Prediction of Refractive Index of Polymers Using Artificial Neural Networks

G. Astray, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ A. Cid, ${ }^{\dagger}$ O. Moldes, ${ }^{\dagger}$ J. A. Ferreiro-Lage, ${ }^{\dagger}$ J. F. Gálvez, ${ }^{\dagger}$ and J. C. Mejuto ${ }^{\dagger}$

Department of Physical Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain, and Department of Informatics, ESEI, University of Vigo, 32004, Ourense, Spain

This paper was withdrawn on January 11, 2011 (DOI: 10.1021/je200071p).

Abstract

Density functional theory (DFT) calculations were carried out in the prediction of the refractive index (n) of different polymers at the B3LYP/6-31G(d) level. A set of quantum chemical descriptors calculated from monomers of polymers, the energy of the lowest unoccupied molecular orbital (E_{LUMO}), molecular average polarizability (α), heat capacity at constant volume (C_{V}), and the most positive net atomic charge on hydrogen atoms in a molecule (e) were used to build a general quantitative structure-property relationship (QSPR) model for the refractive index. The proposed model gives the mean error of prediction of 1.048% for the validation set.

Introduction

The refractive index is a basic optical property of polymers, which is related to other optical, electrical, and magnetic properties. ${ }^{1}$ Therefore, the refractive index is widely used in material science. For example, the specific refractive index increment $\left(d_{\mathrm{n}} / d_{\mathrm{c}}\right)$ can be used for the determination of molecular weight, size, and shape. ${ }^{2}$ A successful quantitative structureproperty relationship (QSPR) is valuable due to its quantitative prediction of the refractive index values of as yet unsynthesized polymers. The refractive index can be estimated with the group additive property (GAP) theory. ${ }^{3}$ The GAP method provides a rapid and computationally inexpensive approach to the estimation of the refractive index values, but it is purely an empirical approach and limited to systems composed only of functional groups that have been previously investigated. Furthermore, the group contributions method is only approximate since this approach fails to account for the presence of neighboring groups or conformational influences. Some of the shortcomings and limitations of group contribution methods can be avoided by using the theoretical QSPR models. Bicerano ${ }^{2}$ developed a $10-$ descriptor model ($R=0.977$) for a set of 183 polymers. These descriptors included topological and constitutional descriptors. Other authors ${ }^{4}$ correlated the refractive indices of polymers with their graph theoretical indices and also got a 10-descriptor correlation with R of 0.981 . There are too many descriptors involved in these two models, since the improvement of results by increasing the number of descriptors in the correlation equation should be considered with care, since over-fitting and chance correlations may in part be due to such an approach. Katritzky et al. ${ }^{5}$ used the CODESSA program to develop a correlation coefficient of $R=0.970$ for a set of the refractive indices of 95 linear polymers with five descriptors. Xu et al. ${ }^{6}$ introduced a four-descriptor QSPR model with $R=0.964$. The 121 experimental refractive index data were taken from the set of 183 polymers. However, only García-Domenech's model has been evaluated with the external validation set. ${ }^{4}$ In fact, validation is a crucial aspect of any QSPR/QSAR (quantitative structure-activity relationship) modeling. ${ }^{7}$ The quantum-chemi-

[^0]cal descriptors encode information about the electronic structure of the molecule and thus implicitly account for the cooperative effects between functional groups, charge redistribution, and possible hydrogen bonding in the polymer. Furthermore, the quantum-chemical descriptors have a clearly physical meaning. The aim of this study was to produce an artificial neural network (ANN) that could predict the refractive index of prop-2-enoate polymers.

ANNs are a complete statistical tool for data analysis ${ }^{8}$ which try to reproduce artificially the human ability of taking decisions simulating the human brain's basic unit, the neuron, and the interconnections between the neurons that allow them to work together and save information from the experience. ${ }^{9-11}$ It is a flexible structure, capable of making a nonlinear mapping between input and output spaces. ${ }^{12}$ ANNs were originally an abstract simulation of the biological brain systems, composed by an assembly of units called "neurons" (or "nodes") connected between them. The advantage of ANNs consists of their ability to learn from real cases and relearn when new data are input into the system. They are particularly useful in managing different aspects. In recent years, ANNs have been extended successfully to very different fields, from hydrology to finances, happening through chemistry. ${ }^{13-22}$

Materials and Methods

Data Set. The refractive index data for 95 polymers (Table 1), measured at room temperature (298 K), were collected from the Prediction of Polymer Properties. ${ }^{2}$ The 95 polymers are divided among the 73 polymers used to train the ANN and 22 used to verify their proper operation.

Computational Methods: Quantum Properties Determination. Density functional theory (DFT) ${ }^{23,24}$ has been used to optimize the geometry of the parent monomers and calculate their electronic and thermal properties. All of the calculations have been performed with the Gaussian 03 suite of programs ${ }^{25}$ using Becke's three-parameter exchange functional, ${ }^{26}$ the nonlocal correlation functional of Lee, Yang, and Parr, ${ }^{27}$ (B3LYP) and Pople's 6-31G(d,p) basis set, which includes a polarization function for every atom.

All minima on the potential energy surface were characterized by harmonic analysis, and the computed frequencies were used

Table 1. n Values for Each Polymer

polymer	n	polymer	n
Training Data			
poly(heptafluorobutyl prop-2-enoate)	1.3670	poly(prop-2-enoate alcohol)	1.5000
poly(pentafluoropropyl prop-2-enoate)	1.3850	poly(1,2-butadiene)	1.5000
poly(trifluoroethyl prop-2-enoate)	1.4070	polyisobutylene	1.5050
poly(2,2,2-trifluoro-1-methylethylmeth prop-2-enoate)	1.4185	poly(cyclohexylmeth prop-2-enoate)	1.5060
poly(trifluoroethylmeth prop-2-enoate)	1.4370	poly(2-hydroxyethylmeth prop-2-enoate)	1.5119
poly(prop-2-enoate isobutylether)	1.4507	poly(1-butene)	1.5125
poly(prop-2-enoate ethylether)	1.4540	poly(prop-2-enoate chloroacetate)	1.5130
poly(prop-2-enoate n-butylether)	1.4563	poly(N-methylmethacrylamide)	1.5135
poly(prop-2-enoate n-pentylether)	1.4590	poly(2-chloroethylmeth prop-2-enoate)	1.5170
poly(4-fluororo-2-trifluoromethylstyrene)	1.4600	polyacrylonitrile	1.5200
poly(prop-2-enoate n-octylether)	1.4613	polymethacrylonitrile	1.5200
poly(prop-2-enoate 2-ethylhexylether)	1.4626	poly(prop-2-enoic acid)	1.5270
poly(prop-2-enoate n-decylether)	1.4628	poly(1,3-dichloropropylmeth prop-2-enoate)	1.5270
poly(t-butylmeth prop-2-enoate)	1.4638	poly(N -prop-2-enoate pyrrolidone)	1.5300
poly(prop-2-enoate n-dodecylether)	1.4640	poly(prop-2-enoate chloride)	1.5390
poly(4-methyl-1-pentene)	1.4650	poly(2-bromoethylmeth prop-2-enoate)	1.5426
poly(n-butyl prop-2-enoate)	1.4660	poly(1-phenylethylmeth prop-2-enoate)	1.5487
poly(prop-2-enoate propionate)	1.4665	poly(p-isopropylstyrene)	1.5540
poly(prop-2-enoate methylether)	1.4670	poly(benzylmeth prop-2-enoate)	1.5679
poly(prop-2-enoate acetate)	1.4670	poly(phenylmeth prop-2-enoate)	1.5706
poly(ethyl prop-2-enoate)	1.4685	poly(2,3-dibromopropylmeth prop-2-enoate)	1.5739
poly(1-octadecene)	1.4710	poly(prop-2-enoate benzoate)	1.5775
poly(isopropylmeth prop-2-enoate)	1.4728	polystyrene	1.5849
polypropylene	1.4735	poly(o-methylstyrene)	1.5874
poly(prop-2-enoate sec-butylether)	1.4740	poly(o-methoxystyrene)	1.5932
poly(prop-2-enoate formate)	1.4757	poly(p-bromophenylmeth prop-2-enoate)	1.5964
polyethylene	1.4760	poly(N-benzylmethacrylamide)	1.5965
poly(2-fluoroethylmeth prop-2-enoate)	1.4768	poly(p-methoxystyrene)	1.5967
poly(isobutylmeth prop-2-enoate)	1.4770	poly(pentachlorophenylmeth prop-2-enoate)	1.6080
poly(methyl prop-2-enoate)	1.4790	poly(o-chlorostyrene)	1.6098
poly(n-hexylmeth prop-2-enoate)	1.4813	poly(N -prop-2-enoate phthalimide)	1.6200
poly(n-butylmeth prop-2-enoate)	1.4830	poly(2,6-dichlorostyrene)	1.6248
poly(n-propylmeth prop-2-enoate)	1.4840	poly(2-prop-2-enoate thiophene)	1.6376
poly(ethylmeth prop-2-enoate)	1.4850	poly(α-prop-2-enoate naphthalene)	1.6818
poly(methylmeth prop-2-enoate)	1.4893	poly(N-prop-2-enoate carbazole)	1.6830
poly(prop-2-enoate hexylether)	1.4951	poly(pentabromophenylmeth prop-2-enoate)	1.7100
poly(prop-2-enoate methylketone)	1.5000		
Validation Data			
poly(2-nitro-2-methylpropylmeth prop-2-enoate)	1.4846	poly[2-phenylsulfonyl)ethylmeth prop-2-enoate]	1.5682
poly(3,3,5-trimethylcyclohexylmeth prop-2-enoate)	1.4850	poly (m-crsylmeth prop-2-enoate)	1.5683
poly(3-methylcyclohexylmeth prop-2-enoate)	1.4947	poly(o-crsylmeth prop-2-enoate)	1.5707
poly(4-methylcyclohexylmeth prop-2-enoate)	1.4975	poly(1,2-diphenylethylmeth prop-2-enoate)	1.5816
poly(2-methylcyclohexylmeth prop-2-enoate)	1.5028	poly(o-chlorobenzylmeth prop-2-enoate)	1.5823
poly(1-methylcyclohexylmeth prop-2-enoate)	1.5111	poly(m-nitrobenzylmeth prop-2-enoate)	1.5845
poly(N -butylmethacrylamide)	1.5135	poly[N -(2-phenylethyl)methacrylamide]	1.5857
poly(2-chlorocyclohexylmeth prop-2-enoate)	1.5179	poly(diphenylmethylmeth prop-2-enoate)	1.5933
poly(ethylmercaptylmeth prop-2-enoate)	1.5470	poly(β-naphthylmeth prop-2-enoate)	1.6298
poly (p-cyclohexylphenylmeth prop-2-enoate)	1.5575	poly(α-naphthylmeth prop-2-enoate)	1.6300
poly[1-(o-chlorophenylethyl)meth prop-2-enoate]	1.5624	poly(α-naphthylcarbinyl)	1.6300

to obtain zero-point energies and thermodynamic parameters, applying the free particle, harmonic oscillator, and rigid rotor approximations at the high temperature limit in a canonical ensemble ($T=298.15 \mathrm{~K}, P=0.101325 \mathrm{MPa}$). Frequency values were uncorrected, based on the Scott and Radom estimation of correction coefficients very close to unity for calculations using B3LYP/6-31G(d). ${ }^{28}$

In Table 2, we show the values of the average polarizability (α), the most positive net atomic charge on hydrogen atoms in a molecule (e), the energy of the lowest unoccupied molecular orbital ($E_{\text {LUMO }}$), and the heat capacity at constant volume $\left(C_{V}\right)$.

Computational Methods: Artificial Neural Network. For the implementation of ANNs a commercial software package was used, provided by Neural Planner Software Ltd. All of the component parts are implemented as $\mathrm{C}++$ reusable classes to simplify future development. We will use a perceptron neural network (Figure 1) which could be described as follows: each neuron from the primary layer collects the data of the input variables and presents them according to an input vector (eq
1), which spreads toward the intermediate layer by means of the following propagation rule (eq 2)

$$
\begin{equation*}
x^{p}=\left(x_{1}^{p}, x_{2}^{p}, \ldots, x_{N}^{p}\right)^{T} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
s_{i}^{p}=\sum_{j=1}^{N} w_{j i} x_{j}^{p}+b_{i} \tag{2}
\end{equation*}
$$

where N is the number of the network input neurons, $w_{j i}$ is the weight value of the connection between the neuron j from the input layer and the neuron i from the intermediate layer, and b_{i} is the value of the "bias" associated to the neuron i. If it is assumed that the activation state of the neuron i is the function of the network input vector, then the network output derives from eq 3:

Table 2. Quantum Chemical Descriptors for Each Polymer Obtained by DFT Calculations

polymer	$\frac{\alpha}{\mathrm{C}^{2} \cdot \mathrm{~m}^{2} \cdot \mathrm{~J}^{-1} \cdot 10^{-39}}$	$\frac{e}{C \cdot 10^{-20}}$	$\frac{E_{\mathrm{LUMO}}}{\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}$	$\frac{C_{V}}{\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}$
	Training Data			
poly(1-octadecene)	3.2367	2.2811	-1.3480	356.2925
poly(prop-2-enoate n-butylether)	1.0493	2.2815	1.1043	114.0602
polyethylene	0.3281	2.2876	0.8201	33.9097
poly(1,2-butadiene)	0.7275	2.3189	-0.9809	65.8668
poly(4-methyl-1-pentene)	1.0540	2.3339	1.0494	116.6245
poly(prop-2-enoate n-dodecylether)	2.6134	2.3855	1.8115	282.3809
poly(prop-2-enoate n-pentylether)	1.3280	2.3861	1.8028	141.0522
poly(prop-2-enoate hexylether)	1.5107	2.3874	1.8054	161.2522
poly(prop-2-enoate n-octylether)	1.8775	2.3883	1.7988	209.9567
poly(prop-2-enoate n-decylether)	2.2451	2.3884	1.8001	250.3274
poly(p-isopropylstyrene)	1.9562	2.4073	-1.2146	177.0401
poly(1-butene)	0.6997	2.4321	1.1279	73.9451
polyisobutylene	0.7003	2.4433	-1.3585	76.5220
poly(α-prop-2-enoate naphthalene)	2.0491	2.4481	-1.9048	157.4057
polypropylene	0.5180	2.4944	1.2334	54.1180
poly(prop-2-enoate 2-ethylhexylether)	1.8561	2.5018	1.7539	212.6844
poly(N-prop-2-enoate carbazole))	2.5485	2.5130	-1.2286	192.5389
poly(o-methoxystyrene)	1.5865	2.5936	-1.2730	147.6766
poly(2,6-dichlorostyrene)	1.6730	2.6117	-1.7997	141.2784
poly(prop-2-enoate ethylether)	0.7826	2.6302	1.7631	80.3349
poly(prop-2-enoate formate)	0.5963	2.6369	-0.7420	70.5722
poly(prop-2-enoate isobutylether)	1.1186	2.6509	1.9022	130.7280
poly(o-methylstyrene)	1.5296	2.6982	-1.1776	132.4166
poly(prop-2-enoate methylether)	0.5959	2.7028	1.6772	68.2342
poly(prop-2-enoate sec-butylether)	1.1316	2.7081	1.8241	131.7713
poly(o-chlorostyrene)	1.5163	2.7268	-1.7082	124.7070
poly(p-methoxystyrene)	1.6655	2.7317	-0.9347	147.4587
poly(4-fluororo-2-trifluoromethylstyrene)	1.5317	2.7528	-1.9989	174.0819
poly(n-hexylmeth prop-2-enoate)	1.8643	2.7635	-1.5586	217.0336
poly(n-butylmeth prop-2-enoate)	1.4984	2.7644	-1.5713	176.6923
poly(n-propylmeth prop-2-enoate)	1.3166	2.7658	-1.5826	156.5677
poly(cyclohexylmeth prop-2-enoate)	1.7664	2.7658	-1.5817	193.1548
poly(ethylmeth prop-2-enoate)	1.1355	2.7662	-1.5983	136.2420
poly(methylmeth prop-2-enoate)	0.9529	2.7710	-1.6650	115.6440
poly(2-prop-2-enoate thiophene)	1.2736	2.7780	-1.6571	100.6606
poly(isobutylmeth prop-2-enoate)	1.4874	2.7788	-1.6048	179.2231
poly(1-phenylethylmeth prop-2-enoate)	2.0734	2.7876	-1.6489	215.1188
poly(ethyl prop-2-enoate)	0.9546	2.7947	-1.9039	113.0672
poly(n-butyl prop-2-enoate)	1.3152	2.7950	-1.8764	153.5090
poly(isopropylmeth prop-2-enoate)	1.3097	2.7951	-1.5734	159.4295
poly(2-fluoroethylmeth prop-2-enoate)	1.1384	2.8002	-1.9837	143.6123
poly(methyl prop-2-enoate)	0.7736	2.8181	-1.9719	92.5068
poly(p-bromophenylmeth prop-2-enoate)	2.0967	2.8209	-2.3726	190.1548
polymethacrylonitrile	0.7282	2.9082	-1.9667	77.2175
poly(phenylmeth prop-2-enoate)	1.7166	2.9224	-2.1520	173.2523
poly(prop-2-enoate methylketone)	0.7136	2.9225	-2.4811	81.1016
poly(pentabromophenylmeth prop-2-enoate)	3.2982	2.9253	-3.0762	258.5691
poly(pentachlorophenylmeth prop-2-enoate)	2.7234	2.9295	-2.6564	251.9405
poly(prop-2-enoate propionate)	0.9691	2.9583	-0.4412	114.5253
poly(prop-2-enoate benzoate)	1.6301	2.9599	-2.3656	148.9042
poly(t-butylmeth prop-2-enoate)	1.4784	2.9975	-1.5181	184.3977
poly(N-prop-2-enoate phthalimide)	1.8802	3.0020	-3.7816	164.4198
poly(N-prop-2-enoate pyrrolidone)	1.1484	3.0284	-0.0432	116.5951
poly(benzylmeth prop-2-enoate)	1.7696	3.0315	-2.1363	164.2229
polyacrylonitrile	0.5480	3.0362	-2.4563	54.4700
poly(trifluoroethylmeth prop-2-enoate)	1.1401	3.0398	-2.2566	163.8039
poly(pentafluoropropyl prop-2-enoate)	1.1583	3.0404	-2.5587	183.8111
poly(prop-2-enoate chloride)	0.4864	3.0511	-0.0567	44.7827
poly(heptafluorobutyl prop-2-enoate)	1.3222	3.0767	-2.5696	226.8173
poly(prop-2-enoate acetate)	0.8021	3.2022	-0.5833	94.8197
poly(2,2,2-trifluoro-1-methylethylmeth prop-2-enoate)	1.3120	3.2095	-2.1402	187.2302
poly(2-bromoethylmeth prop-2-enoate)	1.4147	3.2169	-2.0260	149.2813
poly(2-chloroethylmeth prop-2-enoate)	1.2965	3.2890	-2.0556	147.3246
poly(trifluoroethyl prop-2-enoate)	0.9715	3.3325	-2.5321	139.9963
poly(2,3-dibromopropylmeth prop-2-enoate)	1.8453	3.3831	-2.0356	185.2399
poly(1,3-dichloropropylmeth prop-2-enoate)	1.6433	3.5221	-2.6525	181.9172
poly(prop-2-enoate chloroacetate)	0.9072	3.7379	-1.9737	104.9930
poly(N -methylmethacrylamide)	1.1080	5.4263	-1.9715	133.0325
poly(N-benzylmethacrylamide)	1.9909	5.4549	-1.8198	208.7542
poly(2-hydroxyethylmeth prop-2-enoate)	1.1928	6.4044	-1.7090	151.7325
poly(prop-2-enoate alcohol)	0.3966	6.5500	1.9074	49.7018
poly(prop-2-enoic acid)	0.5921	6.5811	-2.2056	71.0373
polystyrene	1.3373	2.3131	-1.3306	109.0531

Table 2. Continued

polymer	$\frac{\alpha}{\mathrm{C}^{2} \cdot \mathrm{~m}^{2} \cdot \mathrm{~J}^{-1} \cdot 10^{-39}}$	$\frac{e}{\mathrm{C} \cdot 10^{-20}}$	$\frac{E_{\mathrm{LUMo}}}{\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}$	$\frac{C_{V}}{\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}$
	Validation Data			
poly(4-methylcyclohexylmeth prop-2-enoate)	1.9361	2.5263	-1.5778	216.2040
poly(3-methylcyclohexylmeth prop-2-enoate)	1.9438	2.7669	-1.5852	217.2347
poly(β-naphthylmeth prop-2-enoate)	2.5591	2.8013	-2.2060	221.7641
poly (m-crsylmeth prop-2-enoate)	1.9567	2.8017	-1.9959	197.9859
poly(o-crsylmeth prop-2-enoate)	1.9296	2.8031	-2.0112	197.6172
poly(3,3,5-trimethylcyclohexylmeth prop-2-enoate)	2.2950	2.8159	-1.6101	264.6907
poly(α-naphthylcarbinyl)	2.6555	2.8418	-1.9340	239.8901
poly(2-methylcyclohexylmeth prop-2-enoate)	1.9573	2.8482	-1.5281	216.6942
poly(1,2-diphenylethylmeth prop-2-enoate)	2.9978	2.8557	-1.7160	289.9480
poly(diphenylmethylmeth prop-2-enoate)	2.8788	2.8592	-1.6846	270.4855
poly(p-cyclohexylphenylmeth prop-2-enoate)	2.8882	2.8791	-1.9375	274.7970
poly(2-chlorocyclohexylmeth prop-2-enoate)	1.9425	2.8942	-2.2056	207.6941
poly(m-nitrobenzylmeth prop-2-enoate)	2.2144	2.9755	-2.2056	227.0268
poly(1-methylcyclohexylmeth prop-2-enoate)	1.9496	2.9918	-2.2056	218.8521
poly(α-naphthylmeth prop-2-enoate)	2.4447	3.0012	-2.2056	222.0784
poly[1-(o-chlorophenylethyl)meth prop-2-enoate]	2.2384	3.0346	-2.2056	231.0869
poly(ethylmercaptylmeth prop-2-enoate)	1.3936	3.1153	-2.2056	145.6947
poly (o-chlorobenzylmeth prop-2-enoate)	2.0794	3.1564	-2.2056	208.0084
poly(2-nitro-2-methylpropylmeth prop-2-enoate)	1.6951	3.2214	-2.2056	215.1397
poly[2-phenylsulfonyl)ethylmeth prop-2-enoate]	2.4448	3.5313	-2.2056	261.4602
poly(N-butylmethacrylamide)	1.5601	5.1610	-2.2056	182.2105
poly[N-(2-phenylethyl)methacrylamide]	2.1535	5.2102	-2.2056	217.8549
$y_{i}^{p}=F_{i}\left(s_{i}^{p}\right)$	(3)		$\left(d_{k}^{p}-y_{k}^{p}\right)^{2}$	

Similarly, for any neuron k from the output layer, the equations that determine its activation state are:

$$
\begin{equation*}
s_{k}^{p}=\sum_{i=1}^{L} w_{i k} y_{i}^{p}+b_{k} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
y_{k}^{p}=F_{k}\left(s_{k}^{p}\right) \tag{5}
\end{equation*}
$$

where L is the neuron number of the intermediate layer, $w_{i k}$ is the weight value of the connection between the neuron i from the intermediate layer and the neuron k from the output layer, and b_{k} is the value of the "bias" associated with the neuron k. The term of error for the output neuron is calculated by means of the following equation

Figure 1. Diagram of a perceptron network constituted by four neurons in input layer, two middle layers (with three and two neurons respectively), and one output neuron.
and if it adjusts to the previously established value, the training of the neural network finishes here. On the contrary, if it does not adjust to the previously established margins of error, the process would be repeated until reaching the desired error value. The activation equation used in this article is the sigmoid or logistic.

$$
\begin{equation*}
F_{k}\left(s_{k}^{p}\right)=\frac{1}{1+e^{-s_{k}}} \tag{7}
\end{equation*}
$$

A back-propagation rule (BP), which is a typical gradientbased learning algorithm, was used as a learning rule in the present work.

$$
\begin{equation*}
\Delta_{p} w_{i k}=-\eta \frac{\partial E^{p}}{\partial w_{i k}}=\eta\left(d_{k}^{p}-y_{k}^{p}\right) F_{k}^{\prime}\left(s_{k}^{p}\right) y_{i}^{p}=\eta \delta_{k}^{p} y_{i}^{p} \tag{8}
\end{equation*}
$$

This learning rule presents an important limitation, which is the large number of input cases for the training process, but for our study, a large amount of cases was available. This application could be interpreted as an ANN constituted by a primary neural layer (where the data of the input variables would be collected), an output neural layer (where the collected value would be obtained), and one or various intermediate layers (where the convergence work of the neural network would be facilitated) (see Figure 1).

As usual, the architecture of ANN is denoted as the following code: $N_{\text {in }}-\left[N_{\mathrm{h} 1}-N_{\mathrm{h} 2}\right]_{e}-N_{\text {out }}$, where $N_{\text {in }}$ and $N_{\text {out }}$ are the number of neurons in the input layer and output layer, respectively, $N_{\mathrm{h} 1}$ and $N_{\mathrm{h} 2}$ are the numbers of neurons in the first and second intermediate layer, respectively, and e is the number of hidden layers.

Table 3. Root Mean Square Errors (RMSE) of Training and Validation Using Different ANN Architectures

no.	topology	training (T)	validation (V)	$R^{2}{ }_{\mathrm{T}}$	$R_{\text {T }}$	$\mathrm{RMSE}_{\mathrm{T}}$	$R^{2}{ }_{\mathrm{V}}$	R_{V}	RMSE ${ }_{V}$	$\mathrm{RMSE}_{\text {sum }}$
1	4-[3-2] ${ }_{2}-1$	73	22	0.9190	0.9586	0.0230	0.8700	0.9327	0.0172	0.0401
2	$4-[7-1]_{2}-1$	73	22	0.9019	0.9497	0.0235	0.9229	0.9607	0.0180	0.0415
3	$4-[3-3]_{2}-1$	73	22	0.9110	0.9545	0.0262	0.9100	0.9539	0.0158	0.0419
4	$4-[3-1]_{2}-1$	73	22	0.9118	0.9549	0.0262	0.8868	0.9417	0.0158	0.0419
5	$4-[7-3]_{2}-1$	73	22	0.8380	0.9154	0.0253	0.7501	0.8661	0.0175	0.0427
6	4-[8] $1-1$	73	22	0.9145	0.9563	0.0242	0.8772	0.9366	0.0190	0.0432
7	$4-[8-6]_{2}-1$	73	22	0.9149	0.9565	0.0243	0.8035	0.8964	0.0213	0.0456
8	$4-[7-2]_{2}-1$	73	22	0.9206	0.9595	0.0251	0.8385	0.9157	0.0208	0.0459
9	$4-[8-2]_{2}-1$	73	22	0.9132	0.9556	0.0276	0.8694	0.9324	0.0184	0.0460
10	$4-[8-7]_{2}-1$	73	22	0.9080	0.9529	0.0287	0.8389	0.9159	0.0214	0.0502
11	$4-[4]_{1}-1$	73	22	0.9006	0.949	0.0292	0.8435	0.9184	0.0212	0.0504
12	4-[1] $]_{1}-1$	73	22	0.8885	0.9426	0.0227	0.8521	0.9231	0.0322	0.0549
13	$4-[7-5]_{2}-1$	73	22	0.8744	0.9351	0.0333	0.82283	0.9071	0.0220	0.0553
14	$4-[8-3]_{2}-1$	73	22	0.8998	0.9486	0.0306	0.6142	0.7837	0.0363	0.0668

Results and Discussion

The four variables were used like parameters of the information entrance. The ANN was trained with data corresponding to 73 prop-2-enoate polymers. The number of neurons in the intermediate layer was tested between $n / 2+1$ and $2 n+1$, where n corresponds with the input variables. Once trained, the ANN correct functioning has been tested with the validation data corresponding to 22 polymers.

In Table 3 are shown the training root-mean-square error (RMSE) value $\left(\mathrm{RMSE}_{T}\right)$ and the validation RMSE value $\left(\mathrm{RMSE}_{\mathrm{V}}\right)$ for each ANN architecture. To evaluate the accuracy of the ANN model we use the sum of root-mean-square errors ($E_{\text {sum }}$) of the training set $\left(\mathrm{RMSE}_{\mathrm{T}}\right)$ and the validation set ($\mathrm{RMSE}_{\mathrm{V}}$). The value of $E_{\text {sum }}$ (see Table 3) can be expressed as $E_{\text {sum }}=\mathrm{RMSE}_{\mathrm{T}}+\mathrm{RMSE}_{\mathrm{V}}$. As we can see in Table 3, the best ANN architecture consists in four input neurons [(i) the average polarizability (α), (ii) the most positive net atomic charge on hydrogen atoms in a molecule (e), (iii) the energy of the lowest unoccupied molecular orbital (E_{LUMO}), and (iv) the heat capacity at constant volume $\left(C_{V}\right)$], two middle layers (with three and two neurons, respectively), and one output neuron (see Figure 1). For the training of this, the ANN has established a target error of 0.01%; the maximum number of training cycles was established as 2500 , and the learning rate was set at 0.70 and the momentum value at 0.8 . RMSEs are $0.023(R=0.9586)$

Figure 2. Plot of experimental data $\left(n_{\mathrm{r}}\right)$ versus predicted data $\left(n_{\mathrm{p}}\right)$ for training values (\bigcirc) and validation values (\bullet).

Table 4. Weight Matrix of the ANN

-2.68524	7.85501	-13.81874	91.998355
-1.55745	23.82747	-33.21980	5.099988
-3.72450	32.75384	-30.86519	10.729451
-15.82583	-23.86407	-2.71565	
-2.88338	-8.84742	-35.56258	
-2.60864			
-15.87540			

Table 5. Importance of Variables Considered for ANN

value	importance	value	importance
e	107.823	α	64.436
C_{V}	77.900	$E_{\text {LUMO }}$	7.967

Table 6. Adjustments for the Validation Values after Training and Validation of the ANN, R, and RMSE

value	R	RMSE
training	0.9586	0.0230
validation	0.9327	0.0172

for the training set and $0.017(R=0.9327)$ for the prediction set (Figure 2).

Table 4 shows the ANN weight matrix. The values of the connections between the neurons are statistical weights of the connections, and corresponding to the synaptic strength of neuron connections they exceed a pre-set threshold value; the neuron fires. In any other case the neuron does not fire. Table 5 shows the importance of the variables selected for the ANN; this value is the sum of weights of the input neurons to all intermediate neurons.

Once the functioning of the ANN was verified, it was also checked by using the previously reserved validation data corresponding to 22 prop-2-enoate polymers. As shown in Figure 2, the data predicted by the ANN were confronted with the previously reserved validation data. The correlation coefficient is 0.93 .

Conclusions

ANN has been implemented to predict the values of n of 95 polymers. Four variables were used from quantum chemistry, $\alpha, e, E_{\mathrm{LUMO}}$, and C_{V}, obtained from the monomer structures in the DFT.

Overall the ANN developed for this study consists of an input layer with four neurons, two intermediate layers formed by three and two neurons, respectively, and one neuron in the output layer which showed the best results obtained (Table 6). n values predicted on training cases had a RMSE of $0.0230(R=0.96)$ and on validation cases of $0.0172(R=0.93)$.

Literature Cited

(1) Knoll, W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 1998, 49, 569-638.
(2) Bicerano, J. J. Prediction of Polymer Properties; Marcel Dekker: New York, 1996.
(3) Van Krevelen, D. W. Properties of Polymers: Correlation with Chemical Structure, 2nd ed.; Elsevier: Amsterdam, 1976.
(4) García-Domenech, R.; de Julián-Ortiz, J. V. Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices. J. Phys. Chem. B 2002, 106, 1501-1507.
(5) Katritzky, A. R.; Sild, S.; Karelson, M. Correlation and Prediction of the Refractive Indices of Polymers by QSPR. J. Chem. Inf. Comput. Sci. 1998, 38, 1171-1176.
(6) Xu, J.; Chen, B.; Zhang, Q. J.; Guo, B. Prediction of refractive indices of linear polymers by a four-descriptor QSPR model. Polymer 2004, 45, 8651-8659.
(7) Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graphics Modell. 2002, 20, 269-276.
(8) Bishop, M. C. Neural Networks for Pattern Recognition; Oxford University Press: New York, 1995.
(9) Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psych. Rev. 1958, 65, 386408.
(10) Haykin, S. Neural Networks; Macmillan College Publishing Company: New York, 1994.
(11) Xu, K.; Xie, M.; Tang, L.; Ho, S. L. Application of neural networks in forecasting engine system reliability. Appl. Soft Comput. 2003, 2, 255-268.
(12) Rumelhart, D. E.; McClelland, J. L. Parallel distributed processing. Exploration in the microstructure of cognition; MIT Press: Cambridge, MA, 1986.
(13) Castillo, E.; Gutiérrez, J. M.; Hadi, A. S.; Lacruz, B. Some applications of functional networks in statistics and engineering. Technometrics 2001, 43, 10-24.
(14) Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; GonzálezManteiga, W. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int. J. Biometeorol. 2005, 49, 310-316.
(15) Rodríguez-Rajo, F. J.; Astray, G.; Ferreiro-Lage, J. A.; Aira, M. J.; Jato-Rodriguez, V.; Mejuto, J. C. Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Networks 2010, 23, 419-425.
(16) Astray, G.; Castillo, X.; Ferreiro-Lage, J. A.; Gálvez, J. F.; Mejuto, J. C. Artificial neural networks: a promising tool to evaluate the authenticity of wine. J. Food Sci. 2010, 8, 79-86.
(17) Astray, G.; Caderno, P. V.; Ferreiro-Lage, J. A.; Gálvez, J. F.; Mejuto, J. C. Prediction of Ethene + Oct-1-ene Copolymerization Ideal Conditions Using Artificial Neuron Networks. J. Chem. Eng. Data 2010, 55, 3542-3547.
(18) Chen, X.; Sztandera, L.; Cartwright, H. M. A neural network approach to prediction of glass transition temperature of polymers. Int. J. Intell. Syst. 2008, 23, 22-32.
(19) Wanqiang, L.; Chenzhong, C. Artificial neural network prediction of glass transition temperature of polymers. Colloid Polym. Sci. 2009, 287, 811-818.
(20) Astray, G.; Cid, A.; Ferreiro-Lage, J. A.; Galvez, J. F.; Mejuto, J. C.; Nieto-Faza, O. Prediction of Prop-2-enoate Polymer and Styrene

Polymer Glass Transition Using Artificial Neural Networks. J. Chem. Eng. Data 2010; DOI: $10.1021 / \mathrm{je} 100573 n$.
(21) Astray, G.; Rodríguez-Rajo, F.; Ferreiro-Lage, J. A.; FernándezGonzález, M.; Jato, V.; Mejuto, J. C. The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. J. Environ. Monit. DOI: 10.1039/ C0EM00248H.
(22) Astray, G.; Bendaña, R. Computer system for rural valuation based in Neural Networks Technology. Elect. J. Environ. Agric. Food Chem. 2007, 6, 1927-1933.
(23) Parr, R. G.; Yang, W. Density functional theory of atoms and molecules; Oxford University Press: New York, 1989.
(24) Johnson, B. G.; Gill, P. M. W.; Pople, J. A. The performance of a family of density functional methods. J. Chem. Phys. 1993, 98, 56125626.
(25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.01; Gaussian, Inc.: Pittsburgh PA, 2003.
(26) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
(27) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
(28) Scott, A. P.; Radom, L. J. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502-16513.

Received for review August 26, 2010. Accepted September 22, 2010. G.A. thanks the "Ministerio de Educación" of Spain for a FPU grant P.P. 0000 421S 14006.

JE100885F

[^0]: * Corresponding author. E-mail: gastray@uvigo.es.
 ${ }^{\dagger}$ Department of Physical Chemistry.
 $\stackrel{\text { Department of Informatics. }}{ }$

