Heat Capacities and Nonisothermal Thermal Decomposition Reaction Kinetics of D-Mannitol

Bo Tong,[†] Rui-Bin Liu,[†] Chang-Gong Meng,[†] Feng-Yun Yu,[‡] Shou-Hua Ji,[‡] and Zhi-Cheng Tan*^{,§}

Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China, Material Testing Center, Dalian University of Technology, Dalian 116023, China, and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

The low-temperature heat capacity $C_{p,m}$ of D-mannitol was measured in the temperature range from (80 to 390) K by means of a fully automated adiabatic calorimeter. The dependence of heat capacity on the temperature was fitted to a polynomial equation with the least-squares method. The thermodynamic functions $(H_T - H_{298,15 \text{ K}})$ and $(S_T - S_{298,15 \text{ K}})$ were derived from the heat capacity data in the temperature range of (80 to 390) K with an interval of 5 K. The melting temperature, molar enthalpy, and entropy of fusion were determined to be (437.25 ± 0.12) K, (54.69 ± 1.64) kJ·mol⁻¹, and (125.08 ± 3.75) J·K⁻¹·mol⁻¹ by DSC measurements. The thermal stability and nonisothermal thermal decomposition kinetics of the compound were studied by the TG-DTG technique under atmospheric pressure and flowing nitrogen gas conditions. The thermal decomposition process had one mass loss stage, and the apparent activation energy E_a was obtained to be (120.61 ± 1.85) kJ·mol⁻¹ by the Kissinger, Friedman, and Flynn–Wall–Ozawa methods. The Malek method was used to identify the most probable kinetic model SB(m, n). The kinetics model function and the pre-exponential factor A were expressed to be: $f(\alpha) = \alpha^{0.306}(1 - \alpha)^{0.381}$; ln A = 17.88, respectively.

Introduction

Natural polyols such as xylitol, sorbitol, erythritol, and adonitol are low molecular weight carbohydrates that are significant to food and pharmaceutical industries. Due to the characteristic sweet taste and low energy (Joule) content compared with sucrose, they are increasingly used to provide sweetness for various drugs or replace sugars in confectionery.^{1–3} Moreover, they reduce the development of dental caries and do not require insulin in their metabolism, so they are suitable for diabetics. Furthermore, they are natural extracts that have more advantages, such as nontoxic, no erosion, and no environmental pollution, than other polyols.^{4–6}

For industrial and pharmaceutical applications, the state and phase transitions of drugs are very important because they reflect molecular mobility and physicochemical properties that have a direct effect on the formation and changes of structure, time-dependent crystallization, and product shelf life.^{7,8} It is now recognized that the amorphous solid state offers very interesting possibilities in the control of bioavailability.^{9,10} Therefore, knowl-edge of the thermodynamic properties such as heat capacities, phase transition, and thermal decomposing process is an important requirement for safe storage and use of these natural polyols.

As a continuation of our series research work on thermodynamic properties of natural polyols,^{11,12} in the present study, the thermodynamic properties of D-mannitol including the heat capacity, melting temperature, entropy, and enthalpy of fusion were investigated by adiabatic calorimetry (AC) and differential scanning calorimetry (DSC). The thermostability and nonisothermal thermal decomposition reaction kinetics were studied by TG-DTG, and the kinetic model was established by the Malek method.

Experimental Section

The D-Mannitol [CAS No. 69-65-8] was purchased from Tianjin Chemical Engineering Institute, in PR China, with labeled purity of 99.0 % mass fraction. The sample was purified by recrystallization and sublimation, and the final purity was 99.9 % mass fraction. It was handled in a dry N_2 atmosphere to avoid possible contamination by moisture.

Heat capacity measurements were carried out in a highprecision automated adiabatic calorimeter described in detail in the literature.^{13–15} The calorimeter was established by the Thermochemistry Laboratory of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, in PR China. To verify the reliability of the adiabatic calorimeter, the molar heat capacities for the reference standard material α -Al₂O₃ were measured. The relative deviations of our experimental results from the recommended values by NIST¹⁶ were within \pm 0.2 % in the entire temperature range of (80 to 390) K. The sample mass used for the heat capacity measurement is 3.54128 g, which is equivalent to 19.439 mmol based on its molar mass of 182.17 g·mol⁻¹.

A differential scanning calorimeter (model: DSC141, SET-ARAM, France) was used to perform the thermal analysis of D-mannitol under high purity nitrogen (99.999 %) with a flow rate of 40 mL·min⁻¹. The sample mass of (3 to 5) mg was filled and pressed into an alumina crucible. Three experimental tests were performed at heating rate of 10 K·min⁻¹ with α -Al₂O₃ as the reference material.

The TG measurements of the sample were carried out by a thermogravimetric analyzer (model: TGA/ SDTA 851^e, Mettler Toledo, Switzerland) under N₂ with a flow rate of 40 mL·min⁻¹ at the heating rate of (5, 10, 15, 20, and 25) K·min⁻¹ from (300

^{*} Corresponding author. E-mail: tzc@dicp.ac.cn. Fax: +86-411-84691570. Tel.: +86-411-84379199.

[†] School of Chemical Engineering, Dalian University of Technology.

[‡] Material Testing Center, Dalian University of Technology.

[§] Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

Table 1. Experimental Molar Heat Capacities of D-Mannitol ($M = 182.17 \text{ g} \cdot \text{mol}^{-1}$)

Т	$C_{p,\mathrm{m}}$	Т	$C_{p,\mathrm{m}}$	Т	$C_{p,\mathrm{m}}$
K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}}$	Κ	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}}$	Κ	$J \cdot K^{-1} \cdot mol^{-1}$
80.423	71.86	183.607	159.2	288.450	253.1
84.120	75.82	186.661	162.1	291.426	256.0
87.056	79.00	189.701	165.0	294.392	259.0
90.044	82.17	192.754	168.2	297.492	260.6
93.087	85.24	195.811	170.5	300.607	262.6
96.038	88.00	198.931	173.9	303.635	264.9
99.046	90.89	202.132	176.6	306.662	266.7
102.114	93.72	205.296	180.9	309.687	268.4
105.110	96.44	208.404	184.3	312.777	270.6
108.048	98.92	211.462	187.3	315.921	272.9
111.055	101.4	214.486	189.7	319.056	275.3
114.135	104.0	217.577	192.1	322.187	277.9
117.157	106.5	220.743	195.4	325.301	280.3
120.114	109.0	223.878	198.8	328.401	282.6
123.128	111.5	226.994	202.7	331.486	284.8
126.215	113.8	230.035	204.2	334.561	286.1
129.264	116.1	233.085	207.6	337.627	289.0
132.272	118.9	236.153	210.5	340.677	291.4
135.239	120.9	239.218	213.4	343.777	293.3
138.177	123.0	242.239	215.7	346.921	295.5
141.200	125.4	245.326	217.7	350.053	297.6
144.278	127.8	248.419	220.0	353.164	299.6
147.310	129.9	251.418	221.4	356.265	301.3
150.305	132.2	254.484	223.2	359.310	303.7
153.283	134.4	257.613	226.2	362.514	305.8
156.234	136.7	260.729	228.0	365.683	308.4
159.247	138.8	263.828	230.7	368.863	310.2
162.366	141.7	266.983	233.6	372.042	311.9
165.486	143.2	270.148	236.1	375.210	314.0
168.579	146.4	273.218	239.5	378.348	316.7
171.607	149.2	276.280	242.1	381.444	319.0
174.593	150.8	279.347	245.4	384.520	320.9
177.598	152.9	282.412	248.6	387.645	322.7
180.587	156.6	285.438	251.6		

to 800) K, respectively. The sample mass of (9.91, 10.30, 9.73, 12.16, and 11.83) mg corresponding to the above heating rate, respectively, was filled into an alumina crucible without pressing.

Results and Discussion

Low-Temperature Heat Capacity and Thermodynamic Function. Experimental molar heat capacities of D-mannitol measured by the adiabatic calorimeter over the temperature range from (80 to 390) K are listed in Table 1 and plotted in Figure 1. From Figure 1, a smoothed curve with no endothermic or exothermic peaks was obtained in the experimental temperature range, which indicated that the sample was thermostable from the liquid nitrogen temperature to 400 K. The values of experimental heat capacities were fitted to the following polynomial equations with the least-squares method^{17,18}

$$C_{p,m}/J \cdot K^{-1} \cdot mol^{-1} = 207.790 + 141.210x - 23.623x^2 - 38.543x^3 + 44.992x^4 + 23.902x^5 - 32.126x^6$$
 (1)

where x is the reduced temperature

$$x = [T - (T_{\text{max}} + T_{\text{min}})/2]/[(T_{\text{max}} - T_{\text{min}})/2]$$
 (2)

In the above equation, T_{max} and T_{min} are the upper (390 K) and lower (80 K) limit of the experimental temperature range, respectively. The correlation coefficient of the fitting $r^2 = 0.9999$.

The thermodynamic functions $(H_T - H_{298.15})$ and $(S_T - S_{298.15})$ of the D-mannitol relative to the reference temperature 298.15 K were calculated in the temperature range (80 to 390) K with an interval of 5 K, using the polynomial equation of heat capacity and thermodynamic relationships as follows

$$H_T - H_{298.15} = \int_{298.15}^T C_{p,m} dT$$
(3)

$$S_T - S_{298.15} = \int_{298.15}^T \frac{C_{p,m}}{T} dT$$
 (4)

The calculated results are listed in Table 2.

Temperature, Enthalpy, and Entropy of Fusion Determined by DSC. One of DSC curves was shown in Figure 2. From the figure, a sharply endothermic peak corresponding to the melting process was observed with an onset point of 437.25 K and a peak temperature of 442.76 K. The mean values of three measurements were determined to be: melting temperature (437.25 \pm 0.12) K, molar enthalpy of fusion (54.69 \pm 1.64) kJ·mol⁻¹, and entropy of fusion (125.08 \pm 0.38) J·K⁻¹·mol⁻¹, respectively.

Thermostability Determined by TG-DTG. The TG-DTG curves in nonisothermal conditions shown in Figure 3 are obtained at various heating rates. From Figure 3, it can be seen that the mass loss of the sample was completed in a single step. The sample keeps thermostable below 500 K. It begins to lose

Figure 1. Experimental molar heat capacity $C_{p,m}$ of D-mannitol as a function of temperature.

Table 2. Smoothed Heat Capacities and Thermodynamic Functions of D-Mannitol ($M = 182.17 \text{ g} \cdot \text{mol}^{-1}$)

	_				-		
Т	$C_{p,\mathrm{m}}$	$H_T - H_{298.15}$	$S_T - S_{298.15}$	Т	$C_{p,\mathrm{m}}$	$H_T - H_{298.15}$	$S_T - S_{298.15}$
K	$\overline{\mathbf{J} \boldsymbol{\cdot} \mathbf{K}^{-1} \boldsymbol{\cdot} \mathbf{mol}^{-1}}$	$kJ \cdot mol^{-1}$	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \mathbf{mol}^{-1}}$	K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \mathbf{mol}^{-1}}$	$kJ \cdot mol^{-1}$	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \mathbf{mol}^{-1}}$
80	70.46	-36.43	-193.4	240	212.3	-13.78	-51.30
85	76.73	-36.07	-188.9	245	216.8	-12.71	-46.87
90	82.37	-35.67	-184.4	250	221.2	-11.61	-42.44
95	87.51	-35.24	-179.8	255	225.5	-10.50	-38.01
100	92.23	-34.79	-175.2	260	229.8	-9.358	-33.58
105	96.64	-34.32	-170.6	265	234.0	-8.199	-29.15
110	100.8	-33.83	-166.0	270	238.2	-7.018	-24.73
115	104.8	-33.31	-161.5	275	242.2	-5.817	-20.31
120	108.7	-32.78	-156.9	280	246.2	-4.596	-15.91
125	112.5	-32.23	-152.4	285	250.1	-3.356	-11.51
130	116.2	-31.66	-147.9	290	254.0	-2.095	-7.124
135	120.0	-31.07	-143.4	295	257.8	-0.816	-2.749
140	123.8	-30.46	-139.0	298.15	260.2	0.000	0.000
145	127.7	-29.83	-134.6	300	261.5	0.483	1.612
150	131.6	-29.18	-130.2	305	265.2	1.800	5.962
155	135.6	-28.51	-125.8	310	268.9	3.135	10.30
160	139.7	-27.82	-121.4	315	272.5	4.489	14.62
165	143.9	-27.11	-117.0	320	276.1	5.860	18.93
170	148.2	-26.38	-112.7	325	279.7	7.250	23.23
175	152.5	-25.63	-108.3	330	283.3	8.658	27.52
180	156.9	-24.86	-104.0	335	286.9	10.08	31.80
185	161.4	-24.06	-99.61	340	290.4	11.53	36.08
190	166.0	-23.24	-95.25	345	293.9	12.99	40.34
195	170.6	-22.40	-90.89	350	297.5	14.47	44.59
200	175.2	-21.54	-86.52	355	301.0	15.96	48.84
205	179.9	-20.65	-82.15	360	304.4	17.48	53.08
210	184.6	-19.74	-77.76	365	307.9	19.01	57.32
215	189.3	-18.80	-73.37	370	311.2	20.55	61.54
220	193.9	-17.85	-68.97	375	314.5	22.12	65.75
225	198.6	-16.86	-64.57	380	317.7	23.70	69.94
230	203.2	-15.86	-60.15	385	320.7	25.30	74.11
235	207.8	-14.83	-55 73	390	323.6	26.91	78.25

 Table 3. Peak Temperature of Decomposition for D-Mannitol

 Obtained by TG-DTG Curves Corresponding to Various Heating

 Rates and the Calculated Result by the Kissinger Method

$\beta/K \cdot min^{-1}$	5	10	15	20	25	
$T_{\rm p}/{\rm K}$	622.848	642.093	650.547	657.801	667.355	
$E_{\rm a} = 118.42; r^2 = 0.9960$						

mass at about 540 K, reaches the maximum rate of mass loss at about 650 K, and completely loses its mass when the temperature reaches 700 K. The values of the temperatures are slightly different depending on the various heating rates from (5 to 25) $\text{K} \cdot \text{min}^{-1}$.

Apparent Activation Energy. Kissinger, Flynn–Wall–Ozawa, and Friedman methods^{19–21} were used to calculate apparent activation energy (E_a) of the thermal decomposition reaction for D-mannitol.

Kissinger equation

$$\ln \frac{\beta}{T^2} = \ln \frac{AR}{E_a} - \frac{E_a}{R} \frac{1}{T}$$
(5)

Flynn-Wall-Ozawa equation

Figure 2. DSC curve of D-manitol under high purity nitrogen.

122 Journal of Chemical & Engineering Data, Vol. 55, No. 1, 2010

$$\ln \beta = \ln \left(\frac{AE_{a}}{RG(\alpha)} \right) - 5.3305 - 1.0516 \frac{E_{a}}{R} \frac{1}{T}$$
(6)

Friedman equation

$$\ln\left(\frac{\beta d\alpha}{dT}\right) = \ln[Af(\alpha)] - \frac{E_{a}}{R}\frac{1}{T}$$
(7)

where β is the heating rate; *A* is the pre-exponential factor; *R* is the gas constant; *T* is the absolute temperature; *G*(α) is the integral mechanism function; and α is the conversion degree, respectively.

$$\alpha = \frac{m_0 - m_T}{m_0 - m_\infty} \tag{8}$$

where m_T is the mass at temperature T; m_0 is the initial sample mass; and m_{∞} is the mass at the end of experiments, respectively.

The peak temperature T_p of the exothermic decomposition reaction for D-mannitol determined by the TG-DTG curve was listed in Table 3. According to the Kissinger method (eq 5), the curve of $\ln(\beta/T_p^2)$ versus $10^3/T$ was plotted in Figure 4, and $E_{\rm a}$ was calculated to be 118.42 kJ·mol⁻¹ by the slope of the curve with correlation coefficient $r^2 = 0.9919$.^{19,22}

By substituting the original data, β_i , T_i , and α_i (i = 1, 2, ..., n), tabulated in Table 4 from TG-DTG curves into eq 6, the values of E_a for any given value of α in Table 4 were obtained. The curve of ln β to $10^3/T$ was plotted in Figure 5, and the average value of E_a in the range of 0.10 to 0.80 was 124.28 kJ·mol⁻¹ according to the Flynn–Wall–Ozawa method^{20,23} with the correlation coefficient $r^2 = 0.9821$, 0.9870, 0.9885, 0.9892, 0.9894, 0.9894, 0.9889, and 0.9883, respectively.

By substituting the original data into eq 7 ($0.3 \le \alpha \le 0.7$), the values of E_a for different heating rates β in Table 5 were obtained. The average value of E_a was 119.14 kJ·mol⁻¹ according to the Friedman method.

Then, E_a was determined to be (120.61 \pm 1.85) kJ·mol⁻¹ which was the mean value obtained by the three methods.^{21,24}

Most Probable Kinetic Model and Pre-Exponential Fator. The following eq 9 was used for kinetic analysis of solidstate decompositions.²⁵

Figure 3. TG-DTG curve of D-manitol under high purity nitrogen at different heating rates. W is mass loss of the sample in percent.

Figure 4. Curve of $\ln(\beta T_p^{-2})$ versus $10^3/T$. y = 7.51329 - 14.24341x; $r^2 = 0.9919$.

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E_{\mathrm{a}}}{RT}\right) f(\alpha) \tag{9}$$

where t is the time. Under nonisothermal conditions in which samples are heated at a constant rate, the following was obtained

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} \exp\left(-\frac{E_{\mathrm{a}}}{RT}\right) f(\alpha) \tag{10}$$

Once the activation energy has been determined, the Malek method^{25–28} was used to find the most probable kinetic model which best described the measure set of TG data. Two special functions $y(\alpha)$ and $z(\alpha)$ were defined and expressed as follows

$$y(\alpha) = \left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right) e^x = Af(\alpha) \tag{11}$$

$$z(\alpha) = \pi(x) \left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right) \frac{T}{\beta}$$
(12)

where $x = E_a/RT$ and $\pi(x)^{28}$ is an approximation of the temperature integral.

Figure 5. Curve of $\ln(\beta)$ versus $10^3/T$ at various conversion degree. \blacksquare , 0.1; \Box , 0.2; \blacktriangle , 0.3; \diamondsuit , 0.4; \blacktriangledown , 0.5; \bigtriangledown , 0.6; \diamondsuit , 0.7; \diamondsuit , 0.8; \bigstar , 0.9.

 Table 4. Experimental and Calculated Data by the

 Flynn–Wall–Ozawa Method

	$\beta = 5$	$\beta = 10$	$\beta = 15$	$\beta = 20$	$\beta = 25$	
	$\overline{K \cdot min^{-1}}$	$\overline{K \cdot min^{-1}}$	$\overline{K \cdot min^{-1}}$	$\overline{K \cdot min^{-1}}$	$\overline{\mathbf{K} \cdot \min^{-1}}$	E_{a}
α	T_i/K	T_i/K	T_i/K	T_i/K	T_i/K	kJ∙mol ^{−1}
0.10	587.621	604.370	612.776	620.653	632.538	109.07
0.15	594.641	611.221	619.951	627.359	638.713	113.50
0.20	599.770	616.261	625.107	632.285	643.288	116.68
0.25	603.835	620.329	629.124	636.230	646.995	119.12
0.30	607.217	623.742	632.460	639.541	650.119	121.08
0.35	610.152	626.669	635.340	642.418	652.850	122.73
0.40	612.790	629.320	637.879	644.946	655.261	124.39
0.45	615.174	631.685	640.183	647.226	657.465	125.74
0.50	617.392	633.858	642.307	649.343	659.511	127.20
0.55	619.440	635.867	644.300	651.306	661.429	128.38
0.60	621.399	637.761	646.180	653.152	663.273	129.51
0.65	623.252	639.565	647.989	654.898	665.050	130.51
0.70	625.031	641.302	649.722	656.596	666.804	131.34
0.75	626.771	642.986	651.430	658.251	668.539	132.09
0.80	628.519	644.687	653.147	659.940	670.282	132.84
0.85	630.306	646.438	654.916	661.662	672.174	133.32
0.90	632.230	648.326	656.834	663.616	674.423	133.20
	$E_{a} =$	124.28 kJ	$mol^{-1}(0.1)$	$\leq \alpha \leq 0.8$	$: \sigma = 1.85$	

 Table 5. Experimental and Calculated Data by the Friedman Method

$\beta/K \cdot min^{-1}$	5	10	15	20	25
$E_{a}/kJ \cdot mol^{-1}$	113.31	120.99	117.56	127.62	116.21
$E_{\rm a} =$	119.14 kJ•	mol^{-1} (0.3	$\leq \alpha \leq 0.7$); $\sigma = 2.45$	

Figure 6. $y(\alpha)$ versus α curves at various heating rates. \blacksquare , 5 K·min⁻¹; \square , 10 K·min⁻¹; \blacktriangle , 15 K·min⁻¹; \triangle , 20 K·min⁻¹; \checkmark , 25 K·min⁻¹.

Figure 7. $z(\alpha)$ versus α curves at various heating rates. \blacksquare , 5 K·min⁻¹; \Box , 10 K·min⁻¹; \blacktriangle , 15 K·min⁻¹; \triangle , 20 K·min⁻¹; \checkmark , 25 K·min⁻¹.

Table 6. Values of α_m , α_p^{∞} , and *s* at Different Heating Rates (β)

$\beta/{ m K} \cdot { m min}^{-1}$	α_m	$lpha_p^\infty$	S
5	0.320	0.783	0.470
10	0.491	0.757	0.966
15	0.461	0.775	0.857
20	0.469	0.786	0.884
25	0.447	0.752	0.809

Figures 6 and 7 were obtained by substituting the experimental data of TG-DTG to eq 11 and eq 12, respectively. The values of α_m and α_p^{∞} corresponding to the maxima of both $y(\alpha)$ and $z(\alpha)$ curves were summarized in Table 6. It is evident that the values of these important parameters conform to the SB(*m*, *n*) model,^{25–28} which is known as

$$f(\alpha) = \alpha^m (1 - \alpha)^n \tag{13}$$

The kinetic parameter ratio s = m/n can be calculated using the equation. *m* and *n* are the first and second kinetic exponent, respectively.

Then, eq 9 may be expressed in the form

$$\ln\left[\frac{\mathrm{d}\alpha}{\mathrm{d}t}\exp\left(\frac{E}{RT}\right)\right] = \ln A + n\ln[\alpha^{s}(1-\alpha)] \qquad (14)$$

The kinetic parameter *n* and ln *A* correspond to the slope and intercept of linear dependence of $\ln[(d\alpha/dt) \exp(E/RT)]$ versus $\ln[\alpha^s(1 - \alpha)]$, respectively.

Table 7. Kinetic Parameters Obtained Using the Malek Method at Different Heating Rates (β) ($E_a = 120.61 \pm 1.85 \text{ kJ} \cdot \text{mol}^{-1}$)

$\beta/\mathrm{K}\cdot\mathrm{min}^{-1}$	т	п	$\ln(A/\min^{-1})$
5	0.163	0.346	17.63
10	0.377	0.390	17.89
15	0.316	0.369	17.95
20	0.314	0.355	17.99
25	0.362	0.448	17.97
mean	0.306	0.381	17.88

Then the second kinetic exponent is $m = s \cdot n$. The results calculated are shown in Table 7. Taking these values we can calculate average kinetic parameters for the decomposition of D-mannitol as $E_a = (120.61 \pm 1.85) \text{ kJ} \cdot \text{mol}^{-1}$, ln A = 17.88, m = 0.306, and n = 0.381, and the kinetic model function can be expressed as

$$f(\alpha) = \alpha^{0.306} (1 - \alpha)^{0.381}$$

Conclusions

The heat capacities and the thermodynamic functions of D-mannitol are measured in the temperature range from (80 to 390) K by a high-precision automated adiabatic calorimeter. The melting temperature, standard molar enthalpy, and entropy of fusion are determined to be (437.25 \pm 0.12) K, (54.69 \pm 1.64) kJ·mol⁻¹, and (125.08 \pm 0.38) J·K⁻¹·mol⁻¹, respectively, by DSC analysis. The thermal stability and nonisothermal thermal decomposition kinetics of the compound are studied by TG-DTG measurements under atmospheric pressure and flowing nitrogen gas conditions. The thermal decomposition process has one mass loss stage, and the apparent activation energy E_a is obtained to be (120.61 \pm 1.85) kJ·mol⁻¹ by Kissinger, Friedman, and Flynn-Wall-Ozawa methods. The Malek method is used to identify the most probable kinetic model SB(m, n). The kinetics model function and the preexponential factor A are expressed to be $f(\alpha) = \alpha^{0.306}(1 - \alpha)^{0.381}$ and $\ln A = 17.88 \text{ min}^{-1}$, respectively.

Literature Cited

- Voragen, A. G. J. Technological aspects of functional food-related carbohydrates. *Trends Food. Sci. Technol.* **1998**, *9*, 328–335.
- (2) Talja, R. A.; Roos, Y. H. Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. *Thermochim. Acta* 2001, *38*, 109–121.
- (3) Marti, N.; Funes, L. L.; Saura, D.; Micol, V. An update on alternative sweetness. *Int. Sugar J.* 2008, 110, 425–429.
- (4) Kroger, M.; Meister, K.; Kava, R. Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. *Compr. Rev. Food. Sci. F* 2006, 5, 35–47.
- (5) Bellisle, F.; Drewnowski, A. Intense sweeteners, energy intake and the control of body weight. *Eur. J. Clin. Nutr.* 2007, 61, 691–700.
- (6) Duffy, V. B.; Sigman-Grant, M. Position of the American Dietetic Association: Use of nutritive and nonnutritive sweeteners. J. Am. Diet. Assoc. 2004, 104, 255–275.
- (7) Steenwijk, J.; Langerock, R.; van Es, D. S.; van Haveren, J.; Geus, J. W.; Jenneskens, L. W. Long-term heat stabilisation by (natural) polyols in heavy metal- and zinc-free poly(vinyl chloride). *Polym. Degrad. Stab.* 2006, *91*, 52–59.
- (8) Diogo, H. P.; Pintoa, S. S.; Moura Ramosb, J. J. Slow molecular mobility in the crystalline and amorphous solid states of pentitols: a study by thermally stimulated depolarisation currents and by differential scanning calorimetry. *Carbohydr. Res.* 2007, 342, 961–969.

- (9) Hancock, B. C.; York, P.; Rove, R. C. The use of solubility parameters in pharmaceutical dosage form design. J. Pharm. Sci. 1997, 148, 1– 21.
- (10) Craig, D. Q. M.; Royal, P. G.; Kett, V. L.; Hopton, M. L. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. *Int. J. Pharm.* **1999**, *179*, 179–207.
- (11) Tong, B.; Tan, Z. C.; Shi, Q.; Li, Y. S.; Yue, D. T.; Wang, S. X. Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol. *Thermochim. Acta* 2007, 457, 20–26.
- (12) Tong, B.; Tan, Z. C.; Shi, Q.; Li, Y. S.; Wang, S. X. Thermodynamic investigation of several natural polyols (II) - Heat capacities and thermodynamic properties of sorbitol. *J. Therm. Anal. Calorim.* 2008, *91*, 463–469.
- (13) Tan, Z. C.; Sun, G. Y.; Sun, Y. J. An Adiabatic Low-temperature Calorimeter Foe Heat-capacity Measurement of Small Samples. J. Therm. Anal. Calorim. 1995, 45, 59–67.
- (14) Tan, Z. C.; Sun, G. Y; Song, Y. J.; Wang, L.; Han, J. R.; Liu, Y. S.; Wang, M.; Nie, D. Z. An adiabatic calorimeter for heat capacity measurements of small samples-The heat capacity of nonlinear optical materials KTiOPO₄ and RbTiOAsO₄ Crystals. *Thermochim. Acta* 2000, 352, 247–253.
- (15) Tan, Z. C.; Sun, L. X.; Meng, S. H.; Li, L.; Xu, F.; Yu, P.; Liu, B. P.; Zhang, J. B. Heat capacities and thermodynamic functions of pchlorobenzoic acid. J. Chem. Thermodyn. 2002, 34, 1417–1429.
- (16) Archer, D. G. Thermodynamic properties of synthetic sapphire (α-Al₂O₃), standard reference material 720 and the effect of temperaturescale differences on thermodynamic properties. *J. Phys. Chem. Ref. Data.* **1993**, *22*, 1411–1453.
- (17) Guo, J. P.; Liu, B. P.; Lv, X. C.; Tan, Z. C; Tong, B.; Shi, Q.; Wang, D. F. Molar heat capacities, thermodynamic properties, and thermal stability of trans-4-(aminomethyl)cyclohexanecarboxylic acid. *J. Chem. Eng. Data* **2007**, *52*, 1678–1680.
- (18) Wang, M. H.; Tan, Z. C.; Sun, X. H.; Zhang, H. T.; Liu, B. P.; Sun, L. X.; Zhang, T. Determination of Heat Capacities and Thermodynamic Properties of 2-(Chloromethylthio) benzothiazole by an Adiabatic Calorimeter. J. Chem. Eng. Data 2005, 50, 270–273.
- (19) Kissinger, H. E. Reaction kinetics in differential thermal analysis. *Anal. Chem.* **1957**, *29*, 1702–1706.
- (20) Ozawa, T. A new method of analyzing thermogravimetic data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886.
- (21) Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermo-gravimetry. Applications to a phenol plastic. J. Polym. Sci. 1963, 6C, 183–195.
- (22) Pittayagorn, N.; Chanaiporn, D.; Banjong, B. Thermodynamic and Kinetic Properties of the Formation of Mn₂P₂O₇ by Thermal Decomposition of Mn(H₂PO₂)₂•H₂O. J. Chem. Eng. Data 2009, 54, 871– 875.
- (23) Hu, R. Z. Shi, Q. Z. *Thermal analysis kinetics*; Chinese Science Press, 2001; *1st* version, pp 99–100.
- (24) Banjong, B. Kinetics and Thermodynamic Properties of the Thermal Decomposition of Manganese Dihydrogenphosphate Dihydrate. *J. Chem. Eng. Data* **2008**, *53*, 1533–1538.
- (25) Li, H. Q.; Shao, T. M.; Li, D. S.; Chen, D. R. Nonisothermal reaction kinetics of diasporic bauxite. *Thermochim. Acta* 2005, 427, 9–12.
- (26) Wang, S. X.; Zhao, Z.; Tan, Z. C.; Li, Y. S.; Tong, B.; Shi, Q.; Li, Y. Thermal stability and kinetics of thermal decomposition for protinonamide. *Acta Phys. Chim. Sin.* **2007**, *23*, 1459–1462.
- (27) Zhang, J. Q.; Gao, H. X.; Su, L. H.; Hu, R. Z.; Zhao, F. Q.; Wang, B. Z. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J. Hazard. Mater. 2009, in press.
- (28) Montserrat, S.; malek, J.; Colomer, P. Thermal degradation kinetics of epoxy-anhydride resins: I. Influence of a silica filler. *Thermochim. Acta* **1998**, *313*, 83–95.

Received for review March 20, 2009. Accepted June 30, 2009. This work was financially supported by the Talented Personnel Funds for Scientific Research of Dalian University of Technology, China, under the grant No. 893110.

JE900285W