is:

Henry’s law constant is also obtained from γ1
∞ by the equation:
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With the above equations one may easily calculate the
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proposed by Kramer and Thodos,25 or

The term in parentheses is the ratio of the fugacity coefficients
of component 1 in the pure solid and the pure liquid state, and
it can be approximated by:

where ∆H1
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m

its melting point.
The last equations are indicative of the large range of

applications of our treatment. However, in the present work we
will confine ourselves to the study of solvation of vapors in
their own liquids or the self-solvation of pure fluids. This is
essential for the development of a consistent COSMO-type
equation-of-state framework.
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ln F̃ + r1(Ṽ - 1) ln(1 - F̃) - z
2
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Applications

In this approach, each pure fluid is characterized by the two
NRHB scaling constants,20,21 the specific hard-core volume, V*sp

(or the hard-core density, F* ) 1/V*sp), and the average per
segment interaction energy, ε*. A weak variation with temper-
ature is allowed for both constants, through the equations:

and

In the case of hydrogen-bonded fluids, the free-energy change
upon formation of the hydrogen bond may be analyzed into an
enthalpic and an entropic component and is given by

The NRHB scaling constants are available in the literature20,21

and were obtained from vapor pressure, heat of vaporization,
and density data.26,27 We do not need any other data for our
solvation calculations.

It is a common practice in the literature18,28 to approximate
the self-solvation Gibbs energy by the equation:

where p0, M, and F are the vapor pressure, the molar mass, and
the density, respectively, of the liquid. As shown in Figure 1,
this is a good approximation for relatively low temperatures
(or vapor pressures), but there are significant deviations as the
critical point is approached. Symbols in Figures 1 to 8 are
calculations based on vapor pressure, density, and heat of
vaporization data from DIPPR Compilation.26

In Figure 2 are shown the two main components of self-
solvation Gibbs energy of hexane and their variation with
temperature along the saturation line. As shown, the charging
component is sufficiently negative to overcome the work of

cavitation and turn negative (favorable) the self-solvation Gibbs
energy along the equilibrium line.

Equally illuminating is Figure 3, which shows that the
enthalpic component overcomes the entropic one and turns
negative the self-solvation Gibbs energy. It is important for the
subsequent discussion to point out that both the enthalpic and
the entropic component for hexane increase with temperature
as the critical point is approached. Hexane is a typical nonpolar
compound, and the variation of its solvation components, as
exhibited in Figures 1 to 3, is rather smooth and expected. It is
of interest to see the corresponding behavior of a hydrogen-
bonded fluid.

Figure 4 shows the range of conditions where eq 47 is a good
approximation for the calculation of the self-solvation Gibbs
energy of the hydrogen-bonded ethanol. Figure 5 shows that
the variation of the cavitation and charging components for
ethanol along its saturation line is also rather smooth. However,
as shown in Figure 6, the variation of the corresponding
enthalpic and entropic component exhibits a drastically different
profile. The increase in temperature facilitates the breaking of
hydrogen bonds, but it appears that this solvation process
amounts to a drastic variation of the enthalpic and the entropic
component near the critical point, although their interplay leads
finally to a smooth variation of the overall self-solvation Gibbs

Figure 1. Gibbs energy of self-solvation of hexane as calculated by eq 18
(triangles) and the approximate eq 47 (squares).

ε* ) εh* + εs*(T - 298.15 K) (44a)

Vsp* ) Vsp,0* + Vsp,1* (T - 298.15 K) (45)

∆GH ) ∆HH - T∆SH (46)

∆G*S ) RT ln
p0(T)M
FRT

(47)

Figure 2. Components of the Gibbs energy of self-solvation of hexane as
calculated by eq 22 (dashed line) for the charging energy and by eq 19a or
19b (solid line) for the cavitation energy.

Figure 3. Components of the Gibbs energy of self-solvation of hexane as
calculated by NRHB: the solvation enthalpy ∆H*S (squares) and the
solvation entropy (circles), T∆S*S, obtained from eq 28.
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energy. It is worth then exploring whether this drastically
different behavior is observed in other fluids.

In Figure 7 the rather smooth variations along the saturation
line of the self-solvation Gibbs energy and its cavitation and
charging components for ammonia are shown. In Figure 8 the

corresponding variations for the enthalpic and the entropic
component of ammonia are shown. As shown, although not as
abrupt as in ethanol, here also both components decrease with
temperature, and this is enhanced as the critical point is
approached. This common behavior of the two hydrogen-bonded
fluids (ethanol and ammonia) is in contrast with the correspond-
ing behavior of the nonpolar hexane. A systematic study along
these lines of other representative fluids with varying strength
of intermolecular forces would shed light into the prevailing
mechanism of the solvation process and could contribute in
understanding other related phenomena such as the enhanced
solvation at (super)critical conditions.

One potentially important source of information regarding
the solvation process could be the quantum mechanics calcula-
tions as embodied in the COSMO approach. COSMO models
could tell us about the solvation at high temperatures and
pressures if they were applicable to such conditions. As
mentioned earlier, this would amount to the development of a
consistent COSMO equation-of-state model. As a first step
toward this goal, such a model is presented in the Appendix
and is referred to as COSMO-V1 model (an alternative variation
of it, called NRCosmo, will be presented in a forthcoming
manuscript along with calculations for mixtures).

Figure 4. Gibbs energy of self-solvation of ethanol as calculated by eq 18
(triangles) and the approximate eq 47 (squares).

Figure 5. Components of the Gibbs energy of self-solvation of ethanol as
calculated by eq 22 (triangles) for the charging energy and by eq 19 (squares)
for the cavitation energy.

Figure 6. Components of the Gibbs energy of self-solvation of ethanol as
calculated by eqs 28 and 34.

Figure 7. Gibbs energy of self-solvation of ammonia (squares) and its
components as calculated by eq 22 (triangles) for the charging energy and
by eq 19 (circles) for the cavitation energy.

Figure 8. Components of the Gibbs energy of self-solvation of ammonia
as calculated by eq 34 (circles) for the solvation enthalpy and by eq 28
(squares) for the solvation entropy T∆S*.
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In COSMO-V1, the segment-segment interaction energy
consists of three contributions. The first two are the usual misfit
term and hydrogen-bonding term of the COSMOtherm4-8 or
COSMO-SAC9 models. The third contribution encompasses all
other types of interactions and is collectively called the
“dispersion” term. In this first attempt to use the formalism in
the Appendix, we attribute one “dispersion” constant and one
“specific volume” constant to each fluid. These constants for a
number of common fluids are reported in Table 1 and are
obtained as the scaling constants of the plain NRHB model.20,21

The resulting model is a complete equation-of-state model and
can be applied over an extended range of external conditions
up to the critical point and beyond it.

In Table 2 the components of the solvation Gibbs energy at
25 °C as calculated by the plain NRHB model and the COSMO-
V1 model of the Appendix are compared. As observed, the
discrepancies are not negligible and sometimes are quite large.
Water exhibits the largest percent discrepancy for its cavitation
component, while decane exhibits the largest absolute difference
for its charging component of the solvation Gibbs energy. An
intermediate variation is shown in Figure 9a,b, where these
calculations for ethanol as a function of temperature are
compared.

A careful examination of the data in Table 2 reveals that the
calculations of the Gibbs energy of solvation (sum of cavitation
and charging components) by the two approaches are practically
identical. The separate components, however, may differ as
much as 35 %.

Discussion and Conclusions

The calculations of the previous section raise a number of
issues regarding solvation calculations. These issues cannot be
overlooked if an equation-of-state model is to be developed in
the frame of solvation thermodynamics. The first issue arises
from Figures 1 and 4. As observed, the common approximation
of eq 47 has a limited application and must be corrected before
use at higher pressures (or temperatures). The second issue arises
from the variation with temperature of the enthalpic and entropic
component of the Gibbs energy of solvation. In hydrogen-
bonded fluids these components are drastically affected by the
hydrogen-bond interruption with an increase in temperature. The
abrupt changes observed in Figure 6 arise from the hydrogen
bonding constants that were adopted in the NRHB model.20,21

This can be verified by comparing Figure 6 for ethanol with
Figure 8 for ammonia where the individual hydrogen bonds are
weaker than in ethanol. The reliability then of these calculations
resides on the reliability of the hydrogen bonding constants.
We should recall that, for simplicity, in this work we have used
one constant to describe variation with temperature of the free
energy change upon formation of a hydrogen bond. In addition,
one single pair of constants was used for all hydrogen bonds of
one type. Thus, for all alkanols we have used the pair of
constants ∆HH ) -25.1 kJ ·mol-1 and ∆SH ) -26.5
J ·K-1 ·mol-1 for the OHsOH bonds in all alcohols.

In COSMO-V1 we have not introduced any change with
temperature in the hydrogen-bonding term or in the misfit energy
term. For lack of any other information, only the dispersion
term was allowed to vary with temperature. It is not, then,
unexpected that this difference will lead to the differences
observed in the calculations of Table 2 and of Figure 9a,b. In
view of this, a comparison of enthalpic and entropic components
of solvation Gibbs energies is meaningful only when it is
discussed in connection with the model that has been adopted
for the interaction energies.

Another important issue is the interdependence of the
cavitation and charging components of the solvation Gibbs
energy. Our calculations were verified against reliable data on
vapor pressures, equilibrium densities, and heats of vaporization

Table 2. Components of the Gibbs Energy of Solvation (in
kJ ·mol-1) at 298.15 K as Calculated by the Plain NRHB Model and
the COSMO-V1 Model

NRHB COSMO-V1

∆G*CAV ∆G*CHR ∆G*CAV ∆G*CHR

fluid kJ ·mol-1 kJ ·mol-1 kJ ·mol-1 kJ ·mol-1

propane 18.62 -27.36 18.94 -27.63
butane 27.70 -39.33 25.85 -37.00
hexane 44.28 -61.31 48.55 -65.85
heptane 52.45 -72.23 57.43 -77.33
octane 60.27 -82.67 58.92 -81.37
decane 75.88 -103.56 84.43 -112.66
methanol 18.93 -39.50 17.53 -38.11
ethanol 25.27 -46.67 24.60 -45.84
1-propanol 32.73 -56.05 31.22 -54.43
1-butanol 40.48 -65.91 38.47 -64.03
1-pentanol 48.01 -75.56 44.94 -72.52
1-hexanol 55.47 -85.21 52.35 -82.36
1-octanol 71.56 -106.46 67.31 -102.15
ammonia 11.68 -22.98 8.59 -19.90
water 16.11 -42.42 10.91 -37.15
carbon dioxide 7.37 12.83 7.31 -12.82

Figure 9. (a) The cavitation component of the Gibbs energy of self-solvation
of ethanol as calculated by the plain NRHB model (dashed line) and by
the COSMO-V1 model (solid line). (b) The charging component of the
Gibbs energy of self-solvation of ethanol as calculated by the plain NRHB
model (dashed line) and by the COSMO-V1 model (solid line).
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over a broad range of external conditions. The separate
components could vary, but their sum was imposed by the
equilibrium data. This is essential when comparing different
solvation models. Unfortunately, in their majority these com-
parisons are made at ambient conditions, and the above-
mentioned interdependence is disregarded. Thus, caution should
be exercised when adopting values for the charging and the
cavitation components from different sources.

In conclusion, then, this work has provided with two different
equation-of-state models for the calculation of the self-solvation
Gibbs energy of fluids with varying strength of intermolecular
interactions. The strength of these interactions dictates the local
composition around a molecule or the nonrandom distribution
of the various molecular entities in the system and, thus, their
solvation. Both models use the quasi-chemical approach3 for
treating this nonrandomness in the distribution throughout the
volume of the system. In both cases we have analytical equations
with clear terms regarding their provenance and their meaning.
Thus, in eqs 19b and 20 one may see how intermolecular forces,
dispersive or hydrogen-bonding, and the concomitant nonran-
domness influence solvation. This kind of analysis could shed
light on the variation of these terms with temperature or pressure.
Of course, intermolecular interactions dictate also the density
of the system, and thus, there are no “inert” volumetric terms
that can be discussed independently of the charging terms. It is
hoped that the present work will contribute in understanding
dissolution, preferential solvation or enhanced solvation phe-
nomena at high temperatures or pressures where changes in
densities play a dominant role.

Appendix

COSMO Equation-of-State Approach. The COSMOtherm model
has attracted very much interest as been a most promising
predictive tool for phase equilibria and related properties.4-8

As already mentioned in the main text, in spite of the recent
progress in the development of COSMO + equation-of-state
models, much work remains to be done to consistently extend
the COSMOtherm model and account for high temperature and
pressure VLE, for the supercritical state, and for volume changes
on mixing. In essence, as the critical state is approached, or in
the transition from the liquid to the gas state, the molecules
will continuously adjust their wave functions to minimize the
interaction energy with their neighbors, but this is not easy to
be accounted for by keeping the COSMOtherm picture of

molecules solvated by other molecules without noncontacting
surface segments. By letting noncontacting segments be parts
of the surfaces of voids or empty sites, free volume enters the
COSMOtherm picture of fluids.Scope of Our Approach. The
present work, does not address the quantum mechanical
problem. It attempts instead to augment the capacity of the
surface-contact thermodynamic approach of COSMO models
by incorporating free volume in the formalism and deriving an
equation-of-state model applicable to the subcritical as well as
supercritical state, able to account for density variations and
volumechanges,andpotentiallyapplicable topolymersystems.Key
Assumptions. 1. The system contains k types of molecular
surface segments, namely, ni segments with charge density σi,
which are distributed in N1 molecules of type 1, N2 molecules
of type 2, ..., Nt molecules of type t.2. The dielectric continuum
and continuum solvation picture of COSMO4-8 holds here.3.
The system contains n0 segments of empty sites of no screening
charge, whose number depends on the external T and p
conditions. As in the main text, these holes are assumed to be
of equal size (the reference size V*), not collapsible, and, most
importantly, they do not modify the mean geometrical charac-
teristics of the molecules. The molecular segments and holes
are arranged on a quasi-lattice of coordination number z set equal
to 10 again.4. Any contact of two interacting segments m and
n with charge densities σm and σn, respectively, is characterized
by a pair interaction energy εpair (σm, σn).5. Any encounter of a
molecular segment with a “hole” segment will lead to a zero
energy change.6. An encounter of two segments of empty sites
will also lead to a zero energy change.Surface Segment Activity
Coefficients. In our former treatment,10 we have used the
chemical potential of surface segments given by:4-10

where p(σm) is the probability of finding a segment with charge
density σm in the system. In terms of the surface segment activity
coefficients, eq A1 may, equivalently, be written in the following
alternative way:

To establish the link between this COSMO terminology and
the more widely used terminology of surface area fractions of
the main text, we may express the probability p(σm) as following:

Θm in eq A3 is the surface area fraction of segments m in the
compact system without empty sites. zQm is the number of
external contacts of each segment m. The overall surface area
fraction, θ, of molecular segments in the real system, containing
n0 empty sites, is given by

Table 1. Characteristic Constants of Pure Fluids (COSMO-V1)

εcd1 εcd2 Vsp ) 1/F Vsp1

fluid
J ·nm-2 ·
mol-1

J · nm-2 ·K-1 ·
mol-1 cm3 · g-1

cm3 ·g-1 ·
K-1

methane 0.6962 0.0049 2.2200 -0.0003
ethane 0.8330 -0.0448 1.5987 -0.0003
propane 0.8937 0.0134 1.4273 -0.0003
butane 0.9201 0.0322 1.2950 -0.0003
hexane 0.9255 0.0752 1.2728 -0.0003
heptane 0.9289 0.0837 1.2460 -0.0003
octane 0.9372 0.0898 1.2170 -0.0003
decane 0.9464 0.0965 1.1980 -0.0003
methanol 1.6761 0.4979 1.0947 -0.0001
ethanol 1.7623 0.3824 1.0900 -0.0001
1-propanol 1.6615 0.3383 1.0740 -0.0001
1-butanol 1.5891 0.3024 1.0715 -0.0001
1-pentanol 1.4803 0.3145 1.0591 -0.0001
1-hexanol 1.4447 0.2928 1.0585 -0.0001
1-octanol 1.3719 0.2674 1.0572 -0.0001
1-decanol 1.3175 0.2469 1.0550 -0.0001
ammonia 2.8209 0.7012 1.3143 -0.0003
water 0.8853 0.7766 0.9343 -0.0001
carbon dioxide 1.4711 0.8284 0.7580 -0.0003

µ(σm) ) -kT ln{ ∑
n)0

k

exp[-εpair(σm, σn) + µ(σn)

kT ]} +

kT ln p(σm) (A1)

Γ(σm) ) Γm ) -ln{ ∑
n)0

k

p(σn)Γn exp[-εpair(σm, σn)

kT ]}
(A2)

p(σm) ) θm )
Qmnm

nq
)

nmQm

n1Q1 + ... + nkQk

n1Q1 + ... + nkQk

n0 + n1Q1 + ... + nkQk
)

Θmθ m ) 1, ..., k (A3)
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If nij is the number of contacts between segments of type i
and j, the total potential energy of our system is given by

Nonrandomness Factors. As in the main text (cf. eq 21), the
link between the segment activity coefficients Γm and the
nonrandomness factors Γmn for the distribution of a segment m
around a central segment n is established by the equation:9,10

With these definitions, the number nmn of contacts between
segments m and n is given by the equation:

and between segments m and m, by the equation:

The number of contacts 0-0 between empty sites in our
system is given by:

where θ0 + θ ) 1.Mass balance or conservation equations for
the intersegmental contacts take, then, the form:

which gives the working equation for calculating segment
activity coefficients:

This is the alternative way of writing eq A2 in terms of surface
area fractions. As discussed previously,10 eqs A2 and A11 reflect
the quasi-chemical character of the COSMO model.4-9Having
been convinced about the quasi-chemical character of this
combined model, we may write the full form of the configu-

rational partition function in its maximum term approximation
in Guggenheim’s terminology3 as the following:10,15-17

ΩR is the number of distinguishable configurations in the case
of random distribution of segments in the system and E the
potential energy of our system. ΩR is assumed to be given by
Staverman’scombinatorialterm22asinNRHBandinCOSMOtherm.The
superscript 0 in eq A12 indicates quantities pertinent to the case
of random distribution of segments and empty sites in the
system. The corresponding quantities in the case of nonran-
domness are given by:

Equation of State and the Chemical Potential of Molecular
Species. As in the main text, we will consider each molecule i
divided into ri volume segments and having a total of zqi external
contacts. If Nr is the total number of segments, the total volume
of the system is V ) NrV*. Each molecule i consists of a
multitude of interacting segments. Let νmi be the number of
segments of type m in each molecule of type i. Since each such
segment has zQm external contacts, the conservation equation
gives:

and for each type of segments in the mixture we have:

and

Combining eqs A3, A4, A16, and A17, we obtain:

where xi is the mole fraction of component i in the system. The
equivalent of eq A18 in COSMO terminology is obtained by
recalling that:

θ )
n1Q1 + ... + nkQk

n0 + n1Q1 + ... + nkQk
) Qn

Qn + n0
) Qn

nq

(A4)

E ) ∑
i)0

k

∑
jgi

k

nijεpair(σi, σj) ) ∑
i)0

k

n0iεpair(0, i)

+∑
i)1

k

∑
jgi

k

nijεpair(σi, σj) ) E0 + E1 (A5)

Γmm ) ΓmΓn exp[-εpair(σm, σm)

kT ] ) ΓmΓnτmn (A6)

nmn ) znQΘmθnΓmn ) znQθΘmΘnΓmΓnτmn (A7)

nmm ) 1
2

znQΘmθmΓmm ) 1
2

znQθΘm
2Γm

2τmm (A8)

n00 ) 1
2

zn0θ0Γ00 ) 1
2

zn0θ0Γ0
2 (A9)

∑
n)0

k

nmn)znmQm or θ0Γm0 + θ ∑
n)1

k

ΘnΓmn )

Γm{θ0Γ0 + θ ∑
n)1

k

ΘnΓnτmn} ) 1 (A10)

Γm ) 1/{θ0Γ0 + θ ∑
n)1

k

ΘnΓnτmn} (A11)

Z ) ΩR

∏
m

(nmn
0 !) ∏

n*m
[(12nmn

0 )!]2

∏
m

(nmn!) ∏
n*m

[(12nmn)!]2
×

exp(- ∑
m

∑
ngm

nmnεpair(σm, σn)

kT
) (A12)

nmn ) nmn
0 Γmn ) nmn

0 ΓmΓnτmn (A14)

zqi ) ∑
m)1

k

νmizQm (A15)

nm ) ∑
i)1

t

Niνmi (A16)

znQ ) z ∑
m)1

k

nmQm ) z ∑
i)1

t

∑
m)1

k

NiνmiQm )

zN ∑
i)1

t

∑
m)1

k

xiνmiQm ) zqN (A17)

znmQm ) zN ∑
i)1

t

xiνmiQm ) zqNΘm ) znQΘm

(A18)
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and

where Ai is the total surface area per molecule i, Ai(σm) is the
surface area of segments m in molecule i, and Reff is the standard
surface area per segment in the COSMO approach. The
correspondence between the two terminologies is established
through the equations:

From statistical thermodynamics, the pressure of the system
is obtained from eq A12 as the following:

Replacing from above, we obtain the equation of state of our
system (cf. eq 17 of the main text):

where

For the chemical potential of component i we obtain:

The last term in eq A25 may be written in COSMO terms as

Combination of eqs A23 and A25 leads to expressions for
the components of the Gibbs energy of solvation. Of particular
interest are these expressions for the self-solvation of pure
components. Thus, the Gibbs energy of cavitation is identical
to the corresponding expression for the plain NRHB model (cf.

eq 19a of the main text), while the charging component of the
Gibbs energy of solvation is given by

Equation A27 should be compared with eq 22 of the main text
for the plain NRHB model.All calculations in this work are done
by using either the Cosmotherm-C12 package of Cosmologic
GmbH29 or the Virginia Tech database of σ profiles,30 while
TURBOMOLE (distribution by Cosmologic GmbH) is used for
obtaining the cosmo files. There are many possible combinations
of NRHB and COSMO approaches, but here we will confine
ourselves to just one, hereafter referred to as COSMO-V1. Apart
from the misfit terms and the hydrogen-bonding interactions,
in the COSMO approach there are three other types of
interactions that are discussed in the frame of the solvation
picture, but in the COSMO approach they are not considered
to contribute to the nonrandom distribution of the interacting
segments. The second type is the van der Waals or dispersion
interactions. In the COSMO approach4-9 these interactions are
nonspecific and are considered proportional to the exposed
surface of the atoms in the system. The third type of interactions
is associated with the ideal solvation energy or the energy
difference of solute between the ideal gas state and the ideal
conductor state. The fourth type of interactions is the charging
correction and accounts for the energy shift due to a charge
averaging process. The last three types of interactions will be
collectively called cosmo-dispersion or cd interactions. Thus,
the “physical” interactions of the NRHB model correspond to
the sum of the misfit and the cd interactions of the COSMO
approach.As in NRHB, in the COSMO-V1 approach we
consider that all intermolecular interactions do contribute to the
nonrandom distribution of interacting segments and account for
it through the quasi-chemical procedure. The cosmo-dispersion
or cd-interaction densities (per unit area of interaction) for each
component in the system are assumed to vary linearly with
temperature, or

Apart from this scaling constant, the equation-of-state model
has a second constant, namely, the specific hard-core volume,
V*sp, or the hard-core density, F* ) 1/V*sp. In Table 1 are
presented the scaling constants for some representative common
fluids.The calculations with this model are as good as the
corresponding calculations with the plain NRHB model of the
main text. In Figure A, as an example, are compared the
experimental and calculated vapor pressures for methanol by
the COSMO-V1 model. There are, however, additional features
of the latter model. It should be stressed that the COSMO-V1
model offers the possibility to break down the σ profile into
the contribution of each type of atom, as shown in Figure B for
methanol. In addition, it offers the possibility to further break
down the contribution of each type of atom into its components.
As an example, in Figure C the components of the contribution
of H atoms in methanol are shown. There are contributions from
hydrogens bonded to C and from hydrogens bonded to O. The

zqi )
Ai

Reff
(A19)

Ai(σm) ) Aipi(σm) (A20)

pi(σm) )
Ai(σm)

Ai
) Θm

i )
zνmiQm

zqi
(A21)

P ) kT(∂ ln Z
∂V )T,N

) kT(∂ ln Ω
∂V )T,N

- (∂E
∂V)T,N

(A22)

PV*
kT

+ ln(1 - F̃) - z
2

ln[1 + q
r
F̃ - F̃] - F̃l + z ln Γ0 )

0 (A23)

l ) ∑
i

φi

li
ri
) ∑

i

φi[ z
2(1 -

qi

ri
) + 1

ri
- 1] )

z
2(1 - q

r ) + 1
r
- 1 (A24)

µi

RT
) -(∂ ln Z

∂Ni
)

T,V,Nj*i

) ln F̃
φi

ωiri
- ril +

ri(Ṽ - 1) ln(1 - F̃) - z
2

ri[Ṽ - 1 +
qi

ri
] ln[1 - F̃ + q

r
F̃] +

zri(Ṽ - 1) ln Γ0 + ri
PṼV*
kT

+ zqi ∑
m)1

k

Θm
i ln Γm (A25)

zqi ∑
m)1

k

Θm
i ln Γm )

Ai

Reff
∑
m)1

k

pi(σm) ln Γm (A26)

∆Gi/i
*CHR

RT
) -zri ln Γ0 + zqi ∑

m)1

k

Θm
i ln Γm ) -zri ln Γ0 +

Ai

Reff
∑
m)1

k

pi(σm) ln Γm (A27)

εcd ) εcd1 + εcd2
T

298.15 K
(A28)
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latter are further broken down into those participating in
hydrogen bonds and to the non-hydrogen-bonded ones.
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Figure A. Experimental26 and calculated vapor pressures for methanol.

Figure B. Contributions of the various atom types to the σ profile of
methanol.

Figure C. Contribution of hydrogens to the σ profile of methanol.
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