A Method To Estimate the Patel–Teja Equation of State Constants

Luis A. Forero and Jorge A. Velásquez*

Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, A.A. 56006, Medellín, Colombia

A method to determine the Patel–Teja equation of state (EoS) constants F and ζ_c is presented. The method uses Wagner and Rackett equations to generate vapor pressure and liquid volume data. Constants were estimated for 498 pure substances. For 19 substances the new constants were used to predict some thermodynamical properties like vapor pressure, liquid molar volume, vapor molar volume, and enthalpy of vaporization. An extension to mixtures was done by using the Panagiotopoulous–Reid mixing rule. New constants are comparable to the original ones reported in the Patel–Teja work, and they preserve the good features of the equation of state.

Introduction

Equations of state (EoSs) are fundamental to calculate thermodynamical properties for pure substances and mixtures. Using an EoS, phase equilibria calculations and material and energy balances can be solved to design, evaluate, and optimize chemical processes. Engineers choose cubic equations of state to solve practical problems rapidly and efficiently because cubic EoSs are simple and easy to handle.¹ The Patel–Teja cubic equation of state (PT)² has some advantages over other classic EoSs like the van der Waals,³ the Soave–Redlich–Kwong,⁴ and the Peng–Robinson⁵ equations. The PT equation can predict thermodynamical properties for polar and nonpolar substances in liquid and vapor phases. In a recent study a comparison of the prediction power of 23 generalized equations of state is made,^{6,7} and the PT EoS is a member of the group which provides the most accurate predictions for 102 pure substances.

Despite the good features of the PT EoS, it is not widely used in chemical process simulation because it has two substance-dependent constants (*F* and ζ_c). These constants were generalized in terms of the acentric factor for nonpolar compounds, but for polar substances there are few *F* and ζ_c values reported in the literature.² To solve this problem, this paper proposes a technique based in the EoS error minimization to predict vapor pressures and saturated liquid volumes. The objectives of this work are present and validate a method that can be used for any substance. Validation was made by predictions and comparisons with experimental data for the thermodynamical properties of some pure substances and mixtures.

Patel-Teja Equation of State

The PT EoS is a three-parameter (a, b, c) van der Waals type EoS.² One of these parameters (a) is temperature-dependent, and it has the Soave functionality.^{4,8} To use the PT EoS, critical temperature (T_c) , critical pressure (P_c) , and two substance-dependent parameters, F and ζ_c , are needed. F is the optimal value that minimizes the quadratic error in vapor pressure calculations; on the other hand, ζ_c is the optimal value that adjusts saturated liquid volume predictions to experimental data. T_c and P_c values are reported in the Reid et al. property data

bank.⁹ F and ζ_c values for nonpolar compounds can be calculated using the acentric factor (ω) according to:

$$F = 0.452413 + 1.30982\omega - 0.295937\omega^2 \tag{1}$$

$$\xi_{\rm c} = 0.329032 - 0.076799\omega + 0.0211947\omega^2 \quad (2)$$

The acentric factor is also available in the Reid et al. property data bank. Equations 1 and 2 cannot be used to polar substances, and they predict only an approximation to the optimal values for nonpolar compounds. *F* and ζ_c values for some polar substances like water, ammonia, and some alcohols were reported in the original Patel–Teja work.²

Table 1. Average Absolute Deviations in Vapor Pressure and Liquid Saturated Volume Using the Wagner and the Rackett Equations, Respectively^a

compound	AAD P ^{sat}	AAD^{V1}	no data
ethanol	0.294 %	1.980 %	16
argon	0.458 %	0.322 %	13
acetylene	0.931 %	0.750 %	14
ammonia	0.657 %	0.362 %	22
butane	0.344 %	0.225 %	24
carbon dioxide	0.179 %	0.154 %	15
ethane	0.627 %	0.156 %	19
ethene	0.269 %	0.145 %	20
heptane	0.135 %	0.204 %	13
isobutane	2.210 %	0.495 %	21
methane	0.733 %	0.684 %	21
methanol	0.226 %	0.268 %	20
nitrogen	0.238 %	0.362 %	15
octane	1.222 %	0.480 %	17
oxygen	0.548 %	0.667 %	22
propane	1.161 %	0.202 %	23
carbon tetrachloride	0.194 %	0.436 %	27
toluene	0.464 %	0.255 %	22
average	0.605 %	0.453 %	

а

$$Y(AAD) = \frac{1}{N} \sum_{i}^{N} \frac{|Y_{i}^{exp} - Y_{i}^{PT}|}{Y_{i}^{exp}}$$

where $Y = P^{\text{sat}} V^{\text{l}}$

^{*} Corresponding author. E-mail: jorge.velasquezj@upb.edu.co.

Table 2.	F	and	$\zeta_{\rm c}$	Values	for	Hydrocarbons
	_		- 20			

no.	molecular formula	IUPAC name	F	ξc	no.	molecular formula	IUPAC name	F	ζc
1	CH ₄	methane	0.468132	0.326	97	C ₈ H ₁₆	propan-2-ylcyclopentane	0.737875	0.304
2	C_2H_2	acethylene	0.687807	0.31	98	C_8H_{16}	cyclooctane	0.788865	0.314
4	C_2H_4 C_2H_6	ethane	0.588274	0.323	100	C_8H_{16} C_8H_{16}	(E)-oct-2-ene	0.890006	0.303
5	C_3H_4	propadiene	0.875291	0.265	101	C_8H_{18}	octane	0.928158	0.301
6 7	C_3H_4 C_3H_6	cyclopropane	0.728151 0.595368	0.313	102	C_8H_{18} C_8H_{18}	3-methylheptane	0.90800	0.302
8	C_3H_6	prop-1-ene	0.650733	0.319	104	C_8H_{18}	4-methylheptane	0.89852	0.302
9 10	C_3H_8 C_4H_4	propane but-1-en-3-vne	0.657228	0.319	105	C_8H_{18} C_9H_{19}	2.3-dimethylhexane	0.88566	0.309
11	C_4H_6	buta-1,2-diene	0.761961	0.309	107	C ₈ H ₁₈	2,4-dimethylhexane	0.897673	0.31
12	C_4H_6 C_4H_8	buta-1,3-diene but-1-ene	0.696499	0.314	108	C ₈ H ₁₈ C ₈ H ₁₈	2,5-dimethylhexane	0.89854	0.306
14	C_4H_8	(Z)-but-2-ene	0.710377	0.313	110	C_8H_{18}	3,4-dimethylhexane	0.900965	0.313
15 16	C_4H_8 C_4H_8	(E)-but-2-ene	0.694393	0.309	111	C_8H_{18} C_8H_{18}	3-ethylhexane	0.919538	0.31
17	C_4H_8 C_4H_8	2-methylprop-1-ene	0.710284	0.315	112	C_8H_{18} C_8H_{18}	2,2,4-trimethylpentane	0.850607	0.313
18	C_4H_{10}	butane	0.717615	0.316	114	C_8H_{18}	2,3,3-trimethylpentane	0.846002	0.317
20	$C_{5}H_{8}$	cyclopentene	0.727326	0.319	115	C_8H_{18} C_8H_{18}	2-methyl-3-ethylpentane	0.891813	0.310
21	C_5H_8	penta-1,2-diene	0.659958	0.309	117	C_8H_{18}	3-methyl-3-ethylpentane	0.853109	0.314
22	C_5H_8 C_5H_8	(<i>SE</i>)-penta-1,3-diene	0.680792	0.311	118	$C_{9}H_{10}$	2,2,3,3-tetrametry/butane 2,3-dihydro-1 <i>H</i> -indene	0.962612	0.326
24	C_5H_8	pent-1-yne	0.723201	0.318	120	$C_{9}H_{10}$	prop-1-en-2-ylbenzene	0.858494	0.295
25 26	C ₅ H ₈ C ₅ H ₉	2-methylbuta-1,3-diene 3-methylbuta-1,2-diene	0.63117	0.304	121	C_9H_{12} C_0H_{12}	propylbenzene propan-2-ylbenzene	0.862/33	0.303
27	C_5H_{10}	cyclopentane	0.689206	0.311	123	C_9H_{12}	1-ethyl-2-methylbenzene	0.751219	0.29
28 29	C_5H_{10} C_5H_{10}	pent-1-ene (Z)-pent-2-ene	0.745753	0.311	124 125	C_9H_{12} C_9H_{12}	1-ethyl-3-methylbenzene	0.773595	0.287
30	$C_{5}H_{10}$	(E)-pent-2-ene	0.766074	0.313	125	C_9H_{12} C_9H_{12}	1,2,3-trimethylbenzene	0.915502	0.308
31	C_5H_{10}	2-methylbut-1-ene	0.709394	0.303	127	C_9H_{12}	1,2,4-trimethylbenzene	0.897506	0.302
33	$C_{5}H_{10}$ $C_{5}H_{10}$	3-methylbut-1-ene	0.769217	0.315	120	C_9H_{12} C_9H_{18}	propylcyclohexane	0.751292	0.299
34	C_5H_{12}	pentane 2. mathylbutana	0.770322	0.311	130	C_9H_{18}	propan-2-ylcyclohexane	0.721097	0.299
35 36	C_5H_{12} C_5H_{12}	2-methylbutane 2.2-dimethylpropane	0.757796	0.316	131	$C_{9}H_{18}$ $C_{0}H_{20}$	non-1-ene nonane	0.960206	0.299
37	C_6H_6	benzene	0.719798	0.312	133	C_9H_{20}	2-methyloctane	0.968777	0.304
38 39	C_6H_{10}	hexa-1,5-diene	0.769059	0.311	134	C_9H_{20} CoHee	2,2-dimethylheptane	0.944471	0.307
40	$C_{6}H_{12}$	cyclohexane	0.73283	0.315	136	C_9H_{20} C_9H_{20}	2,2,4-trimethylhexane	0.900306	0.309
41	C_6H_{12}	methyl cyclopentane	0.755134	0.314	137	C_9H_{20}	2,2,5-trimethylhexane	0.900054	0.307
42	$C_{6}H_{12}$ $C_{6}H_{12}$	(Z)-hex-2-ene	0.76752	0.309	138	C_9H_{20} C_9H_{20}	2,2,3,3-tetramethylpentane	0.850377	0.309
44	C_6H_{12}	(E)-hex-2-ene	0.76873	0.309	140	C_9H_{20}	2,2,3,4-tetramethylpentane	0.864087	0.312
45 46	C_6H_{12} C_6H_{12}	(Z)-nex-3-ene (E)-hex-3-ene	0.735442	0.311	141	C_9H_{20} C_0H_{20}	2,2,4,4-tetramethylpentane	0.720711 0.874356	0.312
47	$C_{6}H_{12}$	2-methylpent-2-ene	0.752651	0.308	143	$C_{10}H_8$	naphtalene	0.819944	0.306
48 49	C_6H_{12} C_6H_{12}	(Z)-3-methylpent-2-ene	0.742923	0.306	144 145	$C_{10}H_{12}$ CueHu	1,2,3,4-tetrahydronaphtalene	0.855635 0.920094	0.302
50	$C_{6}H_{12}$	(Z)-4-methylpent-2-ene	0.802189	0.305	146	$C_{10}H_{14}$ $C_{10}H_{14}$	2-methylpropylbenzene	0.990567	0.316
51 52	C_6H_{12}	(E)-4-methylpent-2-ene	0.805989	0.304	147 148	$C_{10}H_{14}$	butan-2-ylbenzene	0.791515	0.303
52	C_6H_{12} C_6H_{12}	2,3-dimethylbut-2-ene	0.765665	0.306	148	$C_{10}H_{14}$ $C_{10}H_{14}$	1,4-diethylbenzene	0.902394	0.295
54	C_6H_{12}	3,3-dimethylbut-1-ene	0.662914	0.32	150	$C_{10}H_{14}$	1,2,3,5-tetramethylbenzene	0.892761	0.291
55 56	$C_{6}H_{14}$ $C_{6}H_{14}$	2-methylpentane	0.81935	0.306	151	$C_{10}H_{14}$ $C_{10}H_{18}$	<i>cis</i> -1,2,3,4,4a,5,6,7,8,8a-decahydronaphtalene	0.970185	0.297
57	$C_{6}H_{14}$	3-methylpentane	0.805551	0.313	153	$C_{10}H_{18}$	trans-1,2,3,4,4a,5,6,7,8,8a-decahydronaphtalene	0.830925	0.311
58 59	C_6H_{14} C_6H_{14}	2,2-dimethylbutane	0.776344	0.319	154 155	$C_{10}H_{20}$ $C_{10}H_{20}$	2-methylpropylcyclohexane butan-2-ylcyclohexane	0.970598	0.336
60	C ₇ H ₈	methylbenzene	0.767388	0.306	156	$C_{10}H_{20}$	tert-butyl cyclohexane	0.772741	0.303
61 62	C_7H_{14}	cycloheptane	0.767179	0.314	157	$C_{10}H_{20}$	dec-1-ene	1.040527	0.3
63	C_7H_{14}	(1S,2R)-1,2-dimethylcyclopentane	0.804373	0.314	159	$C_{10}H_{22}$ $C_{10}H_{22}$	3,3,5-trimethylheptane	0.943788	0.31
64	C_7H_{14}	(1 <i>R</i> ,2 <i>R</i>)-1,2-dimethylcyclopentane	0.849225	0.323	160	$C_{10}H_{22}$	2,2,3,3-tetramethylhexane	0.934524	0.317
66	C_7H_{14} C_7H_{14}	methylcyclohexane	0.761558	0.311	162	$C_{10}H_{22}$ $C_{11}H_{10}$	1-methylnaphtalene	0.846398	0.313
67	C_7H_{14}	hept-1-ene	0.886822	0.304	163	$C_{11}H_{10}$	2-methylnaphtalene	0.876791	0.3
68 69	C_7H_{14} C_7H_{16}	2,3,3-trimethylbut-1-ene heptane	0.686453	0.303	164	$C_{11}H_{16}$ $C_{11}H_{22}$	hexylcyclopentane	0.852346	0.275
70	C_7H_{16}	2-methyl hexane	0.864132	0.307	166	$C_{11}H_{22}$	undec-1-ene	1.032691	0.292
71 72	C_7H_{16} C_7H_{16}	3-methyl hexane	0.860126	0.308	167 168	$C_{11}H_{24}$ CurHua	undecane	1.057994	0.292
73	C_7H_{16}	2,3-dimethyl pentane	0.838966	0.312	169	$C_{12}H_{10}$ $C_{12}H_{18}$	1,2,3,4,5,6-hexamethylbenzene	1.043554	0.298
74 75	C_7H_{16}	2,4-dimethyl pentane	0.847426	0.311	170	$C_{12}H_{24}$	dodec-1-ene	1.064349	0.288
75 76	C_7H_{16} C_7H_{16}	3-ethyl pentane	0.850693	0.310	171	$C_{12}H_{26}$ $C_{13}H_{12}$	phenylmethylbenzene	0.946653	0.291
77	C_7H_{16}	2,2,3-trimethyl butane	0.789975	0.316	173	$C_{13}H_{26}$	tridec-1-ene	1.084449	0.282
78 79	C_8H_8 C_8H_{10}	1.2-dimethylbenzene	0.758211 0.82795	0.307	174	$C_{13}H_{28}$ $C_{14}H_{10}$	antracene	0.913651	0.288
80	C_8H_{10}	1,3-dimethylbenzene	0.83111	0.302	176	$C_{14}H_{10}$	fenantrene	0.742364	0.255
81 82	C_8H_{10} C_8H_{10}	1,4-dimethylbenzene	0.822511	0.301	177	$C_{14}H_{28}$ $C_{14}H_{20}$	tetradec-1-ene tetradecane	1.108198 1.014274	0.277
83	C_8H_{16}	1,1-dimethylcyclohexane	0.720328	0.302	179	$C_{15}H_{30}$	pentadec-1-ene	1.125744	0.272
84 85	C_8H_{16}	(1S,2R)-1,2-dimethylcyclohexane	0.695125	0.295	180	$C_{15}H_{32}$	pentadecane deculouelobecane	1.222559	0.284
85 86	$C_8 H_{16}$ $C_8 H_{16}$	(18,23)-1,2-dimethylcyclonexane (1R,3S)-1,3-dimethylcyclohexane	0.704645	0.299	181	$C_{16}H_{32}$ $C_{16}H_{32}$	hexadec-1-ene	0.908357	0.251
87	$C_{8}H_{16}$	(1R,3R)-1,3-dimethylcyclohexane	0.707786	0.301	183	$C_{16}H_{34}$	hexadecane	1.218855	0.276
88 89	C_8H_{16} C_8H_{16}	<i>cis</i> -1,4-dimethylcyclohexane <i>trans</i> -1,4-dimethyl cyclohexane	0.778624	0.299	184 185	C ₁₇ H ₃₆ C ₁₀ H ₁₄	neptadecane 1.2-di(phenyl)benzene	1.239361	0.273
90	C_8H_{16}	ethylcyclohexane	0.724804	0.298	186	$C_{18}H_{14}$	1,3-di(phenyl)benzene	1.288713	0.338
91 92	C_8H_{16}	1,1,2-trimethylcyclopentane	0.760271	0.306	187	$C_{18}H_{14}$	1,4-di(phenyl)benzene	1.263979	0.338
93	C_8H_{16} C_8H_{16}	c,c,t-1,2,4-trimethyl cyclopentane	0.806784	0.307	189	$C_{18}H_{36}$ $C_{18}H_{38}$	octadecane	1.20909	0.269
94	$C_{8}H_{16}$	1,2,4-trimethylcyclopentane	0.757857	0.305	190	$C_{19}H_{40}$	nonadecane	1.215852	0.26
05	CU	1 othyl 1 methylovolonontono	11/56202	1) 2014	1.1.1.1		010009110	1 45 8 //	11.720

Table 3.	F and	$\zeta_{\rm c}$	Values	for	Halogens
----------	-------	-----------------	--------	-----	----------

14010 3. 1 6	and Sc values for Halogens			
no	molecular formula	HIPAC name	F	۶
110.	molecular formula	IUFAC liallie	Γ	Sc
1	Cl_2	chlorine	0.581445	0.323
2	CBrClF ₂	bromochlorodifluoromethane	0.284196	0.215
3	CBr_2F_2	dibromodifluoromethane	0.590995	0.3
4	CClF ₃	chlorotrifluoromethane	0.689111	0.31
5	CCl_2F_2	dichlorodifluoromethane	0.702242	0.32
6	CCl ₂ O	carbonyl dichloride	0.742024	0.323
7	CCl ₂ F	trichlorofluoromethane	0.712392	0 319
8	CF ₄	tetrafluoromethane	0.719492	0.325
9		tetrachloromethane	0.7081	0.315
10	CHCIE	chlorodifluoromethane	0.7031	0.315
10			0.721379	0.31
11		dichloromethane	0.701989	0.311
12	CHCI3		0.730029	0.315
13	CHF ₃	trinuorometnane	0.73074	0.299
14	CH_2Br_2	dibromomethane	1.070637	0.335
15	CH_2CI_2	dichloromethane	0.701056	0.309
16	CH_2F_2	difluoromethane	0.674058	0.283
17	CH ₃ Br	bromomethane	0.582978	0.302
18	CH ₃ Cl	chloromethane	0.614656	0.307
19	CH ₃ F	fluoromethane	0.547697	0.275
20	CH ₃ I	iodomethane	0.59499	0.305
21	C ₂ Br ₂ ClF ₃	1.2-dibromo-1-chloro-1.2.2-trifluoroethane	0.857701	0.337
22	$C_2Br_2E_4$	1.2-dibromo-1.1.2.2-tetrafluoroethane	0.784229	0.316
23	$C_2 C_1 C_2 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	1-chloro-1 2 2-trifluoroethene	0.787252	0 314
23	C.CIE.	1_chloro-1,1,2,2,2, and of occurrent	0.847619	0.326
24	$C_2 C \Gamma_5$	1 1 dichloro 1 2 2 2 totrafluoroothano	0.808445	0.320
23	$C_2C_12\Gamma_4$	1,1-dichlore 1,2,2,2-tetrafluoroethane	0.808445	0.52
20	$C_2 C_1 E_2$	1,2-uichioro-1,1,2,2-tetranuoroethane	0.8084	0.318
27	$C_2Cl_3F_3$	1,1,2-trichloro-1,2,2-trifluoroethane	0.803011	0.317
28	C_2Cl_4	1,1,2,2-tetrachloroethene	0.802765	0.321
29	$C_2Cl_4F_2$	1,1,2,2-tetrachloro-1,2-difluoroethane	1.029828	0.338
30	C_2F_3N	2,2,2-trifluoroacetonitrile	0.848809	0.334
31	C_2F_4	1,1,2,2-tetrafluoroethene	0.742676	0.311
32	C_2F_6	1,1,1,2,2,2-hexafluoroethane	0.836877	0.323
33	C_2HClF_4	chloro-1,1,2,2-tetrafluoroethane	0.831107	0.316
34	C ₂ HCl ₃	1,1,2-trichloroethene	0.775843	0.319
35	C ₂ HCl ₅	1.1.1.2.2-pentachloroethane	0.782502	0.287
36	C ₂ H ₂ Cl ₂	(Z)-1.2-dichloroethene	0.732786	0.315
37	C ₂ H ₂ Cl ₂	(E)-1 2-dichloroethene	0.607663	0.292
38	C-H-E-	1 1-diffuoroethene	0.560013	0.202
20	C_{2}^{112}	ablarasthana	0.561008	0.303
39		1 shlars 1.1 diffuencesthere	0.301098	0.296
40	$C_2H_3CIF_2$	1-chioro-1,1-diffuoroethane	0.8/2/84	0.323
41	C_2H_3CIO	acetyl chloride	0.903304	0.317
42	$C_2H_3Cl_3$	1,1,1-trichloroethane	0.736148	0.313
43	$C_2H_3Cl_3$	1,1,2-trichloroethane	0.870087	0.325
44	C_2H_3F	fluoroethene	0.638419	0.312
45	$C_2H_3F_3$	1,1,1-trifluoroethane	0.703001	0.294
46	$C_2H_4Br_2$	1,2-dibromoethane	0.71066	0.304
47	$C_2H_4Cl_2$	1,1-dichloroethane	0.781645	0.318
48	$C_2H_4Cl_2$	1.2-dichloroethane	0.749127	0.307
49	C ₂ H ₄ F ₂	1.1-difluoroethane	0.701423	0.292
50	C ₂ H ₄ C ₂	chloroethane	0.662284	0.305
51	C ₂ H ₂ E	fluoroethane	0.648421	0.291
52	C-H-I	iodoethane	0.54771	0.291
52	C E	1 1 1 2 2 2 2 2 estefluerenrenene	0.028622	0.280
55		1,1,1,2,2,5,5,5-octanuoropropane	0.928032	0.525
54	C_4F_{10}	1,1,1,2,2,3,3,4,4,4-decanuorobutane	0.963743	0.317
22	C_4F_8	1,1,2,2,3,3,4,4-octanuorocyclobutane	0.955156	0.318
56	$C_3H_3F_5$	1,1,1,2,2-pentafluoropropane	0.898637	0.321
57	C ₃ H ₅ Cl	3-chloroprop-1-ene	0.60834	0.302
58	$C_3H_5Cl_3$	1,2,3-trichloropropane	0.760425	0.288
59	$C_3H_6Cl_2$	1,2-dichloropropane	0.754203	0.31
60	C ₃ H ₇ Cl	1-chloropropane	0.770941	0.319
61	C ₃ H ₇ Cl	2-chloropropane	0.82114	0.329
62	C_4H_9Cl	1-chlorobutane	0.678683	0.294
63	C ₄ H ₉ Cl	2-chlorobutane	0.840291	0.316
64	C_5F_{12}	1.1.1.2.2.3.3.4.4.5.5.5-dodecafluoropentane	1.131806	0.332
65	C ₆ BrF ₅	1-bromo-2.3.4.5.6-pentafluorobenzene	0.794394	0.288
66	C ₂ CIE ₂	1-chloro-2.3.4.5.6-pentafluorobenzene	0.74652	0.263
67	C CI F	1.3.5 trichloro 2.4.6 triffuorobanzana	0.06640	0.203
69	$C_{6}C_{13}C_{3}$	1,3,3-themore-2,4,0-thmuorobenzene	0.90049	0.304
08	C_6F_6	1,2,5,4,5,6-nexanuorobenzene	0.926248	0.301
09	C_6F_{14}	1,1,1,2,2,3,5,4,4,5,5,6,0,0-tetradecalluoronexane	1.190984	0.327
/0	C_6F_{14}	1,1,1,2,2,3,3,4,5,5,5-undecafiuoro-4-(trifluoromethyl)pentane	1.044595	0.307
71	$C_{6}F_{14}$	1,1,1,2,2,3,4,4,5,5,5-undecafluoro-3-(trifluoromethyl)pentane	1.003516	0.295
72	$C_{6}F_{14}$	perfluoro-2,3-dimethyl butane	0.957024	0.302
73	C_6HF_5	1,2,3,4,5-pentafluorobenzene	0.909415	0.306
74	$C_6H_2F_4$	1,2,3,4-tetrafluorobenzene	0.867489	0.305
75	$C_6H_2F_4$	1,2,4,5-tetrafluorobenzene	0.908484	0.311
76	$C_6H_4Cl_2$	1,2-dichlorobenzene	0.491493	0.29
77	C ₆ H ₅ Br	bromobenzene	0.74687	0.305
78	C ₆ H ₅ Cl	chlorobenzene	0 758261	0.307
79	C-H-F	fluorobenzene	0 75884	0 309
80	C.H.I	iodobenzene	0.752085	0.305
00	C E	12245 pontafluoro 6 (trifluoromathul)	1 160640	0.300
81	C_7F_8	1,2,3,4,3-pentanuoro-6-(trinuorometnyi)benzene	1.102042	0.312
82	C_7F_{16}	1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-hexadecafluorohepthane	1.10/13/	0.308
83	$C_7H_3F_5$	1,2,3,4,5-pentatiuoro-6-methylbenzene	0.940686	0.301
84	$C_{10}F_8$	1,2,3,4,5,6,7,8-octatiuoronaphtalene	0.810512	0.256

Table 4. F and ζ_c Values for Alcohols and Phenols

no.	molecular formula	IUPAC name	F	ξc
1	CH_4O	methanol	0.993221	0.275
2	C_2H_6O	ethanol	1.185526	0.291
3	$C_2H_6O_2$	ethylene glycol	0.990757	0.278
4	C_3H_6O	prop-2-en-1-ol	1.177219	0.289
5	C_3H_8O	propan-1-ol	1.253344	0.303
6	C_3H_8O	propan-2-ol	1.291621	0.299
7	$C_3H_8O_2$	propano-1,2-diol	2.015084	0.312
8	$C_3H_8O_3$	propano-1,2,3-triol	2.683465	0.306
9	$C_4H_{10}O$	butan-1-ol	1.260353	0.306
10	$C_4H_{10}O$	butan-2-ol	1.244349	0.303
11	$C_4H_{10}O$	2-methylpropan-1-ol	1.248311	0.305
12	$C_4H_{10}O$	2-methylpropan-2-ol	1.259177	0.306
13	$C_4H_{10}O_3$	2-(2-hydroxiethoxy)ethanol	2.272613	0.291
14	$C_5H_{12}O$	pentan-1-ol	1.272366	0.308
15	$C_5H_{12}O$	2-methylbutan-1-ol	1.119237	0.281
16	$C_5H_{12}O$	3-methylbutan-1-ol	1.311441	0.315
17	$C_5H_{12}O$	2-methylbutan-2-ol	1.220351	0.323
18	C ₆ H ₆ O	phenol	1.113987	0.328
19	$C_6H_{12}O$	cyclohexanol	1.017439	0.284
20	$C_6H_{14}O$	hexan-2-ol	1.224011	0.306
21	$C_6H_{14}O_2$	2-butoxyethanol	1.08944	0.305
22	C_7H_8O	phenylmethanol	0.948783	0.29
23	C_7H_8O	2-methylphenol	1.062203	0.319
24	C_7H_8O	3-methylphenol	0.995234	0.3
25	C_7H_8O	4-methylphenol	1.196632	0.325
26	$C_7H_{16}O$	heptan-1-ol	1.206273	0.302
27	$C_8H_{10}O$	2-ethylphenol	1.130224	0.318
28	$C_8H_{10}O$	3-ethylphenol	1.106714	0.309
29	$C_8H_{10}O$	4-ethylphenol	1.146712	0.309
30	$C_8H_{10}O$	2,3-dimethyllphenol	1.245829	0.337
31	$C_8H_{10}O$	2,4-dimethyllphenol	1.141822	0.316
32	$C_8H_{10}O$	2,5-dimethyllphenol	1.18668	0.319
33	$C_8H_{10}O$	3,4-dimethyllphenol	1.121852	0.309
34	$C_8H_{10}O$	3,5-dimethyllphenol	1.173403	0.312
35	$C_8H_{18}O$	octan-1-ol	1.30112	0.31
36	$C_8H_{18}O$	octan-2-ol	1.22229	0.314
37	$C_8H_{18}O$	4-methylheptan-3-ol	1.265438	0.338
38	$C_8H_{18}O$	5-methylheptan-3-ol	1.370697	0.329
39	$C_8H_{18}O$	2-ethylhexan-1-ol	1.203024	0.307
40	$C_9H_{20}O$	nonan-1-ol	1.244065	0.304
41	$C_{10}H_{22}O$	decan-1-ol	1.163339	0.291
42	$C_{12}H_{26}O$	dodecan-1-ol	1.57994	0.293
43	C17H36O	heptadecan-1-ol	1.701115	0.282
44	C18H38O	octadecan-1-ol	1.826124	0.293
45	$C_{20}H_{42}O$	eicosan-1-ol	1.70315	0.279

Methodology

F and ζ_c optimal value estimation requires experimental data. However, there are few available data, and the EoS extension to any compound results in difficulties. This paper presents a technique based on "experimental" data generation using the Wagner¹⁰ and the Rackett¹¹ equations. In Table 1 a comparison between two proposed models with experimental data¹² is made. A 0.6 % average absolute deviation in Wagner's equation, while a 0.45 % average absolute deviation in Rackett's equation were obtained. The proposed methodology has two steps.

PVT Generation Data. Wagner Equation. Fixing a temperature this equation can be used to calculate the vapor pressure. Wagner's equation has the following form:

$$\ln\left(\frac{P^{\text{sat}}}{P_{\text{c}}}\right) = \frac{A\tau + B\tau^{1.5} + C\tau^3 + D\tau^6}{1 - \tau}$$
(3)

where

$$\tau = 1 - \frac{T}{T_{\rm c}} \tag{4}$$

Table 5. *F* and ζ_c for Other Functional Groups

	molecular	HID & C		6
no.	formula	IUPAC name	F	ζc
1	C_3F_6O	1,1,1,3,3,3-hexafluoropropan-2-one	0.919448	0.309
2	C ₃ ClF ₅ O	1-chloro-1,1,3,3,3-pentafluoropropan-	1.007992	0.31
		2-one		
3	C_2H_6S	methylsulfanylmethane	0.688105	0.31
4	C_2H_6S	ethanethiol	0.684028	0.311
5	$C_2H_5NO_2$	nitroethane	0.751403	0.277
6	C_2N_2	oxalonitrile	0.798674	0.306
7	CH_4S	methanethiol	0.640790	0.314
8	CH_3NO_2	nitromethane	0.678175	0.265
9	CS_2	methanedithione	0.650998	0.330
10	CO_2	carbon dioxide	0.733560	0.310
11	COS	methylsulfanylmethane	0.570692	0.317
12	CO	carbon monoxide	0.545619	0.329
13	NH ₃	azane	0.652/82	0.284
14	H_2SO_4	sulfur acid	0.268441	0.2050
15	H_2S	nydrogen sunde	0.5/0048	0.320
10	H_2O	water	0.718303	0.275
10		hydrogen fluoride	0.320708	0.527
10		hydrogen ableride	0.246492	0.107
20	HCI UPr	hydrogen bromide	0.571002	0.304
20	HDI Vo	Nonon	0.334900	0.321
21		ozone	0.409090	0.321
22	03 SO:	sulfur triovide	0.02/113	0.294
24	SO ₃	sulfur dioxide	0.723264	0.307
25	0	oxygen	0.495347	0.300
26	N ₂ O	nitrous oxide	0.495498	0.314
27	N ₂ O	nitrogen	0.523263	0.328
28	NO ₂	nitrogen dioxide	1.635188	0.294
29	NO	nitric oxide	1.223946	0.312
30	Kr	krypton	0.457689	0.324
31	F ₆ S	sulfur hexafluoride	0.982689	0.328
32	F ₂	fluor	0.541138	0.329
33	D_2O	deuterium oxide	0.716011	0.269
34	SiCl	tetrachlorosilane	0.754727	0.314
35	BF ₃	trifluoroborane	1.049244	0.311
36	BCl ₃	trichloroborane	0.555883	0.286
37	Ar	argon	0.466113	0.328
38	AsCl ₃	trichloroarsane	0.750221	0.316
39	C ₂ H ₃ NO	methylimino(oxo)methane	0.717833	0.280
40	C ₃ H ₈ S	methylsulfanylethane	0.680718	0.298
41	C_4H_4S	tiophene	0.703994	0.314
42	$C_4H_8O_2$	1,4-dioxane	0.820666	0.312
43	C_4H_8S	tiolane	0.573372	0.284
44	C ₄ H ₉ NO	morpholine	0.959946	0.32
45	$C_4H_{10}S$	ethylsulfanylethane	0.755134	0.307
46	$C_4H_{10}S_2$	ethyldisulfanylethane	0.687944	0.279
47	$C_8H_4O_3$	2-benzofuran-1,3-dione	1.19032	0.31
48	$C_5H_{10}O$	(2R)-2-methyloxolane	0.738974	0.294
49	C_7H_6O	benzaldehyde	0.788172	0.296
50	$C_5H_4O_2$	furan-2-carbaldehyde	1.048306	0.317
51	C_4H_8O	2-methylpropanal	0.813122	0.301
52	C_3H_6O	propanal	0.881463	0.337
53	C_3H_4O	prop-2-enal	0.773765	0.281
54	C_2H_4O	acetaidehyde	0.520222	0.274
55	CH_2O	metanal	0.539339	0.253
56	$C_7H_6O_2$	DenZOIC acid	1.224394	0.299
5/	$C_5H_{10}O_2$	pentanoic acid	1.099546	0.281
58	$C_4H_8O_2$	2-methylpropanoic acid	1.184447	0.284
59	$C_4H_8O_2$	butanoic acid	1.450017	0.331
6U	$C_4H_6U_4$	propagoio agid	1.304425	0.252
01	$C_3H_6O_2$	propanoic acid	1.0/3280	0.295
62	$C_3\Pi_4O_2$	prop-2-enoic acid	1.01/851	0.28/
64	$C_2 \Pi_4 O_2$	methanoic acid	0.77341	0.239
65	$C_{H}N$	henzonitrile	0.00/903	0.231
66	C ₂ H ₂ N	bevanenitrile	1 087227	0.203
67	C ₆ H _{-N}	hutanenitrile	0.703604	0.209
68	C ₂ H ₂ N	propanenitrile	0 55713/	0.205
69	C ₂ H ₂ N	prop-2-enenitrile	0.610385	0.254
70	C ₂ H ₂ N	acetonitrile	0 494138	0.227
71	CuHuO	butyl benzoate	1,116851	0.295
72	$C_0H_{10}O_2$	ethyl benzoate	0.839516	0.248
73	$C_8H_{16}O_2$	2-methylpropyl 2-methylpropanoate	1.016658	0.305
74	$C_8H_{16}O_2$	2-methylpropyl butanoate	1.007873	0.298
	- 010 0 2			

Table 5. Continued

	molecular			
no.	formula	IUPAC name	F	ξ
75	$C_8H_{16}O_2$	3-methylbutyl propanoate	0.518355	0.23
76	$C_8H_{14}O_4$	diethyl butanedioate	1.113612	0.275
78	$C_8 H_8 O_3$	methyl benzoate	0.097704	0.245
79	$C_8H_8O_2$ $C_7H_{14}O_2$	2-methylpropyl propanoate	0.99579	0.301
80	$C_7H_{14}O_2$	propyl-2-methylpropanoate	1.002754	0.307
81	$C_7H_{14}O_2$	propyl butanoate	1.001727	0.298
82	C ₆ H ₁₄ O	1-propoxypropane	0.952232	0.313
83	$C_6H_{14}O$	1-metoxypentane	0.885947	0.307
84 85	$C_6H_{12}O_2$	propyl propapoate	1.288887	0.329
86	$C_6H_{12}O_2$ $C_6H_{12}O_2$	ethyl 2-methylpropanoate	0.945852	0.302
87	$C_6H_{12}O_2$	ethyl butanoate	0.929131	0.295
88	$C_6H_{12}O_2$	2-methylpropyl acetate	0.946459	0.301
89	$C_6H_{12}O_2$	butyl acetate	0.976193	0.306
90	$C_5H_{10}O_2$	methyl 2-methylpropanoate	0.919215	0.31
91	$C_5 \Pi_{10} O_2$	ethyl propapoate	0.899317	0.299
93	$C_{5}H_{10}O_{2}$	propyl acetate	0.888758	0.295
94	$C_5H_{10}O_2$	2-methylpropyl formate	0.946953	0.317
95	$C_6H_8O_4$	dimethyl (Z) -but-2-enedioate	1.037685	0.282
96	$C_5H_8O_2$	ethyl prop-2-enoate	0.915171	0.304
97	$C_5H_8O_2$	methyl 2-methylprop-2-enoate	0.843322	0.295
98	$C_4H_8O_2$	methyl propanoste	0.813729	0.302
100	$C_4H_8O_2$	ethyl acetate	0.856304	0.296
101	$C_4H_6O_2$	methyl prop-2-enoate	0.84014	0.298
102	$C_4H_6O_3$	acethyl acetate	1.998015	0.329
103	$C_4H_6O_2$	ethenyl acetate	0.888928	0.309
104	$C_3H_6O_2$	methyl acetate	0.810113	0.297
105	$C_3H_6O_2$	ethyl formate	0.768135	0.3
107	$C_{12}H_{10}O_2$	phenoxybenzene	0.999045	0.302
108	C ₈ H ₁₈ O	2-methyl-2-[(2-methylpropan-	0.859843	0.307
109	CoHuoO	2-yi)oxy jpropane	1 125277	0 309
110	$C_8H_{10}O$	ethoxybenzene	0.950895	0.299
111	C_7H_8O	methoxybenzene	0.89566	0.309
112	$C_6H_{14}O$	2-propan-2-yloxypropane	0.917406	0.315
113	$C_6H_{14}O$	1-ethoxybutane	0.995535	0.315
114	$C_6H_{14}O$	2-methoxy-2-methylbutane	0.844195	0.307
115	$C_5H_{12}O$ $C_5H_{12}O$	1-methoxybutane	0.853234	0.309
117	$C_5H_{12}O$	1-ethoxypropane	0.939942	0.318
118	C ₅ H ₆ O	2-methylfuran	0.813772	0.319
119	$C_4H_{10}O_2$	1,2-dimethoxyethane	0.918207	0.306
120	$C_4H_{10}O$	2-methoxypropane	0.781607	0.309
121	$C_4H_{10}O$	1-metnoxypropane	0.779981	0.307
122	$C_4H_{10}O$	ethoxyethene	0.795326	0.311
123	C_4H_4O	furan	0.717367	0.312
125	$C_3H_8O_2$	dimethoxymethane	0.734817	0.289
126	C_3H_8O	methoxyethane	0.785273	0.313
127	C_3H_6O	methoxyethene	1.031854	0.311
128	C_3H_6O	2-methyloxirane	0.674056	0.286
130	C_2H_6O C_2H_4O	oxirane	0.637449	0.297
131	$C_{12}H_{27}N$	<i>N</i> , <i>N</i> -dibutylbutan-1-amine	1.329921	0.306
132	$C_{10}H_{15}N$	<i>N</i> -butylaniline	1.068377	0.293
133	C_9H_7N	Isoquinoline	0.956186	0.331
134	$C_8H_{19}N$	2-methyl-N-(2-methylpropyl)- propan-1-amine	1.173614	0.334
135	$C_8H_{19}N$	N-butylbutan-1-amine	1.126937	0.317
136	$C_8H_{11}N$	<i>N</i> -ethylaniline	0.929722	0.292
137	$C_8H_{11}N$	<i>N</i> , <i>N</i> -dimethylaniline	0.916001	0.299
138	C_7H_9N	4-metnylaniline	0.5/55/5	0.207
140	C ₇ H ₉ N	1-methylaniline	0.849297	0.292
141	C ₇ H ₉ N	<i>N</i> -methylaniline	0.927767	0.308
142	C ₆ H ₁₅ N	N,N-diethyletanamine	0.95996	0.314
143	$C_6H_{15}N$	N-propan-2-ylpropan-2-amine	0.965151	0.321
144	C ₆ H ₁₅ N	N-propylpropan-1-amine	0.922004	0.306
145 146	CHN CHN	4-methylpyridine	0.752961	0.296
140	C_6H_7N	2-methylpyridine	0.835552	0.297
		* 1*		

Table :	5. Co	ntinued
---------	-------	---------

	molecular			
no.	formula	IUPAC name	F	ζc
148	C ₆ H ₇ N	aniline	0.927155	0.306
149	$C_5H_{11}N$	piperidine	0.827813	0.321
150	C_5H_5N	pyridine	0.750526	0.31
151	$C_4H_{11}N$	N-ethylethanamine	0.82656	0.305
152	$C_4H_{11}N$	2-methylpropan-1-amine	0.926849	0.314
153	$C_4H_{11}N$	butan-1-amine	0.879879	0.311
154	C_4H_9N	pyrrolidine	0.868435	0.324
155	C_4H_5N	1H-pyrrole	0.769295	0.297
156	C ₃ H ₉ N	N,N-dimethylmethanamine	0.715215	0.315
157	C_3H_9N	propan-2-amine	0.838326	0.313
158	C_3H_9N	propan-1-amine	0.842004	0.311
159	$C_2H_8N_2$	ethane-1,2-diamine	1.035607	0.303
160	C_2H_7NO	2-aminoethanol	0.997138	0.219
161	C_2H_7N	dimethylamine	0.81977	0.306
162	C_2H_7N	ethanamine	0.821424	0.308
163	CH ₅ N	methanamine	0.784828	0.3
164	C_8H_8O	1-phenylethanone	0.874993	0.301
165	$C_7H_{14}O$	heptan-2-one	1.239793	0.333
166	$C_6H_{12}O$	4-methylpentan-2-one	0.895106	0.301
167	$C_6H_{12}O$	hexan-2-one	1.124259	0.305
168	$C_6H_{12}O$	hexan-3-one	0.894069	0.299
169	$C_6H_{10}O$	cyclohexanone	0.911008	0.287
170	$C_5H_{10}O$	pentan-3-one	0.845723	0.299
171	$C_5H_{10}O$	3-methylbutan-2-one	0.86589	0.306
172	$C_5H_{10}O$	pentan-2-one	0.838502	0.296
173	C_5H_8O	cyclopentanone	0.765741	0.306
174	C_4H_8O	butan-2-one	0.78905	0.294
175	C_2H_2O	ethenone	0.805777	0.337

Wagner's equation constants A, B, C, and D are available in the Reid et al. property data bank.⁹ If Wagner's constants are not available for a given substance, they are determined by nonlinear regression using another vapor pressure model.¹³

Rackett Equation. This equation allows saturated liquid volume calculation for a given temperature.

$$V_T^L = \frac{b^{1+(1-\binom{T}{c})^d}}{a}$$
(5)

Rackett's equation constants are available in the Reid et al. property data bank.⁹ If Rackett's constants are not available for a given substance, they are determined by nonlinear regression using another saturated liquid volume model.¹³

Objective Function. The ζ_c initial guess is 0.307; this is the resulting value when the critical point criterion is applied to the Peng–Robinson equation.⁵ The *F* initial guess is fixed to the average value for 38 reported substances in the Patel and Teja original work.² The objective function (OF) is:

$$OF = \left(\sum_{i=1}^{\text{data}} \frac{|P_{\text{Wagner}}^{\text{sat}} - P_{\text{PT}}^{\text{sat}}|}{P_{\text{Wagner}}^{\text{sat}}}\right)^2 + \sum_{i=1}^{\text{data}} \frac{|v_{\text{Rackett}}^{\text{sat}} - v_{\text{Rackett}}^{\text{sat}}|}{v_{\text{Rackett}}^{\text{sat}}}$$
(6)

The first right side term represents the absolute deviation in vapor pressure, and the second one represents the absolute deviation in saturated liquid volume. *F* and ζ_c optimal values are those that minimize the objective function. The optimization procedure was made in Microsoft Excel using the SOLVER add-in.

Results

The new method was applied to 498 pure substances. In Tables 2, 3, 4, and 5, *F* and ζ_c values are reported for

Table 6.	Average	Absolute	Deviations	for the	Thermod	vnamical	Properties	of Some	Pure Substances ^{<i>a</i>}	

	$P_{\rm sat}(A)$	AAD)	$V^{l}(A$	AD)	$V^{v}(A$	AD)	$\Delta H^{ m vap}$	(AAD)		
compound	PT	PTNM	PT	PTNM	PT	PTNM	PT	PTNM	$T_{\rm r}$ min	$T_{\rm r} \max$
nitrogen	0.63 %	1.71 %	5.03 %	5.04 %	1.57 %	2.88 %	3.95 %	4.23 %	0.5	0.99
oxygen	2.00 %	1.75 %	4.20 %	3.87 %	3.07 %	2.71 %	1.53 %	1.48 %	0.35	0.97
argon	0.77 %	2.24 %	6.87 %	6.82 %	2.46 %	4.52 %	7.64 %	7.92 %	0.56	0.97
carbon dioxide	0.23 %	1.44 %	4.35 %	4.34 %	1.68 %	3.14 %	0.65 %	1.97 %	0.71	0.99
methane	1.19 %	1.49 %	5.49 %	5.43 %	1.66 %	2.09 %	4.29 %	4.43 %	0.48	0.996
ethene	1.64 %	1.28 %	4.52 %	4.09 %	2.49 %	2.28 %	2.37 %	2.33 %	0.37	0.99
ethane	1.18 %	0.74 %	4.49 %	3.98 %	1.59 %	1.35 %	1.61 %	1.70 %	0.39	0.98
acetylene	0.98 %	2.28 %	6.87 %	6.82 %	2.46 %	4.52 %	7.64 %	7.92 %	0.62	0.998
propane	1.66 %	1.36 %	3.47 %	3.34 %	2.44 %	2.20 %	1.50 %	1.46 %	0.38	0.97
propylene	1.25 %	1.81 %	4.15 %	2.82 %	2.07 %	2.82 %	1.00 %	1.22 %	0.36	0.96
butane	1.21 %	1.36 %	4.86 %	4.01 %	1.96 %	2.36 %	1.32 %	1.47 %	0.45	0.99
isobutane	4.16 %	2.89 %	3.80 %	3.90 %	3.87 %	3.18 %	1.57 %	1.69 %	0.34	0.98
heptane	0.88 %	2.24 %	1.81 %	2.37 %	2.46 %	3.43 %	0.58 %	0.78 %	0.54	0.75
octane	5.70 %	4.26 %	4.02 %	3.99 %	5.19 %	4.52 %	3.30 %	3.37 %	0.42	0.98
nonane	1.28 %	1.62 %	3.08 %	3.07 %	2.80 %	2.67 %	6.79 %	7.08 %	0.54	0.91
decane	1.65 %	1.69 %	2.80 %	2.67 %	5.83 %	6.55 %	2.18 %	2.36 %	0.55	0.97
ammonia	2.78 %	1.16 %	3.46 %	3.39 %	4.10 %	3.91 %	2.35 %	2.80 %	0.48	0.99
methanol	0.76 %	0.82 %	4.27 %	3.99 %	6.71 %	7.57 %	5.87 %	6.31 %	0.56	0.97
water	1.03 %	0.31 %	4.77 %	5.86 %	1.88 %	1.61 %	1.50 %	1.66 %	0.42	0.99
average	1.63 %	1.71 %	4.33 %	4.20 %	2.96 %	3.39 %	3.03 %	3.27 %		

$$Y(AAD) = \frac{1}{N} \sum_{i}^{N} \frac{|Y_i^{exp} - Y_i^{PT}|}{Y_i^{exp}}$$

where $Y = P^{sat}, V^{I}, V^{V}, \text{ or } \Lambda H^{Vap}$

hydrocarbons, halogens, alcohols, and phenols and other functional groups.

Thermodynamic Properties Calculations. Pure Substances. New constants were compared with those reported in the Patel and Teja original article² by vapor pressure, saturated liquid volume, and saturated vapor volume calculations. The results were compared with experimental data¹² for both groups of constants. In Table 6 the thermodynamical property average absolute deviations for 19 pure compounds are presented. The final row of Table 6 presents the average deviation for each property. Results allow the conclusion that new constants are comparable with those values originally reported by Patel and Teja and validate the method for calculating constants for substances not reported in literature.

Mixtures. New constants can be extended to mixtures using the Panagiotopoulous–Reid¹⁴ mixing rule. Binary interaction coefficients (k_{ii}) are determined using experimental data. New

Figure 1. Ethanol−water liquid−vapor equilibria at 101.325 kPa (●, Rieder and Thompson;¹⁸ −, PT EoS using constants from this work and PR mixing rules).

 Table 7. Binary Interaction Parameters for the PTPR EoS for

 Different Systems

N_0	constants	system	k ₁₂	<i>k</i> ₂₁
1	new	ethanol water	-0.1174451	-0.05754551
2	new	water butanol	-0.01431804	-0.12902278
3	new	ethanol propyl acetate	0.05499081	-0.03821972
4	original	water butanol	-0.01951162	-0.1351486

constants were used to predict phase equilibria and excess enthalpies for three binary systems.

Liquid–Vapor Equilibria. Liquid–vapor equilibria at 101.325 kPa for the ethanol–water system was evaluated. Binary interaction parameter estimations were made using the Paunović method¹⁵ according to the following objective function:

$$OF = \sum_{i=1}^{ND} \left(\frac{|x_{1i}\phi_{1i}^{L} - y_{1i}\phi_{1i}^{V}|}{y_{1i}\phi_{1i}^{V}} + \frac{|x_{2i}\phi_{2i}^{L} - y_{2i}\phi_{2i}^{V}|}{y_{2i}\phi_{2i}^{V}} \right)$$
(7)

In Figure 1 a comparison between the model and the experimental data¹⁶ was made. The temperature average absolute deviation was 0.06 %. The azeotropic point prediction was 351.2 K and 0.86611 in ethanol molar fraction, and the relative absolute deviation at this point was 0.03 % and 3.3 %, respectively. In Table 7 k_{ii} values are reported.

Vapor–Liquid–Liquid Equilibria. The water–*n*-butanol system at 101.325 kPa was studied. A *Txy* diagram prediction was made using both original and new constants. Binary interaction parameters were estimated minimizing eq 7 and using experimental data reported by Iwakabe and Kosigue.¹⁷ k_{ij} values are reported in Table 7. Figure 2 illustrates the results. Using the new constants, the relative absolute deviation in the vapor–liquid–liquid temperature was 0.01 %. The objective

Figure 2. Water–*n*-butanol system vapor–liquid–liquid equilibria at 101.325 kPa (\bullet , Iwakabe and Kosigue,¹⁹–, PT EoS using constants from this work; ---, PT EoS using original constants and PR mixing rules).

function (eq 7) for the original constants is 3.33; meanwhile, for the new ones it is 2.44.

Excess Enthalpies. Ethanol-propyl acetate at 348.15 K and 101.325 kPa was evaluated. Binary interaction parameters were calculated using the following objective function:

$$OF = \sum_{i=1}^{ND} (H_{iexp}^{E} - H_{iPTPR}^{E})^{2}$$
(8)

The proposed objective function corresponds to a nonlinear least-squares regression in excess enthalpies.¹⁸ Experimental data are those reported by Lien, Lee, and Lin.¹⁹ Binary interaction parameters are reported in Table 7. Figure 3 shows that the model adjustment to experimental data is correct.

Conclusions

Estimation of the substance-dependent *F* and ζ_c PT EoS constants can be done using the Wagner and Rackett equation to generate *PVT*

Figure 3. Excess enthalpies for the ethanol-propyl acetate system at 348.15 K and 101.325 kPa (\bullet , Lien et al.²⁰; -, PT EoS using constants from this work and PR mixing rules).

"experimental" data. The new method is equivalent to that presented by Patel and Teja in their original work. New constants confirm the power prediction of the Patel—Teja EoS for polar compounds. The use of the Panagiotopoulous—Reid mixing rule with the Patel—Teja EoS can predict mixture properties correctly. The new 498 constants can be used to extend the Patel—Teja EoS in thermodynamical properties predictions and process design, evaluation, and simulation.

Literature Cited

- (1) Valderrama, J. The state of the Cubic Equations of State. *Ind. Eng. Chem. Res.* **2003**, *42*, 1603–1618.
- (2) Patel, N.; Teja, A. A new cubic equation of state for pure fluids and mixtures. *Chem. Eng. Sci.* **1981**, *37*, 463–473.
- (3) van der Waals, J. On the continuity of the Gaseous and Liquid states. Ph.D. Dissertation, Universiteit Leiden, Leiden, The Netherlands, 1873.
- (4) Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. *Chem. Eng. Sci.* 1972, 27, 1197–1203.
- (5) Peng, D.; Robinson, D. A new two-constant equation of state. Ind. Chem. Eng. Fundam. 1976, 15, 59–64.
- (6) Abdollahi-Demneh, F.; Moosavian, M.; Montazer-Rahmati, M.; Omidkhah, M.; Bahmaniar, H. Comparison of the prediction power of 23 generalized equations of state: Part I. Saturated thermodynamic properties of 102 pure substances. *Fluid Phase Equilib.* 2010, 288, 67–82.
- (7) F Abdollahi-Demneh, F.; Moosavian, M.; Montazer-Rahmati, M.; Omidkhah, M.; Bahmaniar, H. Comparison of the prediction power of 23 generalized equations of state: Part II. Parametric Evaluation. *Fluid Phase Equilib.* **2010**, *291*, 48–58.
- (8) Elliot, J. R.; Lira, C. T. Introductory Chemical Engineering Thermodynamics, 1st ed.; Prentice Hall: Upper Saddle River, NJ, 1999.
- (9) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The properties of gases and liquids, 4th ed.; McGraw-Hill: New York, 1987.
- (10) Wagner, W. A new correlation method for thermodynamic data applied to the vapor pressures curves of Argon, Nitrogen and Water; IUPAC Tables Project Centre: London, 1977.
- (11) Rackett, H. Equation of state for saturated liquids. J. Chem. Eng. Data 1970, 15, 514–517.
- (12) Perry, R. H.; Green, D. W. Perry's Chemical Engineers Handbook, 7th ed.; McGraw-Hill: New York, 1999.
- (13) Forero, L.; Velásquez, J. Complemento en MS EXCEL para consulta de propiedades termodinámicas de sustancias puras. *Invest. Apl.* 2008, 4, 23–29.
- (14) Panagiotopoulos, A.; Reid, C. New Mixing Rule for Cubic Equations of State for Highly Polar, Asymmetric Systems. ACS Symp. Ser. 1986, 300, 571–582.
- (15) Paunović, R.; Jovanović, S.; Mihajlov, A. Rapid computation of binary interaction coefficients of an equation of state for vapor liquid equilibrium calculations. Application to the Redlich-Kwong-Soave equation of state. *Fluid Phase Equilib.* **1981**, *6*, 141–148.
- (16) Rieder, R.; Thompson, A. Vapor-Liquid Equilibria Measured by a Gillespie Still - Ethyl Alcohol - Water System. Ind. Eng. Chem. 1949, 41, 2905–2908.
- (17) Iwakabe, K.; Kosuge, H. Isobaric vapor-liquid-liquid equilibria with a newly developed still. *Fluid Phase Equilib.* **2001**, *192*, 171–186.
- (18) Edgar, T. F.; Himmelblau, D. M. *Optimization of chemical processes*, 2nd ed.; McGraw-Hill: New York, 2001.
- (19) Lien, P.-J.; Lin, H.-m.; Lee, M.-J. Excess molar enthalpies for binary mixtures of ethanol + benzene + cyclohexane + propyl acetate and 1-propanol + benzene + cyclohexane + heptane at 348.15 K. *Fluid Phase Equilib.* 2004, 215, 187–193.

Received for review June 16, 2010. Accepted August 8, 2010. The authors thank to Colciencias "Jóvenes Investigadores" program for economical support during the present research.

JE100656D