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Thermodynamics of the Screened Coulomb Pair Potential®

Kenneth S. Schmitz*

Department of Chemistry, University of Missouri at Kansas City, Kansas City, Missouri 64110

The thermodynamics of a screened Coulomb potential of the Yukawa-type is examined in detail. It is shown
that, as a consequence of the screening term, the Gibbs and Helmholtz free energies are not equal. Furthermore,
the Gibbs form has an attractive tail. The well-known Derjaguin—Landau—Verwey—Overbeek (DLVO) and the
Sogami—Ise theories are compared, and attempts to eliminate the attractive tail are discussed in detail. Parallels
are found in the phase transitions in charged colloid systems and the van der Waals gas, with particular emphasis
on the “internal pressures” and “excluded volumes”. On the basis of computer simulations, it is concluded that
the screened Coulomb interaction is inadequate for describing systems that have many-body interactions. A new
interpretation of the stability of void regions within a charged colloid system is presented.

1. Introduction

On February 5, 1857, Michael Faraday gave his Bakerian
lecture to the Royal Society in London on the relationship
between light and suspended metallic particles. The focus of
the lecture was on the properties of “ruby gold” and the wave
nature of light. He concluded that the color resulted from
dispersed gold particles that were too small to be seen by any
optical device of his day. A testimony to the stability of colloidal
gold is that one sample survived to the second World War, when
it was accidently destroyed.

Charged colloidal systems are very complex in nature, both
because of the variety of components and the long-range nature
of electrical interactions. In general, the colloid system is
composed of highly charged particles of size in the nanometer
range, the neutralizing counterions, added electrolyte, and polar
solvent. A step toward simplifying the characterization of such
a complex system is the averaging of the effects of the microions
and solvent, which provide a uniform milieu in which the
macroions are suspended. Thus, a multicomponent system is
reduced to an effective one-component system in which only
the positions of the charged colloids are considered. Theories
that use this approach generally incorporate a “screening
parameter”, «, to reflect the bulk electrical properties of the
milieu. The theoretical description of the system is further
simplified in the infinite dilution limit in which only the
interaction between a pair of colloidal particles is considered.

Such a model is described in the account of the DLVO
(Derjaguin—Landau—Verwey—Overbeek) potential given by
Verwey and Overbeek® in 1948. The DLVO potential is
composed of a repulsive screened Coulomb interaction and an
ad hoc introduction of a van der Waals attraction term. For the
particles I and J separated by the center-to-center distance ry;,
the DLVO Helmholtz free energy is of the general form,

AII?JLVO(rI,J'K) = A:D,JLVO’elec(rl,JJ‘) - A:I,(Jjw(rl,J) (1.1)

where « is the screening parameter.
In their derivation of the electrical interaction between pairs
of charged particles, Verwey and Overbeek assumed that the
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electrical work and chemical work at the surface of the
macroparticle exactly cancel each other, and in their own words,*
the “very simple result is that we find the total free energy of
the double layer if only we calculate the electrical work
necessary to discharge stepwise all ions of the solution”.
Thus, Verwey and Overbeek viewed the interaction between
charged colloidal particles as acting solely through their
respective counterion clouds or double layers. Their result for
the Helmholtz free energy of the electrical double layer
interaction for spherical particles takes on the simplified form,

AXTYOR(r k) = UF(r, By (k) °YC exp(—«r, )
(1.2)

In eq 1.2 Ufy(r,5) is unscreened pairwise Coulomb interaction
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UIC,:J N = (1.3)

where e is the magnitude of the electron charge, ¢ is the bulk
dielectric constant, ax is the radius of the K-th particle, Zx is
the magnitude of the charge (with sign) of the K-th particle,
and B(k)P-VO is the form factor for the DLVO potential,

(Y s

Since they used the term “free energy”, represented by F,
without identifying it with either the Gibbs free energy (G) or
the Helmholtz free energy (A), one may conclude Verwey and
Overbeek assumed their equivalence in the DLVO theory. This
conclusion is based on the assumption that the external pressure
and total volume of the system remains constant, that is,

AG — AA= A(PV) = 0 (1.5)

Within the context of the DLVO potential, colloid stability is
obtained as long as the screening parameter is sufficiently small
such that APFVO®eS(r ;i) > A/YW(r, ;). Phase instability is brought
on when APFVO#lee(r, 5 k) < AYIW(r,,). It is emphasized that the
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van der Waals interaction A{9%(r, ) is very short ranged; thus,
the instability corresponds to a flocculation transition in which
the particles are in physical contact.

For several years, Ise and co-workers reported two-state
structures in charged colloid systems in which the interparticle
separation distance was less than that expected based on
concentration but much larger than that for the van der Waals
attraction.>~* In an attempt to account for these observations,
Sogami and Ise® (SI) proposed a model in which the screened
Coulomb term itself has both repulsion and attraction compo-
nents. A crucial point in their model is that the Gibbs and
Helmholtz free energies are not equal. They proposed that the
relationship between the Gibbs free and Helmholtz free energies
was, in their notation, of the form,

The first term was interpreted as the creation of counterions
(subscript i) at a fixed charge of the colloid particle, and the
second term as the creation of the charge on the colloidal particle
(subscript n). The SI results for the Helmholtz free energy can
be expressed in the general form of eq 1.2,

Als,S’EIEC(rl,Jv K) = UIC,:J(rI,J)B(K)SI exp(—«r;)  (1.7)
where the S| form factor is

sinh(ka,) sinh(ka,)
B = 18)

Sogami and Ise obtained the following relationship between the
Helmholtz free energy form, AR®*(r, ;,«), and the Gibbs free
energy form, GPy®'ee(r, 5,k),

Gls,,llyelec(rl,.]’ K) — (2 + KZ%)AIS,\IJ@IGC(YH, K) =

G AN (r 5, k) (1.9)

where we have introduced the notation G5} as the “SI Gibbsian
operator”. In the case of spherical colloids, Sogami and Ise
obtained the following expression for GRy'*(r, 5,«),

Gﬁlje'ec(rl,y K) =
[2 + «a, coth(ka)) + «a, coth(kay) — «r, ;]
2

Alsjye'ec(rl,y K)

(1.10)

According to eq 1.10, GP¥*'°(r, ;,«) exhibits a minimum at the
location

- 1+ C+(C+ 1)(C + 3) (L.11)

K

where

a, coth + ka, coth(ka
C= K&y (xay) > Kay (xay) (112)

It goes without saying that those who have embraced the DLVO
theory have strong objections to the SI theory.

Examined herein are the thermodynamic descriptions of a
pairwise interaction using a screened Coulomb potential. It is
shown that, by applying standard thermodynamics expressions,
the Gibbs and Helmholtz free energies are indeed different for
the screened Coulomb potential and that it is a mathematical
certainty that there is an “attractive tail” for the Gibbs formula-
tion. It is further argued, through use of the van der Waals gas
expression, that the internal pressure of the system plays a major
role in the determination of the thermodynamic properties of
charged colloidal systems, leading to the formation of stable
clusters, and even void regions, in response to the internal
electrical stress imposed on the system. This interpretation is
supported by Brownian dynamics simulations. It is further
argued that the screened Coulomb potential is inadequate when
many-body interactions and the disposition of the microions are
prominent factors in the description of the thermodynamics of
the system.

2. Alternative “Derivation” of the SI Gibbsian
Operator

The SI relationship between the Gibbs free energy and
Helmholtz free energy given by eq 1.6 does not exhibit
symmetry in treatment of the microions and the macroions.
Implicit in this expression are that the neutral macroions already
exist in the absence of any microparticles (no derivative in the
macroion concentration) and that the microions are created as
charged particles (no derivative in the microion charge).
Although this expression may be suspect, it is shown in this
section that the Sl operator is obtained when a symmetrized
expression is employed.

The basis of eq 1.6 lies in two thermodynamic relationships
involving the chemical potential, «, of the system. The first is
the expression for the Gibbs free energy,

G= > un (2.1)

The second is the relationship between the chemical potential
and the Helmholtz free energy,

where the subscript n” indicates that the concentrations of all
the other components are held constant.

In this alternative derivation of the SI Gibbsian operator, the
simpler form of the screened Coulomb potential is used in which
the form factors B(x) are set equal to unity, that is,

Af,lJec(rl,Jl K) = (2.3)

2,2, [exp(—«T, ;)
€ [ R ]

which is recognized as the Yukawa form of the potential. Since
the SI theory focuses on systems in which there are no added
electrolytes, the screening parameter for the Sl theory only
involves the neutralizing counterions,
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ks’ = 4l D, 7Ny (2.4)

where z is the magnitude of charge on the counterion of
concentration njo in particles per cm® and Ag = €/ekgT is the
Bjerrum length.

All of the macroions are identical. Therefore, we are permitted
to change the notation from individual macroions with subscripts
I and J to simply the subscript “n” to distinguish the macroions
from the microions. With this simplified notation, the Helmholtz
free energy in the Sl notation becomes,

AIS’IJ,eIec(rI K ) —

Zn [eXp( Kg) IJ)] 2.5)

Clearly, the only evidence of a contribution of the macroions
is in the charge Z,, whereas the contribution of the counterions
is in the screening parameter «s,. This is perhaps the origin of
the asymmetry of eq 1.6.

The concentration of the macroions in the pre-exponential
factor can be introduced through an “averaged pairwise interac-
tion” in a manner similar to that by Warren® which we
symbolically represent as

A () =( )2 Y. znzn J< ”)> (2.6)

J=1

where A is the Helmholtz free energy per unit volume and
the brackets () represent an average using a pair correlation
function. Also, the screening parameter is defined in the more
general form,

K? = dmg Y 77N, (2.7)
J

where the summation is over all of the “free” microions in the
system, regardless of source. Note is taken that the concentration
and charge of the macroions appear as a product in eq 2.6, so
the following relationship holds,

8Aelec(K) B aAelec(K)
ZJ( 92, )VT - nJ( an, )V,T (28)

Thus, symmetrization of eq 1.6 is obtained upon substitution
of the identity of eq 2.8, with a subsequent change to the
summations over all of the macroion concentrations as well as
the microion concentrations.

To be technically correct, however, if one were to calculate
directly the interaction between two specific macroions | and J
separated by the distance r,; the concentration parameters n
and ny should be replaced by unity, giving rise to eq 2.3 for the
pair Helmholtz free energy. We can represent the concentration
in the double summation by use of the delta function 6(1 — 1)
to select the specific macroion | of interest. Let I” represent all
of the macroions in the pool, including the macroion I. If we
randomly select a macroion I’ in the system while being
interested only in macroion I, then 6(I — 1) = 0 if the random
pick is the wrong macroion, whereas (I — 1) = 1 if I’ is the
correct macroion I. The total Helmholtz free energy is therefore,

Aelec(K) _ (28)2 2 ol — |)(2(J — J)(Z Z; exp(— KrIJ))

1=l \ N

( )Z > Ake(r, 1) (29)

J=1

Keeping in mind the order of appearance of | and J, each of
which runs over all of the macroions in the system, one may
write eq 2.9 in a more transparent form,

&)X Z e - '>35<. 5

J=1

00 = V355 = BE00) = 287 (210)

86(J 7)

Since the microions appear only in the definition of the screening
parameter, we can expression the microion contribution in

simplified form,
_ (1)
i VT

Solin), = (Zelih el =G,

Since eq 2.11 placed no restrictions on the source of the
microions, the combination of egs 2.11 and 2.10 results in a
general expression for the Gibbsian operator Gg"

GE =2+ Kz(iz) (212)

oK

It is noted that G" is the same form as G} derived by Sogami
and Ise as given in eq 1.9, except now all of the microions are
included.

We now apply GE&" to A§'5e(r, k) defined in eq 2.7, with the
result

KI5\
%)Af,gec(rl,y K)
(2.13)

elec(rI N K) _ genAeIet:(rI ” K) (

One can draw the general conclusion that in the conversion from
the Helmholtz free energy to the Gibbs free energy an attractive
tail is obtained for a screened Coulomb interaction.

3. Objections of Overbeek to the SI Theory

The response of Overbeek” to the SI paper is viewed by many
as the final nail in the coffin to the SI theory. The intent of
Overbeek was to cancel the source of the attraction term in the
Sl theory, which arises from the derivative with respect to «.

Overbeek was aware of the fact that the attractive term in
the Gibbsian potential was due to the microion number in the
numerator of the screening parameter. The most obvious way
to cancel this contribution was to introduce a parameter in the
denominator of the screening parameter which would give a
derivative of equal but of opposite sign to the microion
contribution. The logical choice to accomplish this cancellation
was to introduce the number of solvent particles Ny, to give
the number ratio Ni/Nso1y, Where N; is the number of microions
of type j. Overbeek thus defined the volume of the system as
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the volume of only the solvent particles, V = N Usor,, Where
Vsoiv 1S the volume of one solvent particle. In other words,
Overbeek was treating the macroions as if they were point
particles. This was, ironically, one of the criticisms he had of
Langmuir’s treatment of macroions in the Debye—Hiickel limit.
With this assumption, the screening parameter now has the form,

Z'N

solv

= 475/182 N (3.1)

Usolv

where the summation is over all of the microions in the system.
The corresponding derivative for the solvent is

R o ML o M v b o)
ol aNsolv V, T solvi 8Nsolv Vv, T 3/(2 vV, T 8/(2 Vv, T

(3.2)

Clearly, the introduction of eq 3.2 into eq 1.9 results in the
cancellation of the attractive contribution of the microions,
which was the main goal of Overbeek. However, introduction
of the solvent into only the screening parameter is a selective
application of the introduction of the solvent contribution. This
selective application was by design because the objective was
to cancel the attractive part due to the counterions in the
screening parameter. To have an objective introduction of the
solvent particles, one must be consistent and include the solvent
not only in the concentration term in the screening parameter
but also in the pre-exponential factor involving the macroion
concentrations.

An objective introduction of the solvent introduces the ratio
Ol — N6 — J)/Ngo? in the pre-exponential factor in eq 2.9.
Since we have already considered the colloid particles and the
microions, we focus solely on the solvent contribution. The
solvent, however, can be represented in many different ways,
depending upon the particular model. Overbeek, for example,
treated all of the particles as point particles except for the
solvent. Let us define “x” as a particular component of the
solvent and y(x) as a specific representation of the solvent
contribution. We now rewrite eq 2.9 in the generalized form,

- 2 s

3=l solv solv)

:( )Z Zy(x) ( o ) ¢3

=1 Y(X)llz

where the terms P,; and Q,; are collections of all of the terms
that are not of interest. The desired solvent correction expression
for the derivative of Af's°(r,;,«) with respect to the generalized
concentration variable x is,

elec
corr(r”' K) ( a()r(l J )) —

[+ o2 oo

As an example, let us use the Overbeek expression for the
solvent and set X = Ny, and y(X) = X = Ny, It therefore follows
that Py = o(1 — 1IN0 — J) ZZ€(er joson?) With a corre-
sponding expression for Q, ;. Substitution of these expressions

for x and y(X) into eq 3.4 results in the Overbeek solvent
correction,

elec

(i ) KTy
AT (1 g0) = Nsolv(T - (7 -

solv

Z)Af,lJec(rl,J: K)
(3.5)

Notice that, by including the solvent concentration in the
prefactor, we pick up the additional “correction term” of —2.
Adding egs 3.2 and 3.5 to the Gibbsian operator defined by eq
2.12, we have

SIEIeC(r”, ) — (2 — )ASI elec(ru”c) +

2
(7’ - ) A Muk) =0 (36)

In other words, objective application of the solvent in both the
pre-exponential term and the exponential argument results in a
cancellation of all electrical interactions in the Gibbs free energy
even though the electrical interactions are present in the
Helmholtz free energy.

Another way to represent the “solvent correction term” is to
acknowledge the finite size of the microions and macroions and
write the total volume of the system in terms of partial volumes,

V = Ny, + Nyev

mic*™ mic

+ Nsolv solv (37)

where “p” denotes the macroions and “mic” collectively
represents all of the microions. The volume of the solvent may
then be expressed in terms of the volume fractions of the other
components,

NeopVsory = V' — Np{)p - lec mic =V(1 - ¢p ¢mic)
(3.8)
where ¢, = Npop/V is a volume fraction of the b-th component.

Now we have a different representation of the solvent volume,
which is recognized as the standard form of the “free volume”
of the system. For the purpose of illustration, the particular
component of interest is taken to be the macroion, and set x =
N,, the collective number of macroions, and the specific form
representing the solvent is y(x) = (1 — ¢, — @mic). We now
evaluate eq 3.4 with these expressions,

3A|E|Jec(r| 1K)
Ay 6) = Np(a—Np

— @ _ NP % elec
L2 2](1 ¢~ (bmic)(al\lp)ALJ (r|,31 9

— [ - ¢p elec
B [T 2](m)AI,J (i 5 6) (3.9)

A similar expression is obtained for the microion correction.
Clearly these correction terms are small, on the order of the
respective volume fractions. The effect of the finite size of the
particles making up the solvent is to retain electrical properties
of the Gibbs form of the free energy, but with a value slightly
less than that of eq 2.13. This is more acceptable than the
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Overbeek treatment of the macroions and microions as point
particles resulting in eq 3.6.

The second attempt by Overbeek to eliminate the attraction
part of the Gibbsian operator is to “simplify” the above argument
through the use of the Gibbs—Duhem relationship, as manifested
in the “charging process” given by eq 15 in the Overbeek paper,’

| lec e=e | |
Nsolv:ugo?s + z Nj‘u je v= e=0 (Nooiy soel\i + 2 de/,tf ec)
ions ions
(3.10)

where Overbeek interprets the integration as the Debye—Hyuickel
charging process (e is the charging parameter). Overbeek’
remarked on eq 3.10, “This remarkable result shows that the
solvent and the small ions together just give a zero contribution
to G* (and incidentally also to F*')”.

One has to view this conclusion, especially the reference to
Fe, in the context of the DLVO theory in regards to the electrical
contribution to the free energy as stated by Verwey and
Overbeek:* “The very simple result is that we find the total free
energy of the double layer if only we calculate the electrical
work necessary to discharge stepwise all ions of the solution”.

As first pointed out by Smalley,? if Overbeek correctly applied
the Gibbs—Duhem expression such that the inclusion of the
solvent canceled the contribution of the small ions in solution
then there were no electrical contributions in the DLVO model
as well!

By improperly using the Gibbs—Duhem relationship, Over-
beek failed to recognize its significance. The Gibbs free energy
in terms of the chemical potential is given by eq 2.1. Changing
the notation to the current situation, the differentiation of eq
2.1 gives the following expression,

dG = (d/"solv)Nsolv + 2 (d/’tj)Nj + :usolv(stolv) +
]

Z 1(dN)  (3.12)
]

We now compare this with the thermodynamic expression for
the Gibbs free energy change upon the introduction of particles,

dG = //‘solv(stolv) + Z//‘j(de) (3-12)
j
To reconcile egs 3.11 and 3.12, we must have the relationship,
(d/usolv)Nsolv + Z (d/uj)Nj =0 (3-13)
i

It is noted that eq 3.13 is the Gibbs—Duhem relationship. What
the Gibbs—Duhem relationship tells us is that all of the
components in a system are related. The correct interpretation
of eq 3.13 is that the activity of the solvent changes with a
change in the chemical potential of any or all of the other
components. A classic example of the application of the
Gibbs—Duhem expression is that the boiling temperature of a
solvent changes when a solute is present. Perhaps the basis of
Overbeek’s incorrect interpretation of the Gibbs—Duhem rela-
tionship has, in addition to his attempt to eliminate the attraction
part in the Gibbsian operator, a foundation in the assumption
that the chemical and electrical work on the surface of the

macroion exactly cancels, thus leading to the double layer
interaction theory.

As a point in passing, the solvent molecules are not charged.
Hence, the integration of the solvent from chargee=0to e=
e in eq 3.10 has no physical meaning.

It is concluded that Overbeek was not successful in his
attempt to eliminate the attractive part of the SI Gibbsian
expression. Had his arguments been successful, then the
correction would have also eliminated all electrical interactions
in the DLVO theory, with the inescapable conclusion that
charged colloidal systems behave in an identical manner as
neutral particles. Furthermore, introducing a “solvent correction”
in the form of the derivative Ns (0/0Ns,) means that the
amount of solvent changes, which is contrary to the usual
assumption that the solvent acts as a “background” for the other
components in the system. By using instead the “free volume”,
the transformation is made from solvent change to adjustable
concentrations of the other particles in the system, which is
consistent with the use of their derivatives of the Helmholtz
free energy.

4. DLVO Potential and Phase Transitions

One of the apparent arguments in the SI camp to favor the
S| potential over the DLVO potential is the existence of two
phases, along with the statement that the spacing of particles in
the “crystalline phase” is less than that expected for uniform
distribution of particles. This situation is the source of the
argument that some type of “attraction” must be present to
explain the smaller separation distances. Ise et al., for example,
recorded the trajectories of latex particles monitored with an
Olympus microscope. Clearly shown in their Figure 2 are two
states: a crystalline region in which the particles hardly move
in the time window examined, and a highly kinetics phase in
which the trajectories appear as car headlights in a long exposure
photograph. The question arises if these two coexisting phases
can likewise be explained in terms of the “purely repulsive”
DLVO potential.

Molecular Dynamics Simulations of Robbins, Kremer,
and Grest. Robbins et al.'° used molecular dynamics methods
for a fixed volume and number of particles to examined the
phase diagram and dynamic properties of a system of particles.
These particles interacted through a Yukawa potential, namely,

U, = Uy exp(—4) 4.1)

where a = p~%# is the average separation distance between
particles, p is the density of particles of “effective” charge Z*,
A = kais the rate of fall off in the interaction, and the screening
parameter « depends upon the concentration n; = pZ* of
neutralizing screening ions of unit charge,

) 4an €’
= gk.T (4.2)
and
% A\2
= (4.3)

Another parameter to characterize the molecular dynamics
results is the temperature T,
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KT

§—
ma’wg’

(4.4)

where m is the mass of the particle and we is the Einstein
frequency of the crystalline structures. The temperature T is a
measure of the transition temperature for the crystalline structure.

The Yukawa potential used in these simulations was per
particle,

N
1 exp(—Ar, ,/a)
0 X T m

U=2n (r, /)

(4.5)
10=1;1==

As noted by these authors, the parameter A controls the shape
of the potential. For finite temperatures, the free energy was
minimized, where the parameters I' = Uy/ksT and 4 are the
variables.

Of particular interest is their Figure 3 in which kgT/U, and 4
are the coordinates. In general, a liquid phase obtains for all A
at sufficiently high values of ksT/U,. The interpretation of this
observation is that the kinetic energy of the system overcomes
the repulsive interactions that tend to “force” particles in a
crystalline structure, since the particles want to get as far away
from each other as possible. Coexisting with the liquid state
are the bcc crystalline structure (low values of 1) or the fcc
crystalline structure (high values of ). In regards to the liquid
phase near the melting temperature, these authors note: “Al-
though the bcc phase is not stable at any temperature for A > 5,
we find a coordination number of 14 near the melting temper-
ature in liquid systems at all values of A. This is evidence for
bcc-like local order in the liquid phase.”

It is therefore possible, within the context of the DLVO
potential, to have a crystalline structure in equilibrium with the
liquid phase.

Theory of Van Roij, Dijkstra, and Hansen. In response to
the SI theory, van Roij et al.** (RDH) attempted to show that
a phase separation from the “liquid state” to the heterogeneous
“liquid-ordered” coexistence state does result from the DLVO
“repulsive only” pairwise interaction. Their model involved N,
macroions of charge —Ze, N, = ZN, counterions of charge +
e and N; fully dissociated pairs of monovalent salt ions of charge
=+ e. The total number of positively charged microions was N
= N, + N;s and negatively charged microions N_ = N, with
number densities n. = N./V. The microscopic distribution of
the microions was characterized by equilibrium density profiles
p+(r), the fundamental quantities in a density-functional theory.
The Debye screening parameter was defined as

K> = 4mdg(n, + n_) = 4mign (4.6)

The effective one-component Hamiltonian for the macroions
was of the form

NP
v:ﬁ({RJ}) =®d; + zveff(Rl,J) 4.7

1<J

where (R, ;) is the screened Coulomb potential acting between
the macroions and @, is the so-called volume term that does
not depend upon the position of the macroions and includes
the ideal kinetics terms for the microions, hard-core contribu-
tions, a correction term for the neutralizing background, and a

“self energy” term associated with the double layer of the
macroions. The “volume term” results from mapping the
multicomponent system into a “one-component” system.

In accordance with equilibrium conditions, the chemical
potentials for the two phases must be equal for each species in
the system,

1N, 08y = g1 (N@, )
(4.8)

1 1 2 2
1, n®) = u (n®, n®)

where the subscripts “p” and “s” represent, respectively, the
macroions and salt (added electrolyte), and the superscripts (1)
and (2) identify the two phases. The pressure in the two phases
must also be equal,

P(nY, i) = P(n?, n?) (4.9)

The relationships between the chemical potential and the
Helmholtz free energies employed in these simulations were,

( IA(n,, ns))
L R —

8np

B (aﬂ(np, ns))

an,

(4.10)

where A(n,,ns) = AV is the volume Helmholtz free energy. The
pressure was given as

P = nu, + nus — A, n) (4.11)

Calculations were carried out with T = 300 K and a solvent
dielectric constant ¢ = 78 to mimic experimental conditions.
The phase diagrams were represented by the added electrolyte
concentration ns and the colloid packing fraction 7, defined as

_ 47R
= —n

=", (4.12)

where Ris the radius of the colloid particle. Three phases were
identified: gas (G), fluid (F), and crystalline (FCC).

Of significance is the observed broadening of the fluid—solid
phase transition as the concentration of added electrolyte is
lowered below 20 «M. This represents the coexistence of a
“dense” fcc solid with a “very low density” fluid phase, in regard
to the macroion concentration. It is also of interest to note that
as the added electrolyte concentration goes to zero, the system
appears to revert to a one-phase fcc crystalline structure.

The underlying mechanism of the coexistence of phases is
that the microions themselves are responsible for the phase
separation. That is, the instability of the colloidal system reflects
the instability of the microion system. Because of electrical
neutrality, the macroions are “drawn in” to follow their
counterions, which is why the added salt parameter n is used
to represent the phase diagrams. In an attempt to maintain equal
osmotic pressures in the two phases, the concentration of added
electrolyte in the “fluid” phase is greater than the concentration
of added electrolyte in the “crystalline” phase. From the point
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of view of the macroions, phase separation is a result of the
“tail wagging the dog”.

There is another point to be made in this study. The authors
contend that coexistence of phases obtains even though the
repulsive-only screened Coulomb interaction between macroions
was employed. However, the chemical potential calculated in
these studies, that is, eq 4.10, is identical to the application of
eq 2.2 which generated the generalized Gibbsian operator
defined in eq 2.12. By carrying out the differentiation via
computer, the apparent “attraction” part may have been missed.
Also, the pressure defined in the RDH theory manifested in eq
4.11 clearly requires that the Gibbs and Helmholtz free energies
are in fact not locally equal.

Warren Theory. Warren® acknowledged the importance of
the theory of Langmuir®? for micelle stability. In his develop-
ment, Warren incorporated the first two of the three criticisms
of Langmuir*? regarding the DLVO theory. These three criti-
cisms, quoted from Langmuir, are the following.

(A) “No direct account is taken of the thermal agitation which
by itself would tend to cause the colloid particles and the ions
to be displaced throughout the liquid giving an osmotic pressure
p = XnkT.”

(B) “The attraction between the charged micelles and the ion
atmosphere of opposite sign which extends throughout the
intervening liquid is ignored or neglected although it exceeds
the repulsive force between micelles.”

(C) “The electric charges on the micelles are assumed to be
constant, whereas they must be, in general, dependent on the
concentration of the micelles.”

Warren’s rejection of the third criticism was based on Verwey
and Overbeek’s criticism of the Langmuir model regarding the
calculation of the screening parameter as being far from the
colloid particle. While embracing several points in the Langmuir
view, the program of Warren followed very closely the program
of van Roij, Dijkstra, and Hansen. It is of no surprise that
Warren observed the same criteria for phase separation, which
is driven by the microions to have macroion-rich and macroion-
sparse regions.

The importance of the Warren paper is the acknowledgment
of the Langmuir model in which all three electrostatic compo-
nents act to destabilize the system: the microion—microion,
macroion—microion, and macroion—microion interactions (after
the background subtraction counter term).

5. Langmuir Model

Langmuir*? proposed a model for unipolar coacervates based
on the three criticisms of the DLVO theory as given in the
previous section.

The osmotic pressure based on part (A) was taken to be

P=(n + nkgT = (1 + %)”ﬂ‘s_r (5.1)

where z (z) is the magnitude of charge on the micelles
(counterions) of concentrations ny (ny). Added to this is the
osmotic pressure from the Debye—Hiickel theory, which after
some manipulation, gives for the total osmotic pressure,

B z (Jte6£3kBT)1/2213/2(21 + ZZ)3/2
P= (1 + z_z)nlkBT - 3 n,

(5.2)

With a judicious choice of parameters, Langmuir rewrote eq
5.2 in the simplified form

P=3n- 2n* (5.3)

It is now transparent from eq 5.3 that the pressure exhibits a
van der Waals type loop, thus giving rise to coexisting phase
equilibrium.

We now examine part B in the Langmuir criticisms. The
electrostatic interactions are summed over all of the micelles
and counterions as if they were in a crystalline structure of
alternating positive and negative charges. The total electrical
interaction is therefore negative, that is, attractive, as one obtains
for a simple salt crystal. Because of this result, Langmuir stated
that one must introduce a new repulsive force to overcome this
attraction or show that the electrostatic attraction is a function
of the distance between the micelles. An important feature in
the Langmuir development is the adjustment of charge on the
micelles in the dense phase compared to the dilute phase. The
argument is that the charge carried by the solvate between the
micelles in the dense phase must be the same as the charge
carried by the solvate in the sparse phase. In order for this
condition to be obtained, the charge on the micelles in the dense
phase must correspondingly decrease in value, thus leading to
part C of the Langmuir criticisms.

6. Disposition of the Microions

Screened Coulomb theories can say nothing about the role
of the microions in the description of macroion systems. The
contributions of the microions are generally relegated to the
screening parameter and Debye—Hiickel contributions to the
electrical energy of the system. The counterions associated with
the macroions are assumed to follow, faithfully, the motions of
their parent macroions.

Few studies are made of the disposition of the microions in
a system of highly charged colloid particles. An early attempt
to look at the effects of microion—microion correlations was
by Woodward and co-workers.**'* Each macroion in the
calculation was placed in its own spherical computation cell.
The spherical computation cells were then placed in contact as
if they were in a crystal lattice. The counterions were confined
to the parent computation cell, and Monte Carlo methods were
used to move the microions, which were under the influence of
not only the parent macroion but also the particles in the
neighboring computation cell(s). The microions were restrained
from leaving their computation cells.

The “configuration” Helmholtz free energy, Aconsig, for this
system was defined as the deviation from the ideal case. They
reported values of the practical osmotic coefficient for systems
that differed in macroion concentration and charge. The osmotic
pressure was calculated from the thermodynamic relationship

_ d0A _ _ 8Aconfig)
= (3V)T,n_ﬂideal ( aV  J/Tn (6.1)

where 7Tiges represents the ideal part of the microion contribution
to the osmotic pressure. The major findings were that the
microion—microion correlations were negligible for highly
charge macroions (the counterions remained near the parent
macroion) or very dilute suspensions.

The main problem with these Monte Carlo simulations was
the geometry of the computation system. By using spherical
cells surrounding each macroion, the counterions were unreal-
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istically confined to a predetermined region in the system. That
is, there was no “exchange” of the microions between the
macroion cells, which could be very important for closely spaced
macroions. Furthermore, by limiting the calculations to two or
three macroions, these systems are not sufficiently large to
represent a realistic multicomponent system. The lack of
exchange and multicomponent effects are clearly brought out
in the structure of potential fields, as discussed in the next
paragraph.

The juxtaposition of potential fields (JPF) method*>'® was
proposed as a means of obtaining landscape information relevant
to the distribution of the microions in a truly multibody
interaction system. The JPF method is based on the work of
Bader'"® regarding the electron energies and bonding orbitals
in molecules. In the JPF method, the potential fields of all of
the macroions in the system are represented by constant potential
surfaces. The idea is that the potential field that results from all
of the macroions in solution or suspension provides a potential
landscape for the distribution of microions just as the atoms
provide a potential profile in the quantum mechanical placement
of electrons.

In a typical situation the macroions are placed in position,
and constant potential surfaces are generated. The highest
potential surfaces are found around the single macroions and
appear as “distorted spherical surfaces” with distortions pointing
toward other spheres in the vicinity of the target sphere.
Counterions found within this distorted spherical surface are
identified as “neutralizing counterions” since they are tightly
associated with the target macroion. Counterions confined to
this region contribute to what is usually referred to as “charge
renormalization” or “effective charge” when parameters are
adjusted to interpret the data. Because of the high charge on
the parent macroion, co-ions are excluded from the interior of
this localized sphere, which we refer to as the “neutralizing
sphere”. Because of the superposition of potential fields, it is
possible that the neutralizing sphere surrounding any one
macroion within a cluster can accommodate more counterions
than required for charge neutrality. A situation may arise,
therefore, that leads to “charge reversal” for the target macroion.
As one lowers that value of the potential, surfaces appear that
surround two or more macroions. Counterions with energies
associated with these surfaces are “shared” between the
participating macroions. Further out the surfaces encompass the
collection of macroions within the cluster.

Clearly, the JPF method is a simple qualitative tool to gain
insight on the distribution of counterions on the potential
landscape. As the microions are introduced onto the potential
landscape, their potential fields alter the landscape for the
remaining microions to be added. This approach is similar to
that used in quantum mechanics in the determination of
electronic energies. Since these potential surfaces mimic atomic
and molecular orbitals in stable molecules, Gréhn and Anti-
onietti® referred to this approach as a “molecular orbital model.”
In this view, the sharing of the counterions as if in molecular
orbitals adds further stability to the “dense” state in the
heterogeneous structure of colloid suspensions.

Computer simulations using Brownian dynamics (BD
methods on systems of eight and more macroions and Monte
Carlo energy minimization (MCEM)?32* of counterions on the
surface of a single macroion shed further light on the disposition
of the microions and confirm the qualitative nature of the system
as inferred from the JPF method.

In the BD simulations, the distributions of both the positive
and the negative microions (counterions plus added electrolyte,

)20722

where “counterion” now refers to ions of opposite sign to the
macroion, and “co-ion” refers to ions having a charge the same
sign as the macroion) were determined in the presence of a fixed
configuration of macroions. The computational box was sub-
divided into smaller cubic boxes of equal size. The “equilibrium”
configuration, or “starting” configuration, was first established
after one million moves of each coordinate of each microion.
The distributions of positive and negative ions, separately
determined, were tallied after a fixed number of cycles, and
then these numbers were averaged over all of the cycles. In all
cases the counterions accumulated at the surface of the mac-
roions, more on the interior (to the cluster) side of the macroion
than to the exterior side. Of importance is the distribution of
microions interior to the cluster as a function of macroion
separation distance. For sufficiently large distances, both coun-
terions and co-ions were found in the interior of the cluster. Of
course, the concentration of the co-ions was considerably
reduced because of the repulsion due to the presence of the
macroions. However, at smaller macroion separation distances
the co-ions were completely excluded from the interior of the
cluster, and the counterion concentrations were greatly enhanced.
The presence of excess counterions within the cluster may
engage in a “charge reversal” of the local macroion, which acts
to further stabilize the macroion cluster in the “dense state”.
The stability of the “charge reversal” structures was examined
by MCEM methods.

In the MCEM studies, counterions were placed on the surfaces
of several geometries (spherical, prolate and oblate ellipsoids,
and cylinders). Counterions were added to the surfaces, and the
energy was minimized to obtain the redistribution of the
counterions. In all cases studied, the energy initially became
more negative upon the initial introduction of excess counter-
ions, eventually went through a minimum, and then increased
toward zero. What these simulation say is that the attractive
interaction of the counterions to the macroion exceeds the
repulsive interactions between the counterions as additional
“excess” counterions are added to the surface. Thus, an excess
of counterions can condense on those macroions interior to the
cluster for small intermacroion separation distances.

We next use these results for the disposition of microions
under varying conditions to construct a scenario for a collection
of macroions under electrostatic stress.

7. Clustering of Colloidal Particle: A Scenario in
Electrostatic Stress

For pedagogical reasons, we adapt Okubo’s suggestion® that
the repulsive interaction between charged colloidal particles can
be treated as if it was a “hard sphere” interaction. The “effective
radius” of the colloidal particle involves the screening length,
that is, Rett = @, + (L/kefr), Where ke is the screening parameter
associated with the charged particle.

Consider a system of colloidal particles with sufficient excess
added salt that Rer &~ a,. The concentration of added salt is
now systematically removed from the system, in which case
the value of R correspondingly increases in value. Eventually
the situation obtains in which the system becomes an exercise
in packing solid balls in a container as the “effective hard
spheres” begin to overlap. Further reduction in the added salt
does not change the configuration of the “effective hard sphere”
colloidal particles for there is no more available space in the
system. But the thing that continues to increase is the internal
electrical pressure. This will put an electrical stress on the
colloidal system. How does the system respond to this electrical
stress? According to Le Chatelier’s principle, the system will
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move in the direction to reduce the stress. The most obvious
way is simply to remove the counterions from the solution and
place them on the macroion to reduce the charge of the colloidal
particles. But it may be too much to ask of the system to
simultaneously reduce the charge of all the colloid particles in
the system.

What evolves upon continued reduction in the added salt
concentration is a system of variable sized spheres. Driven by
entropic considerations, the system now “separates” into regions
of large spheres and small spheres. Rather than confine the
microions in the colloid-rich regions to particular colloidal
particles, free energy considerations allow many of the microions
to be shared among a collection of colloidal particles of reduced
charge.

8. Parallels of Colloidal Suspensions and the van der
Waals Gas

Phase separation in the Langmuir theory of unipolar coac-
ervates exhibits a “van der Waals loop” in accordance with eq
5.3. If we treat the colloidal particle as an “effective hard
sphere”, then one might gain insight about the equations
regarding highly charged colloidal systems from the knowledge
of the van der Waals theory of imperfect gases.

The van der Waals gas equation can be viewed as a theory
involving an “effective pressure” and an “effective volume”,
to retain the form of the ideal gas law,

_ an’ _
PurVer = [P+ 52 (V—bn)=nRT  (8.1)

where P is the external pressure, a is the van der Waals pairwise
attraction term, and b is the excluded volume parameter. But
what is the role of the term an*V? in eq 8.1? To answer this
question we apply the thermodynamic equation of state to the
pressure P,

e e

where U is the energy of the system and p = n/V is the particle
density. The term ap? represents the internal pressure of the
system. How does this result relate to highly charged colloidal
systems? Since the product PV involves external pressure and
the total volume of the system, one has A(PV) = 0 regardless
of the value of the internal pressure ap?. The internal pressure
of the colloidal system is the osmotic pressure as calculated
from the difference between the Gibbs and Helmholtz free
energies, in accordance with eq 4.11. Since the volume of a
colloidal system is virtually that of the solvent, the product
A(PV) = 0 can be obtained, while changes can be made with
the internal pressure or osmotic pressure.

We next address the effect of changes in the excluded volume
b on the entropy change, where in the case of a highly charged
colloid the effective radius of Okubo is adopted. The process
is to take a fixed number of colloidal particles and follow the
changes as the volume associated with these particles changes
as the associated volume decreases with the “effective” particle
size. The mechanism for change in b is the response of the
system to “electrical stress” as described in the previous
paragraph. To simplify the integrations, the parameter a is held
constant. After the integrations the two volumes of the suspen-
sion are set equal to assess the effect of changing the excluded

volume b on the entropy. The entropy change is given by the
general thermodynamic relationship,

— 09 _ (1\jau) ., _ ow
ds= 0 = (T)( av)TdV L 8.3)

Work is defined as a change in volume against an external
pressure. The work for a van der Waals gas, in general, is thus
given by

Wy = = [, PdV
_ %[ nRT__na
B Vi (V —nb 2 ) dv
V, —nb , (1 1
-l =)~ ol ~ )
(8.4)

To associate this result with the charged colloid system, we
express the desired result in terms of the densities and excluded
volumes of the particles before and after the counterion
condensation process, denoted by the subscripts “1” and “2”,
respectively,

na(p, — py)
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Likewise we have,
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Combining eqgs 8.5 and 8.6 gives the desired result,

Vz) (1 B szz)
AS=nRIn[—| + nRIn| ————— 8.7
(Vl 1—pby ®.7)

As in the case of the external pressure, the volume is held
constant when the charge of the particles is changed. Therefore
we set V, = V; and p; = p, = p since the number of macroion
particles does not change. An expression for the entropy change
of the system when the excluded volume changes is thus
obtained,

AS = R[22 8.8
=n nl—pbl (8.8)

In the scenario regarding to the electrical stress on the system,
the condensation of counterions onto the macroion surface
reduces the excluded volume of that particular particle, namely,
b, < b;. Clearly, the contraction of b results in an increase in
the local entropy and therefore an increase in entropy of the
system. The scenario of the system response to electrical stress
is, at least partially, entropy-driven.

It is noted that the concepts of an “excluded volume”
surrounding a macroion and charge reduction by binding
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counterions were originally proposed by Oosawa, Imai, and
Kagawa in 1954.2¢ Oosawa also used the concept of “free
volume” of the system in his theory of the thermodynamic
properties of polyelectrolyte solutions.’

9. Generalized Osmotic Coefficient

Let us combine the above results for the van der Waals gas
and apply them to a system of colloid particles. The standard
relationship between the Helmholtz and Gibbs free energies is
given by

PiVer =G — A= Dy — (U =T (91
J

where the summation is over all of the particles in the system
(including the solvent), the “effective pressure” Pe is the
standard result in any physical chemistry book,

Pi=P+x 9.2)

where P is the external pressure and s is the osmotic pressure.
The question about the effective volume is not straightforward.
As discussed in Section 8, electrostatic repulsion between the
macroions alters the excluded volume of the macroions.
However, the solvent and microions are not excluded from this
region surrounding the macroions that appear in the summation.
We therefore set Vesr = V, the total volume of the system.

We now differentiate eq 9.1 and make the substitution dU =
TdS — PdV, with the result,

mdV+ VdP + Vdr = ) u(dn) + > n(dy) + SAT
: .
(9.3)

If the process is carried out under constant total volume V and
external pressure P conditions, then we arrive at the desired
result,

Vdz = D p(dn) + D) = D p(dn) +
] J J
keT 2 n(d In(z)) (9.4)
J

where y; is the activity coefficient of the j-th particle, which is
a measure of the nonideal effects. It is noted that eq 9.4 allows
two alternate interpretations of the ratio ¢ = Tmeasued/TTideal fOr @
= 1: a change in the number of particles by association (¢ < 1)
or dissociation (¢ > 1), or a corresponding change in the activity
coefficients of the components. Hence, a reduction in the number
of “free” particles is synonymous to a reduction in the activity
coefficients of these particles.

The activity coefficient contains all of the electrical interac-
tions of the system as well as other nonideal effects. These
electrical effects are symbolically represented by yepec, Which
includes the charged colloid particles as well as the microions
and, to a lesser extent, the polar properties of the solvent. The
microions are quite dynamic in a system of highly charged
colloidal particles. Those counterions found in the JPF shell
surrounding one macroion act to reduce the effective charge of
the macroion and under certain circumstances may even reverse
the macroion charge within a cluster. It is this reduction in the

charge of micelles that Langmiur proposed as a mechanism to
equate the chemical potential of the micelles in the two phases,
that is, part C. Counterions found in JPF shells that surround
several colloidal particles act as “bonding counterions” in a
similar manner that electrons may bond atoms together to form
molecules. These counterions, as a group, are localized about
the colloidal clusters, which necessarily reduces their entropy
contribution to the system. One may view all of the counterions
associated with these clusters as a reduction in the number of
particles that contribute to the osmotic pressure of that region.

Let us now re-examine the generalized form of the pair
interaction free energies as given by eq 2.13. The difference
between the two free energies is thus obtained

~elec _ pelec _ _ K13\ zetec
Gy (rgr) — Ay« =(1 2 3 (M)
(9.5)

Within the context of the RDH theory,™ eq 9.5 is interpreted
as colloid—colloid pair contribution to the osmotic pressure.

10. The Problem of Voids

Confocal laser scanning microscopy (CLSM) studies on
highly charged colloid particles revealed “voids” in the suspen-
sion in which there were no discernible colloid particles.®283
Since CLSM measurements extend well into the suspension,
the formation of voids cannot be due to glass-dispersion (wall)
effects. According to Ise, Konishi, and Tata,® voids grow in
structure over a period of months, where voids of size 50 x
200 x 50 um?® can be obtained. The voids in the suspension
give rise to a “Swiss cheese” structure (holes) to the colloid
system rather than a “Colby-Jack” structure (regions of varying
concentrations) for the distribution of the colloid particles. Real-
time videos also revealed oscillatory motions of colloid particles
at the cluster—void interface, as if these particles were in a
harmonic oscillator potential well. Furthermore, these observa-
tions were made on systems with no added electrolyte.

The presence of void structures is not compatible with
molecular dynamic simulations of the type reported by Robbins,
Kremer, and Grest.'® While the purely repulsive Yukawa
interaction might be used to interpret a “two-state” structure of
dense and sparse regions of the colloid particles, a purely
repulsive interaction does not support stable bounded regions
coexisting with void regions within the system.

The model of van Roij, Dijkstra, and Hansen'* likewise
cannot explain the coexistence of void structures with crystal-
line-like structures. They noted in their introduction, “More
evidence of phase coexistence has been provided by the
observation of extremely dilute voids (a gas phase) in the bulk
of an apparently homogeneous deionized suspension (a liquid
or solid).”

These authors define a void as a dilute gas phase, meaning
that there are very few colloid particles in this region. This
interpretation is inconsistent with the visual observation of long-
lived void regions with no colloid particles.

There was hope that Warren explained the presence of voids
by the title of his paper: “A theory of void formation in charge-
stabilized colloid suspensions at low ionic strength”.® After
noting the relative colloid concentrations are determined by the
tie line in the phase diagram, Warren stated: “Typically, though,
the colloid volume fraction in the depleted phase is vanishingly
small and this phase is essentially pure brine.” Unfortunately,
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the presence of voids is for deionized water, in which case there
is no “excess brine” to fill in the void region.

Mention should be made of the Monte Carlo simulations using
the SI potential.*>~** In contrast with other studies, these
simulations do show the formation of stable void regions, which
one would expect because of the minimum in the pair
interaction.

There is, however, a possible explanation of the stability of
void regions when one considers the picture painted by the JPF
method and the entire volume of the system rather than localized
regions. According to the JPF constant potential surfaces, there
are “orbitals” that encompass the entire cluster. Counterions in
this outer region act as an “effective double layer” for the cluster,
that is, a second double layer.*® As the size of a cluster grows,
it becomes unstable and separates into two or more clusters.
Because each cluster has its own “double layer” composed of
the counterions in the outermost “orbitals”, the repulsion set
up between clusters acts to form and stabilize the void regions.
While there may be several reasons for the instability of a large
cluster, one cannot dismiss the possibility that the solvent might
also be involved. The local activity of the solvent within the
cluster is subject to local effects of the charged particles implied
by local application of the Gibbs—Duhem relationship. But this
does not account for the absence of macroions in the void region
if one insists, as did Langmuir, that the chemical potential of
the macroions must be the same in the void as in the cluster.
However, this argument is synonymous to requiring the region
between two macroions in the crystalline phase to have the same
macroion chemical potential as the region surrounding each
macroion. This apparent paradox of having large void regions
in equilibrium with large crystalline regions can be avoided by
looking at the system as a whole, that is, a “holistic approach”
when considering multibody interactions. A parallel situation
in statistical mechanics is the difference between “fine graining”
and “coarse graining”.

11. Discussion

The current practitioners of the DLVO theory have strayed
far from the original model as described by Verwey and
Overbeek.! In the original model, there was no direct interaction
between the macroions because of the assumption that the
electrical and chemical work canceled exactly. Rather, the
interaction between the macroions was by means of their
associated double layers set up by the counterions surrounding
each macroion. Partly motivated as a criticism of the theory of
Langmuir,*? the screening parameter was calculated by the ions
far removed from the macroions. This criterion means that only
added electrolyte contributes to the screening parameter since
the counterions are restricted to regions in the vicinity of the
macroion. A consequence of this definition is that macroions
in “salt-free” solutions should interact through unscreened
Coulomb potentials since the screening parameter is zero. In
contrast, current practitioners include the counterions in the
calculation of the screening parameter, which means that the
macroions interact directly and the tightly associated counterions
act to reduce the interaction charge between the macroions. Also,

the current practice is to introduce “effective charges”, “effective
radii”, “effective screening parameters”, and “effective concen-
trations” as parameters to describe the system. The question
therefore arises as to whether or not these “effective parameters”
have any aspect of reality of the system or if they simply
preserve the mathematical form of the Yukawa-type screened

pairwise interaction between macroions.

In regards to the question regarding the physical properties
of a real system, use of the Yukawa-type potential can lead to
inconsistent conclusions. Consider, for example, the concentra-
tions of salt in a two-phase system. Robbins, Kremer, and
Grest™® represented their phase diagram in the ks T/U, — 4 plane,
where 1 = «a with a as the average distance between colloid
particles. In their model the microions are assumed to be
uniformly distributed throughout the medium except for those
that give rise to the effective charge. This means that the local
k has the same value regardless of the density of the macroions.
This result drastically differs with the studies of van Roij,
Dijkstra, and Hansen* and of Warren,® in which the “sparse”
macroion region has a higher salt concentration than the “dense”
macroion region.

As shown in Section 2, the Gibbs and Helmholtz forms of
the Yukawa-type potential are different if one uses the standard
thermodynamic relationship between these two quantities as
given by egs 2.1 and 2.2. Although the SI derivation may be in
question [cf. eq 1.6], this difference in the form of the Gibbs
and Helmholtz free energies was first shown by Sogami and
Ise.> Opponents of the SI theory argue that the Gibbs and
Helmholtz free energies must be equal since the charging
process was carried out under constant pressure and volume
conditions, that is, A(PV) = 0. However, these arguments are
based on the external volume and pressure. A well-known
example that distinguishes between external and internal pres-
sures is the van der Waals gas, as discussed in Section 8. The
van der Waals attraction term ap? causes the collection of
particles to contract relative to the ideal gas case. Hence the
van der Waals gas, if treated as an ideal gas, acts as if it were
responding to a larger (effective) pressure than the external
pressure, that is, P + ap?. By analogy, the particles in a solvent
milieu act as a gas subject to an internal pressure in the form
of the osmotic pressure. This distinction is an integral component
in the theory of van Roij, Dijkstra, and Hansen. As also indicated
in Section 8, changes in the van der Waals excluded volume
term alter the “free volume” accessible to the macroions. In
fact, Sogami and Ise® applied the concept of a change in “free
volume” in their discussion.

Strong supporters of the Yukawa-type potential also cite the
efforts of Overbeek” to discredit the SI theory by the introduction
of the solvent into the derivation. The fallacies of the Overbeek
correction factor were brought out in Section 3. If the solvent
was objectively applied as well to the pre-exponential factors
of the macroion concentrations as well as the microion
concentrations in the screening parameter, then one obtains the
unacceptable conclusion that the electrical interactions in the
Gibbs form of the free energy vanishes while retaining all the
electrical interactions in the Helmholtz form of the free energy.
Rather than go through the mathematical exercise of including
solvent in the Sl derivation, some opponents of the “attractive
tail” cite Overbeek’s conclusion based on the “simpler result”
from the Gibbs—Duhem expression in which the solvent cancels
all electrical interactions. As first noted by Smalley,? this
“simpler result” would eliminate all electrical contributions to
the DLVO theory as well.

While the Yukawa form of the pairwise interaction between
macroions may be easy to apply to complex charged colloid
systems, it is based on the premise that the microions play a
minor role in modulating these interactions. This shortcoming
of the Yukawa-type potential is partially corrected by the
introduction of two or more “screening parameters” to the
different regions of the system. However, this ad hoc correction
has no foundations in the DLVO theory. Even with the
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introduction of multiple screening parameters, the Yukawa-type
“repulsive only” interaction cannot explain the presence of voids
under “salt free” conditions.

BD simulations®®~?2 regarding the distribution of microions
for fixed macroion positions clearly expose the assumption that
microions can be relegated to a “background” role, such as the
chorus in a Greek play. These simulations indicate that two
things occur upon decreasing the interparticle spacing in the
macroion lattice at fixed volume of the rectangular computation
cell. First, the co-ions are excluded from the interior of the
cluster and the infusion of counterions, as previously mentioned.
The second change is that the Helmholtz free energy from the
expanded to the contracted lattice structure is negative, meaning
that the smaller cluster is more stable. This result is consistent
with part C of Langmuir’s postulates that the effective charge
on the macroion is reduced when in the cluster (see Section 4).
Also, the JPF profiles indicate a very strong distortion of the
macroion landscape in the vicinity of the interior macroions
toward the interior of the cluster. Although not yet examined,
it is possible that this section of the interior macroions may
have a partial charge reversal in accordance with the MCEM
calculations.®*2* These simulations indicate that the osmotic
pressure given by eq 9.4 is very complex and involves changes
in the number of particles and the activity of all the particles in
the system. A corollary of these simulations is that the so-called
“volume term”, with the specific purpose of mapping a
multibody problem to a one-component system by averaging
guantities such as ideal kinetics terms and a correction for the
neutralizing background, is inadequate for describing a system
in which the number of particles and their activities change.

The Yukawa-type screened pair potential may be adequate
for application to charged colloidal systems under the low
surface charge and high added salt conditions for which it was
derived. However, it is inadequate for highly charged systems
in which multibody interactions are prominent, including those
of the microions.
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