Solubility of Light Fullerenes in Organic Solvents

Konstantin N. Semenov,^{*,†} Nikolai A. Charykov,[‡] Viktor A. Keskinov,[‡] Andrey K. Piartman,[‡] Alexander A. Blokhin,[‡] and Aleksei A. Kopyrin[§]

Saint-Petersburg State University, St. Petersburg, Russia, 198504, Universitetskii pr. 26, ILIP Ltd. (Innovations of Leningrad Universities and Enterprises), St. Petersburg, Russia, 197022, Instrumentalnaya ul. 6, and Saint-Petersburg State Technological Institute (Technological University), St. Petersburg, Russia, 190013, Moskovskii pr. 26

Experimental and literature data concerning the solubility of individual light fullerenes (C_{60} and C_{70}) in binary (individual fullerene + solvent), ternary ($C_{60} + C_{70}$ fullerenes + solvent; C_{60} or C_{70} fullerenes + solvent 1 + solvent 2), and multicomponent (fullerenes + natural fats and oils) systems as well as the data on solubility of industrial fullerene mixtures and fullerene derivatives in various organic solvents are presented and discussed.

Introduction

A knowledge of the light fullerenes solubility is important in, for example, the development of the chromatographic and prechromatographic methods for the separation of light fullerenes, in the development of medical and cosmetic products, in the elaboration of the extraction and separation of fullerenes from industrial fullerene soot, and in the study of chemical reactions involving fullerenes.

The solubility of light fullerenes in a range of solvents has been reported in the literature. Nevertheless, an analysis of the literature data reveals lack of some data and sometimes ambiguities in the available experimental data. Characteristic features of the available data are the following:

The lack of data on the solubility of light C_{70} fullerene in binary systems in comparison with the C_{60} fullerene. For example, at 298 K (sometimes at 293 K), the solubility of the C_{60} has been measured in approximately 150 solvents, whereas the solubility of the C_{70} has been measured only in 70 solvents (see Tables 1 and 2). The solubility data (at 293 K) of individual light fullerenes (C_{60} , C_{70}) in homological series of 1-alcohols and 1-alkanoic acids are presented in Figures 1 to 4 as an example.

Solubility of individual light fullerenes over a temperature range has been investigated for a still narrower number of solvents. Thus, in the case of the C₆₀ fullerene, solubility has been measured in solvents such as hexane,⁴⁰ heptane,⁶ tetralin,²¹ carbon disulfide,⁴⁰ *n*-butylamine,²⁴ benzene,²⁴ toluene,^{18,40} *o*-xylene,¹⁸ *o*-dichlorobenzene,^{21,24,42} 1,2,4-trichlorobenzene,²⁴ 1,3-diphenylacetone,²¹ thiophene,²⁴ tetrahydrothiophene,²⁴ tetrahydrofurane,²⁴ 1-alkanoic acids with normal structure,^{57–59} 1-alkanols,¹³ styrene,²⁵ carbon disulfide,^{4,18,40} and natural fats and oils.^{29,30} Solubility of the C₇₀ fullerene as a function of temperature has been investigated in the following solvents: heptane,⁶ tetralin,²¹ toluene,^{17,18,46} *o*-xylene,¹⁸ *o*-dichlorobenzene,²¹ 1,3-diphenylacetone,²⁵ and natural fats and oils.^{29,30}

Data on the solubility of fullerene mixtures in a single solvent are limited. The solubility in the ternary systems $C_{60} + C_{70} +$ *o*-xylene at (253, 298, and 353) K⁹ and $C_{60} + C_{70}$ + styrene at (258, 273, and 293) K has been studied by our group,⁹ while Korobov studied the first system at 298 K.¹⁶ Moreover, we have measured the solubility of the fullerene mixture (60 % C_{60} + 39 % C_{70} + 1 % $C_{76 \div 90}$) in the homologous series of 1-alkanoic acids, 1-alkanols, natural fats and oils, styrene, and heptane.

The solubilities for systems consisting of individual fullerene and mixed solvent are extremely scarce. Only a few studies have been published. The temperature dependences of the light fullerene solubility in high isomeric carboxylic acids, natural oils, animal fats, and essential oils have been studied in our group.¹⁰

Experimental Section

In the present work, the solubility of light fullerenes in binary systems (individual light fullerenes (C_{60} , C_{70}) + oleic, linolic, and octadecatrienoic acids), pseudobinary systems (industrial fullerene mixture + oleic, linolic, and linolenic acids), and ternary systems ($C_{60} + C_{70} + C_6H_4Cl_2$ at 423 K) was investigated.

The C₆₀ fullerene of mass fraction w = 99.9 % and the C₇₀ fullerene of w = 99.5 % (purchased from ILIP Ltd., St.-Petersburg) with controlled principal admixtures C₇₀ in C₆₀ and C₆₀ in C₇₀ of mass fraction (0.1 and 0.5) %, respectively, were used. The mass fraction of a standard fullerene mixture (purchased from ILIP Ltd., St.-Petersburg) was 60 % of C₆₀ + 39 % of C₇₀ + 1 % of C₇₆-C₉₀. The other reagents used were reagent-grade *o*-xylene, 1,2-dichlorobenzene, oleic, linolic, and linolenic acids.

The concentrations of C_{60} and C_{70} fullerenes in the liquid phase were measured with the aid of a spectrophotometric technique (using the double-beam spectrophotometer "SPECORD M40", Karl Zeiss, Germany) at wavelengths of (335 and 472) nm corresponding to the maximum absorbances which are stable relative to a solvent change. The uncertainty of the wavelength was \pm 0.5 nm; photometric uncertainty ΔD (l = 1 cm) was equal to \pm 0.005 units of optical density; and the absorption layer was 1 cm thick. The overall uncertainty of determining concentrations of light fullerenes (C_{60} and C_{70}) in a saturated

^{*} Corresponding author. Tel.: (812)3476435. Fax: (812)2349859. E-mail: semenov1986@yandex.ru.

[†] Saint-Petersburg State University.

[‡] ILIP Ltd.

[§] Saint-Petersburg State Technological Institute.

14 Journal of Chemical & Engineering Data, Vol. 55, No. 1, 2010

solvent	$S/g \cdot L^{-1}$	ref	solvent	$S/g \cdot L^{-1}$	ref
		Alkanes			
	0.005	1		0.026	2
bentane (C_5H_{12})	0.004 (303 K) 0.002	2	1sooctane (C_8H_{18})	0.028	4
	0.003	4		Jackets) ^a $S/g \cdot L^{-1}$ 0.026 0.028 0.027 0.062 0.034 0.048 0.071 0.070 (303 K) 0.097 0.103 0.097 0.126 0.168 0.147 0.15 0.25 4.60 1.87 2.20 1.30 7.14 0.15 0.02 0.01 0.12 0.35 0.40 2.77 0.64 8.31 0.03 0.17 0.11 0.10 0.12 0.35 0.40 2.77 0.64 8.31 0.03 0.041 0.53 2.20 8.06 14.3 2.297	3
	0.043	1	nonane (C ₀ H ₂₀)	0.034	4
	0.040	2	(0.048	-
exane (C_6H_{14})	0.037	3		0.071	1
	0.052	5	decane $(C_{10}H_{22})$	0.070 (303 K)	2
	0.046	4		0.072	4
C -methylpentane (C_6H_{14})	0.019	3	dodecane $(C_{12}H_{26})$	0.091	2
-methylpentane (C_6H_{14})	0.025	3	(12 20)	0.103	4
entane (C-H.)	0.048	5		0.097	2
	0.302	7	tetradecane (C14H28)	0.168	4
	0.025 (303 K)	2	(0141128)	0.147	
otone (CIII)	0.020	3			
(C_8H_{18})	0.302	7			
	0.025	4			
		Cyclic Alkan	es		
vclopentane (C_5H_{10})	0.002	1	methylcyclohexane (C_7H_{14})	0.17	10
• • • • • • • •	0.036	1	1,2-dimethylcyclohexane,	0.13	10
			mixture of cis and trans (C8H16)		
	0.051 (303 K)	2	ethylcyclohexane (C_8H_{16})	0.25	10
vclohexane (C_6H_{12})	0.036	8	3:7 mixture of <i>cis</i> - and	4.60	1
,	0.026	F	<i>trans</i> -decalins ($C_{10}H_{18}$)	1 07	1.1
	0.036	5	$-i = decalin(C, \mathbf{H})$	1.87	11
	0.035	9	CIS -decallin($C_{10}H_{18}$)	2.20	1
vclobevene (C.H.)	1.21	10	1.5.9-cyclododecatriene (CraHra)	7.14	10
-methyl-1-cyclohexene (C-H ₂ CH ₂)	1.03	10	1,5,5-eyelododeeatriche (C121118)	7.14	10
meanyr r cyclonexene (C6rigerra)	1.05	10			
	0.26	Haloalkanes	S 1.1.1 tricklassethers (Cl CCU)	0.15	0
	0.20 0.25 (202 K)	1	1, 1,1-trichloroethane $(C_{13}CCH_3)$	0.15	0 10
ichloromethane (CH ₂ Cl ₂)	0.23 (305 K) 0.23	8	2-chloropropane ((CH-)-CHCl)	0.02	7
	0.25	0	1-bromopropane (C ₂ H ₂ Br)	$\begin{array}{c} 3.9 \text{ ger L} \\ \hline 0.026 \\ 0.028 \\ 0.027 \\ 0.062 \\ 0.034 \\ 0.048 \\ 0.071 \\ 0.070 (303 \text{ K}) \\ 0.072 \\ 0.091 \\ 0.103 \\ 0.097 \\ 0.126 \\ 0.168 \\ 0.147 \\ \hline \end{array}$	8
	0.16	1	2-bromopropane (C_3H_7Br)		7
	0.17	10	1-iodopropane (C_3H_7I)	0.17	8
ichloromethane (CHCl ₃)	0.51	4	2-iodopropane (C_3H_7I)	0.11	8
	0.28		1,2-dichloropropane (C ₃ H ₆ Cl ₂)	0.10	8
	0.32	1	1,3-dichloropropane (C ₃ H ₆ Cl ₂)	0.12	8
etrachloromethane (CCL)	0.45 (303 K)	2	(\pm) -1,2-dibromopropane (C ₃ H ₆ Br ₂)	0.35	8
traemoromethane (Cer ₄)	0.10	12	1,3-dibromopropane (C ₃ H ₆ Br ₂)	0.40	10
	0.27	43	1,3-diiodopropane ($C_3H_6I_2$)	2.77	8
ibromomethane (CH ₂ Br ₂)	0.36	8	1,2,3-trichloropropane ($C_3H_5Cl_3$)	0.64	8
ibromomethane (CHBr ₃)	5.64	8	1,2,3-tribromopropane (C ₃ H ₅ Br ₃)	8.31	8
ijodomethane (CH ₃ I)	0.17	8	1-bromo-2-methylpropane (C_4H_9CI)	0.03	0
romochloromethane (CH ₂ BrCl)	0.15	10	1-iodo-2-methylpropane (C.H.I)	0.089	8
romoethane (C ₂ H ₂ Br)	0.07	10	2-chloro-2-methylpropane ((CH ₂) ₂ CCl)	0.04	10
odoethane (C ₂ H ₂ I)	0.28	10	2-bromo-2-methylpropane ((CH ₃) ₃ CCI)	0.06	10
ichloroethylene (C ₂ HCl ₂)	1.40	1	2-iodo-2-methylpropane ((CH ₃) ₃ CD)	0.230	10
etrachloroethylene (C ₂ Cl ₄)	1.20	1	bromobutane (C_4H_9Br)	1.20	7
ichlorodifluoroethane ($C_2H_2Cl_2F_2$)	0.02	1	cyclopentyl bromide (C ₅ H ₉ Br)	0.41	8
,1,2-trichlorotrifluoroethane (ClCF ₂ CCl ₂ F)	0.01	1	cyclohexyl chloride ($C_6H_{11}Cl$)	0.53	8
,1,2-trichloroethane (ClCH ₂ CHCl ₂)	0.130	1	cyclohexyl bromide (C ₆ H ₁₁ Br)	2.20	8
,1,2,2-tetrachloroethane (CHCl ₂ CHCl ₂)	5.30	1	cyclohexyl iodide (C ₆ H ₁₁ I)	8.06	8
,2-dibromoethylene (BrCH=CHBr)	1.84	8	(\pm) -trans-1,2-dibromocyclohexane	14.3	7
	0.21	7	$(C_6H_{10}Br_2)$	2 207	7
-chloro-2-methylpropene ((CH_3) ₂ C=CHCI)	0.21	7	bromoheptane ($C_7H_{15}Br$)	2.297	7
2-dichloroethane $(C_2H_4Cl_2)$	0.08	8	bromooctane ($C_8H_{17}Br$)	5.398	7
2 dibromoothong (C U Pr)	0.50	1	1 bromotetradecane (CH ₃ (CH ₂) ₁₃ Br)	6.19	7
$(C_2 \Pi_4 D I_2)$	0.54	0	1-biolilooctadecalle ($CH_3(CH_2)_{17}BI$)	0.19	/
	0.52				
	0.451 (000 12)	Natural Oils	S	0.512 (202 12)	20
-stavropoije» (unrefined	0.451 (293 K)	29		0.513 (293 K)	29
Sumower OII) Zlato≫ (refined sunflower cil)	0 377 (202 K)	20	linseed oil	0.365	27
inflower triglyceride	0.116	33		53 1 ^b (328 K)	52 47
inflower oil ≪Venus≫	6.91	31	linseed triglyceride	0.091	33
inflower oil «Floriol»	4.01	31	pignolia oil	0.485 (293 K)	29
unflower oil ≪Eden≫	5.62	31	grape-seed oil	0.371 (293 K)	29
<milora≫ (corn="" oil)<="" td=""><td>0.609 (293 K)</td><td>29</td><td>apricot-kernel oil</td><td>0.509 (293 K)</td><td>29</td></milora≫>	0.609 (293 K)	29	apricot-kernel oil	0.509 (293 K)	29
valnut oil	0.485 (293 K)	29	brassica methyl ester (biodiesel)	0.187	33
	0.470 (293 K)	29	soybean triglyceride	0.859	32
live oil	0.00461 (303 K)	31	castor oil	0.392	32
live off	0.909	32	peanut oil	0.751	32
	23.6 ^b (323 K)	47	sunseed oil	0.522	32
live oil ≪Carapelli≫	2.84	31	soybean oil	0.495	32
live oil ≪Carapelli≫ live oil ≪Borgess≫	2.84 5.97	31 31	soybean oil sea-buckthorn oil	0.495 43.2 ^b (328 K)	32 47
live oil ≪Carapelli≫ blive oil ≪Borgess≫ blive oil ≪Olatalia≫	2.84 5.97 3.97	31 31 31	soybean oil sea-buckthorn oil cedur oil	0.495 43.2 ^b (328 K) 51.8 ^b (343)	32 47 47

Table 1. Continued

_

able 1. Continueu					
solvent	$S/g \cdot L^{-1}$	ref	solvent	$S/g \cdot L^{-1}$	ref
	U	Anim	al Fats	U	
pork fat	0.052 (323 K)	34	lamb fat	0.041 (323 K)	34
bird fat	0.024 (323 K)	34	desi	0.021 (323 K)	34
beef fat	0.041 (323 K)	34	molten cow butter	soluble	32
margarine ≪Rumjashka≫	0,019 (323 K)	34	cod-liver oil	53.0 ^b (328 K)	47
		Essent	ial Oils		
essential oil of carnation	1.551 (293 K)	35	essential oil of cypress	20.6 ^b (323 K)	47
essential oil of lemon	18.8^{b} (323 K)	47	essential oil of eucalyptus	23.4 ^b (323 K)	47
essential oil of orange	21.3 ^b (329 K)	47	gum spirit	25.6 ^b (338 K)	47
		Inorganic	c Solvents		
water (H_2O)	$1.3 \cdot 10^{-11}$	3	hexachlorodisilane ((SiCl ₃) ₂)	0.38	41
silicon(IV) chloride (SiCl ₄)	0.09	41	silicon(IV) bromide (SiBr ₄)	0.74 (305 K)	41
germanium(IV) chloride (GeCl ₄)	0.50	41	germanium(IV) bromide (GeBr ₄)	0.68 (305 K)	41
tin(IV) chloride (SnCl ₄)	1.23	41	tin(IV) bromide (SnBr ₄)	0.17 (305 K)	41
		Alco	phols		
	0.000035	3	heptan-1-ol (C ₇ H ₁₅ OH)	0.0694	13
methanol (CH ₃ OH)	0.000024	13		0.0468	3
	0.000027	14	anter 1 al (C II OII))	0.152	13
	0.001	97	$O(tan-1-01 (C_8 H_{17} O H))$	0.0429	14
ethanol (C ₂ H ₅ OH)	0.0012	13		0.0429	97
	0.0014	14	distilled octanol	0.0389	97
	0.0008	3	nonan-1-ol (C ₉ H ₁₉ OH)	0.214	13
	0.0041	3	decan-1-ol ($C_{10}H_{21}OH$)	0.270	13
propan-1-ol (C ₃ H ₇ OH)	0.0083	13	undecan-1-ol ($C_{11}H_{23}OH$)	0.354	13
	0.0062	2	propan-2-ol (C_3H_7OH)	0.0021	3
butan-1-ol (C ₄ H ₉ OH)	0.0094	3 13	butan-2-ol (C_4H_9OH)	0.0036	3
	0.0345	3	pentan-2-of $(C_5\Pi_{11}O\Pi)$ pentan-3-ol $(C_6H_{11}OH)$	0.0180	3
pentan-1-ol ($C_5H_{11}OH$)	0.0388	13	propan-1.3-diol ($C_2H_3O_2$)	0.0009	3
	0.042	3	butan-1,4-diol ($C_4H_{10}O_2$)	0.0022	3
nexan-1-ol ($C_6H_{13}OH$)	0.0640	13	pentan-1,5-diol $(C_5H_{12}O_2)$	0.0044	3
		Carboxy	dic Acids		
acetic acid (C ₂ H ₄ O ₂)	0.0068	16	octanoic acid ($C_{\circ}H_{1\circ}O_{2}$)	0.0473	16
propionic acid $(C_3H_6O_2)$	0.0156	16	nonanoic acid $(C_9H_{18}O_2)$	0.161	16
butanoic acid $(C_4H_8O_2)$	0.0141	16	linolic acid $(C_{18}H_{32}O_2)$	$34.2^{b}(323)$	47
pentanoic acid $(C_5H_{10}O_2)$	0.058	16	oleic acid ($C_{18}H_{34}O_2$)	22.4 ^b (313 K)	47
hexanoic acid (C ₆ H ₁₂ O ₂)	0.184	16	octadecatrienoic acid (C ₁₈ H ₃₀ O ₂)	35.5 ^b (325 K)	47
heptanoic acid $(C_7H_{14}O_2)$	0.279	16			
		Aromatic H	lydrocarbons		
	1.70	1		7.00	1
	1.50	15	chlorobenzene (C ₆ H ₅ Cl)	5.70	15
benzene (C_6H_6)	1.44 (303 K)	16		6.35	
	0.88	7		3.30	1
	2.80	4	bromobenzene (C_6H_5Br)	2.80	15
	2.90	15	iodobenzene (C ₆ H ₅ I)	2.10	15
	2.29	17		27.00	1
	2.15 (303 K)	2		24.60	15
	2.27	5		22.90	21
toluene (C ₇ H ₈)	2.90	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	7.11	24
	2.40	1		22.9	22
	3.20	4		23.40	23 42
	2.9	19	1.2-dibromobenzene (C ₄ H ₄ Br ₂)	13.80	15 44
	0.54	8	-, (-042/	2.40	15
	2.44	41	1,3-dichlorobenzene ($C_6H_4Cl_2$)	5.03	23
	8.70	15		3.72	
	7.35	8	1,3-dibromobenzene ($C_6H_5Br_2$)	13.80	15, 44
1,2-dimethylbenzene $(C_6H_4(CH_3)_2)$	9.30	18		8.50	1 15
• • • • • • •	9.5 7 7	20	1.2.4-trichlorobenzene (C.H.Cl.)	10.40	15
	9.25	50	1,2,4-themorobenzene (C ₆ 11 ₃ Cl ₃)	21 31	4
	1.40	15		9.62	44
1,3-dimethylbenzene ($C_6H_4(CH_3)_2$)	2.83	8	styrene ($C_6H_5CH=CH_2$)	3.75	10
• • • • • • •	2.11		• • • • •	4.00	25, 28
	5.90	15		3.88	
1,4-dimethylbenzene ($C_6H_4(CH_3)_2$)	3.14	8	o-cresol (CH ₃ C ₆ H ₄ OH)	0.01	1
1.2.3 trimethylbonzono (C.H. (CH.))	4.52	11	$C_{6}H_{5}CN$	0.41	1
1.2.5-trimethylbenzene $(C_6\Pi_3(C\Pi_3)_3)$	17.90	11	1 3-diphenylacetone ((C ₄ H ₄ CH ₂) ₂ CO)	1 45	22
-,-, · · · · · · · · · · · · · · · · · ·	1.50	1	anisole ($CH_3OC_6H_5$)	5.60	7
1.2.5 trimothylkonzono (C.U. (CU.))	1.00 (303 K)	2	<i>p</i> -bromoanisole ($CH_3OC_6H_4Br$)	16.78	7
1,5,5-trimemyidenzene $(C_6H_3(CH_3)_3)$	1.70	15	<i>m</i> -bromoanisole (CH ₃ OC ₆ H ₄ Br)	16.20	8
	1.60		benzaldehyde (C ₆ H ₅ CHO)	0.42	8
1,2,3,4-tetramethylbenzene $(C_6H_2(CH_3)_4)$	5.80	11	phenyl isocyanate (C_6H_5NCO)	2.44	10
1,2,3,5-tetramethylbenzene (C ₆ H ₂ (CH ₃) ₄)	20.80	15	unopneno $I(C_6H_5SH)$ 1-methyl 2-nitrobanzana(C H NO)	0.91	8 8
	14.62	21	1-methyl 3-nitrobenzene ($C_6 \Pi_7 N O_2$)	2.45	8
tetralin ($C_{10}H_{12}$)	15.70	7	benzyl chloride ($C_6H_5CH_2Cl$)	2.40	8
	14.5 (295)	22	benzyl bromide ($C_6H_5CH_2Br$)	4.94	8
ethylbenzene ($C_6H_5C_2H_5$)	2.60	15	1,1,1-trichloromethylbenzene (C ₇ H ₅ Cl ₃)	4.80	1

Table 1. Continued

solvent	$S/g \cdot L^{-1}$	ref	solvent	$S/g \cdot L^{-1}$	ref
2.16	8		33.00	1	
2.38		1-methylnaphthalene (C ₁₀ H ₇ CH ₃)		34.78	45
<i>n</i> -propylbenzene ($C_6H_5C_3H_7$)	1.50		15	33.20	15
isopropylbenzene (C ₆ H ₅ CH(CH ₃) ₂)	1.20	15	1-phenylnaphthalene ($C_{10}H_7C_6H_5$)	50.00	1
<i>n</i> -butylbenzene ($C_6H_5C_4H_9$)	1.90	15		51.00	1
<i>sec</i> -butylbenzene (C ₆ H ₅ CH(CH ₃)CH ₂ CH ₃)	1.10	15	1-chloronaphthalene ($C_{10}H_7Cl$)	51.68	45
	0.59	1	-	51.34	
fluorobenzene (C ₆ H ₅ F)	1.20	15	1-bromo,2-methylnaphthalene $(CH_3C_{10}H_6Br)$	34.78	15
	0.90		1,2-dimethylnaphthalene $(C_{10}H_6(CH_3)_2)$	36.00	7
			thiophenol (C_6H_5SH)	6.91	7
		Other Polar Solvents			
	0.000	1	acrylonitrile (CH ₂ =CHCN)	0.0040	10
nitromethane (CH_3NO_2)	0.216	7	<i>n</i> -butylamine (CH ₃ (CH ₂) ₃ NH ₂)	3.688	39
nitroethane ($C_2H_5NO_2$)	0.002	1	2-methoxyethyl ether ((CH ₃ OCH ₂ CH ₂) ₂ O)	0.032	8
acetone (CH ₃ COCH ₃)	0.001	1	N.N-dimethylformamide (HCON(CH_3) ₂)	0.027	8
	0.000	1	1,4-dioxane ($C_4H_8O_2$)	0.041 (303 K)	2
acetonitrile (CH_3CN)	0.0004	14		· · · ·	
		Miscellaneous			
	7.90	1	2-methylthiophene (C_5H_6S)	6.80	1
	5.16 (303 K)	2	pyrrolidine (C ₄ H ₉ N)	47.52	7
(1, 1,, 1), 10.1, (00.)	7.70	18	N-methyl-2-pyrrolidone (C ₅ H ₉ NO)	0.89	1
carbon disulfide (CS_2)	7.49	40		0.89	1
	11.81	4	pyridine (C_5H_5N)	0.30	15
	7.90	41	· · · · · ·	0.60	
	0.40	15	piperidine (C ₅ H ₁₁ N)	53.28	7
thiophene (C_4H_4S)	0.24	24	2,4,6-trimethylpyridine (C ₈ H ₁₁ N)	8.71	7
	0.32		tetrahydrothiophene (C ₄ H ₈ S)	0.03	1
	0.06	1	quinoline $(C_9 H_7 N)$	7.20	15
$tetrahydrofuran (C, H_0)$	0.58	7			
(Carigo)	0.04	4			
	0.011	14, 97			

^{*a*} We have marked out by black and italic type the solubility values that are the most probable *in our opinion*. In the cases when the only value is presented, this value is the most probable. ^{*b*} Saturation of fullerene solutions was carried out using ultrasonic machining.

solution is no more than 5 %. Empirical formulas, obtained for the fullerene solutions, were as follows 6,13,27,29,30

$$C(C_{60})/\text{mg}\cdot\text{L}^{-1} = 13.10(D_{335} - 1.808D_{472})$$
 (1)

$$C(C_{70})/\text{mg}\cdot\text{L}^{-1} = 42.51(D_{472} - 0.0081D_{335})$$
 (2)

where D_{335} and D_{472} are optical densities of the solutions with regard to the absorption layer of 1 cm width and $C(C_{70})$ and $C(C_{60})$ are the fullerene concentrations.

All solutions were preliminarily diluted with *o*-xylene, the reference solution being *o*-dichlorobenzene, oleic, linolic, and linolenic acids in *o*-xylene with the same dilution.

To check the results, liquid chromatography (chromatograph Lumachrom from Lumex Ltd., St.-Petersburg, Russia) with absorption detection at 254 nm was used The results of both techniques were in a good agreement (relative difference \pm 3%). The uncertainty of determined fullerene concentrations in saturated solutions was \pm (0.1 to 0.2) g·L⁻¹ depending on the fullerene concentration. The fullerene concentrations in solid solutions were obtained in the same way after dissolution of solid samples in excess of *o*-xylene.

The following experimental method was used for determination of the solvent content in solid crystal solutes. The solid phase deposited from solution was filtered with a Schott filter (porosity factor 10), rinsed quickly with ethanol, and then dried for (10 to 15) min at 293 K. Then, the solid phase was weighted, repeatedly washed with ethanol in a Soxhlete apparatus at 351 K and 1 atm, dried for 1 h in vacuum (13.3 Pa) at 473 K, and weighted again. The mass change corresponded to the solvent content in the initial crystal solutes (or in the fullerene solid solution). The method for determination of the solid phase compositions was confirmed by the thermogravimetric analysis on a Hungarian derivatograph Q-1500. The results of both methods are in good agreement with each other (relative difference \pm 10 %).

In Table 3 and Figure 5 the temperature dependences of solubility of the individual light fullerenes (C_{60} and C_{70}) in oleic, linolic and linolenic acids are presented, in one's turn the polytherms of solubility of the components of the industrial fullerene mixture (C_{60} and C_{70}) are presented in Table 4 and Figure 6 correspondingly. Such kind of investigation can be extremely actual due to the following reasons:

From the general considerations, the light fullerenes solubility in such acids should be higher than in the corresponding saturated analogues (the light fullerene solubility varies from 1/10 to 1/100 mg·L⁻¹). On the other hand, these acids are important components of fats, and they are biologically compatible with mammalians.

The other possible way of application of the light fullerene compositions with unsaturated fatty acids is the elaboration of the tribological additives to fuel and technical oils. It is significant that the compositions with unsaturated fatty acids mainly based on oleic acid (due to its cheapness) are with much success used for this purpose. Tables 3 and 4 and Figures 5 and 6 show the following:

-the solubility values in all studied unsaturated fatty carboxylic acids vary from 1/10 $g \cdot L^{-1}$ up to 10 $g \cdot L^{-1}$. It is worthwhile to say that these values are 1 to 2 orders higher than in the case of earlier studied saturated carboxylic acids;

-the solubility values of the both light fullerenes in all studied unsaturated carboxylic acids increase with increasing temperature (in the case of individual light fullerenes (C_{60} , C_{70}) and components of industrial fullerene mixture): $dS_{acid}(C_{60})/dT > 0$ and $dS_{acid}(C_{70})/dT > 0$;

-in all cases, the individual solubility of the more polarizable fullerene C_{70} is higher than the solubility value of \ll pseudo-

Table 2. S	Solubility of C70	in '	Various	Solvents at	298 K	(Temperatures	Different	from	298 K	Are in Brackets	$)^{a}$
------------	-------------------	------	---------	-------------	-------	---------------	-----------	------	-------	-----------------	---------

solvent	$S/g \cdot L^{-1}$	ref	solvent	$S/g \cdot L^{-1}$	ref
		Al	kanes		
<i>n</i> -pentane (C_5H_{12})	0.002	46	<i>n</i> -octane (C_8H_{18})	0.042	46
<i>n</i> -hexane (C_6H_{14})	0.013	46	<i>n</i> -decane ($C_{10}H_{22}$)	0.053	46
	0.047	46	dodecane ($C_{12}H_{26}$)	0.098	46
<i>n</i> -heptane (C_7H_{16})	0.031	6	cyclohexane (C_6H_{12})	0.08	46
	0.039				
		Al	cohols		
and the state of t	0.0004	52		0.126	52
methan-1-ol (CH ₃ OH)	0.00004	49	nexan-1-ol ($C_6H_{13}OH$)	0.035	49
other 1 al (C II OII)	0.0007	52	heptan-1-ol (C ₇ H ₁₅ OH)	0.046	52
$ethan-1-of(C_2H_5OH)$	0.00078	49	octan-1-ol (C ₈ H ₁₇ OH)	0.027	52
propag 1 of $(C \amalg O \amalg)$	0.003	52		0.046	49
propan=1-01 (C ₃ 11 ₇ O11)	0.0039	49	nonan-1-ol (C ₉ H ₁₉ OH)	0.190	52
isopropanol ((CH ₃) ₂ CHOH)	0.0021	46	decan-1-ol ($C_{10}H_{21}OH$)	0.310	52
hutan-1-ol (C.H.OH)	0.013	52	undecan-1-ol (C ₁₁ H ₂₃ OH)	0.229	52
butun-1-01 (e4119011)	0.0086	49	molten behenamide (CH ₃ (CH ₂) ₂₀ CONH ₂)	soluble	32
pentan-1-ol (C _c H ₁₁ OH)	0.021	52			
F	0.00028	49			
		Natu	Iral Oils		
«Stavropolje» (unrefined sunflower oil)	1.827	30	pignolia oil	0.757	29
≪Zlato≫ (refined sunflower oil)	1.289	30	apricot-kernel oil	1.009	29
≪Milora≫ (corn oil)	1.957	30	castor oil	0.636	32
walnut oil	1.390	30	peanut oil	0.852	32
olive oil	0.756	30	sunseed oil	0.867	32
	1.035	32	soybean oil	0.753	32
linseed oil	1.198	30	brassica oil	1.034	32
	0.727	32			
		Aromat	ic Solvents		
benzene (C_6H_6)	1.3	46		15.6	18
p-xylene (C ₆ H ₄ (CH ₃) ₂)	3.99	46	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	15.17	50
	1.47	53		15.4	
1,3,5-trimethylbenzene (C ₆ H ₃ (CH ₃) ₃)	1.45	44		1.5	18
	1.46	10	toluene ($C_6H_5CH_3$)	1.406	46
1,3-dichlorobenzene ($C_6H_4Cl_2$)	18.7	48		1.07	17
mesitylen ($C_6H_3(CH_3)_3$)	1.472	46	tetralin ($C_{10}H_{12}$)	12.3	53
styrene ($C_6H_5CH=CH_2$)	4.72	27	1,3-diphenylacetone ($C_6H_5CH_2$) ₂ CO)	1.45 (297.1 K)	37
	36.21	46			
$1,2$ -dichlorobenzene ($C_6H_4Cl_2$)	22.9	21			
	29.0				
		Carbox	ylic Acids		
formic acid (CH_2O_2)	0.0002	51	hexanoic acid $(C_6H_{12}O_2)$	0.125	51
acetic acid $(C_2H_4O_2)$	0.0005	51	heptanoic acid($C_7H_{14}O_2$)	0.330	51
propanoic acid $(C_3H_6O_2)$	0.002	51	octanoic acid ($C_8H_{16}O_2$)	0.110	51
butanoic acid $(C_4H_8O_2)$	0.013	51	nonanoic acid $(C_9H_{18}O_2)$	0.056	51
pentanoic acid $(C_5H_{10}O_2)$	0.014	51	molten stearic acid ($CH_3(CH_2)_{16}COOH$)	soluble	32
		Anir	nal Fats		
pork fat (323 K)	0.143	34	margarine ≪Rumjashka≫ (323 K)	0.080	34
bird fat (323 K)	0.148	34	lamb fat (323 K)	0.053	34
beef fat (323 K)	0.054	34	desi (323 K)	0.159	34
	0.0010	Other	Solvents	15.2	10
acetone (CH_3COCH_3)	0.0019	46		15.3	18
(CH_2Cl_2)	0.08	40	carbon disuinde (CS_2)	9.8/5	46
ten achioromethane (UU_4)	0.121 1.1*.10 ⁻¹³	40		10.10	1/
water (H ₂ U)	1.110	49			

^{*a*} We have marked out by black and italic type the solubility values that are the most probable in our opinion. In the cases when the only value is presented, this value is the most probable.

spheroid $\gg C_{60}$. This fact is quite typical for the solvents with the high solubility values of the light fullerenes;

-the solubility value of the C_{60} from the industrial fullerene mixture is higher than the solubility value of individual C_{60} ; the «salting-in» effect of the C_{60} fullerene takes place in the branch of crystallization of the solid solutions enriched by C_{60} ;

-with the increase of the unsaturation degree of the carboxylic acid, the solubility values of both light fullerenes increase: the solubility of fullerenes in trienoic acid is higher than in dienic acid, and solubility values in dienic acid are higher than in ≪monoenic≫ acid;

-we can consider that both of the light fullerenes in the solid phase are unsolvated.

The diagram of solubility along with the diagram of fullerene components distribution between liquid and solid solutions in the ternary system $C_{60} + C_{70} + C_6H_4Cl_2$ at 423 K are shown in Figures 7 and 8 and Table 5.

As can be seen from Figure 7, the solubility diagram consists of two branches. One corresponds to crystallization of the unsolvated solid solutions $(C_{60})_x(C_{70})_{1-x}$ enriched with the C_{60} fullerene. The other corresponds to crystallization of unsolvated solid solutions $(C_{60})_x(C_{70})_{1-x}$ enriched with the fullerene C_{70} . At any temperature, there is only one invariant point ("E" in Figure 7) corresponding to simultaneous saturation of two solids. The fullerene distribution diagrams contain miscibility gap regions for solid phase compositions when the mass ratio $C_{60}/$ C_{70} is in the range of 0.25 to 0.7 (Figure 8). The unsolvated solid solutions enriched with the C_{60} and C_{70} fullerenes reveal the salting-in effect in the branches of crystallization; i.e., in the saturated solutions, the concentration of the C_{60} fullerene increases with the concentration of the C_{70} fullerene, and the

Figure 1. Solubility of the C₆₀ fullerene in the homological series of 1-alkanoic carboxylic acid $C_nH_{2n+1}COOH$ (*n*, number of the carbon atoms in the hydrocarbon chain) at T = 293 K.

Figure 2. Solubility of the C₇₀ fullerene in the homological series of 1-alkanoic carboxylic acid $C_nH_{2n+1}COOH$ (*n*, number of the carbon atoms in the hydrocarbon chain) at T = 293 K.

Figure 3. Solubility of the C₆₀ fullerene in the homological series of alkan-1-ols $C_n H_{2n+1}$ OH (*n*, number of the carbon atoms in the hydrocarbon chain) at T = 293 K.

concentration of the C_{70} fullerene increases with the increase of the C_{60} fullerene concentration correspondingly (Figure 7).

Phase Equilibria in the Binary Systems Consisting of an Individual Light Fullerene and a Solvent. The process of a fullerene dissolution involves several stages. These stages are accompanied with the following energy effects: endothermic destruction of the fullerite lattice, breaking of

Figure 4. Solubility of the C₇₀ fullerene in the homological series of alkan-1-ols C_nH_{2n+1}OH (*n*, number of the carbon atoms in the hydrocarbon chain) at T = 293 K.

Table 3. Solubility of Light Fullerenes (C_{60} and C_{70}) in Oleic, Oleinic, And Linolenic Acids

T/K	$S/g \cdot L^{-1}$	T/K	$S/g \cdot L^{-1}$
$C_{60} + c$	oleic acid	C ₇₀ + o	leic acid
293.15	0.109	293.15	1.667
303.15	0.136	303.15	1.748
313.15	0.193	313.15	1.999
323.15	0.219	323.15	2.040
333.15	0.340	333.15	2.077
343.15	0.404	343.15	2.278
353.15	0.678	353.15	2.612
$C_{60} + 0$	leinic acid	$C_{70} + old$	einic acid
293.15	0.244	293.15	1.867
303.15	0.315	303.15	2.099
313.15	0.449	313.15	2.235
323.15	0.621	323.15	2.323
333.15	0.733	333.15	2.411
343.15	1.109	343.15	2.919
353.15	1.486	353.15	3.526
$C_{60} + lir$	nolenic acid	$C_{70} + line$	olenic acid
293.15	0.442	293.15	2.804
303.15	0.458	303.15	2.942
313.15	0.572	313.15	3.070
323.15	0.917	323.15	3.202
333.15	1.425	333.15	3.866
343.15	2.361	343.15	5.111
353.15	3.035	353.15	5.349

solvent-solvent bonds, as well as compensative effects of exothermic solvation process.⁵⁴ When the potential energies of solvent and solute molecules in the electrostatic field of solution are similar (Semenchenko's rule), the solubility of a solute reaches its maximum because of strong solute-solvent interactions.⁵⁵ Consequently, a fullerene dissolution enthalpy is the difference between the energy of fullerene solvation and the sum of energy expended in destroying of the fullerite lattice and breaking of solvent-solvent bonds. It should be noted that in contrast to nonpolar organic compounds the enthalpy of dissolution of the C_{60} is negative (exothermic effect of dissolution). Therefore, one can use the van't Hoff equation that describes the temperature dependence of solubility to show a decrease in solubility with an increase in temperature that is particularly atypical for nonelectrolytes. This decrease in solubility occurs after a solubility maximum in which a phase transition of the fullerene of the first order takes place. Such transition is caused by the destruction of a fullerene solvation sphere (see Figure 9).⁵⁶ Such dependences were described in the work of Ruoff⁴⁰ for the binary systems C_{60} + hexane, C_{60} + toluene, and C_{60} + carbon disulfide.

Figure 5. Solubility of individual light fullerenes C_{60} (a) and C_{70} (b) in oleic, linolic, and octadecatrienoic acids in the temperature range (293 to 353) K. O, oleic acid; Δ , linolic acid; ∇ , octadecatrienoic acid.

Table 4. Temperature Dependences of Solubility of the Industrial Fullerene Mixture Solubility with Mass Fraction (60 to 65) % of C_{60} + (33 to 39) % of C_{70} + (1 to 2) % wt. of C_{76} - C_{90} in Oleic, Oleinic and Linolenic Acids^{*a*}

				T/K			
solvent	293.15	303.15	313.15	323.15	333.15	343.15	353.15
				$S/g \cdot L^{-1}$			
-1-11-1	1.650	1.713	1.688	1.840	1.923	2.209	2.748
oleic acid	1.215	1.277	1.844	1.903	2.467	2.648	3.075
.1.1.1.1	1.956	1.948	2.369	2.924	3.282	3.300	3.928
oleinic acid	1.711	1.899	2.015	2.063	2.117	2.431	3.044
1	1.739	1.991	2.904	2.931	3.005	3.664	4.922
inolenic acid	2.157	2.517	2.787	2.859	2.931	3.576	5.376

 $^{\it a}$ Upper values correspond to solubility of $C_{60},$ and lower values correspond to solubility of $C_{70},$ g \cdot dm $^{-3}.$

Analysis of literature data shows that such temperature dependences are rather frequent and take place not only in the above-listed cases (see Table 6). Such a solubility temperature dependence is widespread for binary water + salt systems such as NaF + H₂O, CaF₂ + H₂O, NH₄HF₂ + H₂O, ZrOCl₂ + H₂O, MgSO₃ + H₂O, CuSO₄ + H₂O, and Th(SO₄)₂ + H₂O (see Figure 10).⁶⁰ A summary of the data on fullerene solid solvates is presented in Table 7. The solvates of fullerenes are the compounds with constant composition. They are formed of fullerene and solvent molecules; furthermore, the solvate should be precipitated to the solid phase. We also disseminate this concept to solvated solid solutions of fullerenes ((C₆₀)_x(C₇₀)_{1-x}•nS). The

Figure 6. Solubility of the C₆₀ fullerene (a) and C₇₀ fullerene (b) from industrial fullerene mixture (65 % C₆₀ + 34 % C₇₀ + 1 % C₇₆₋₉₀) in oleic, linolic, and octadecatrienoic acids in the temperature range (293 to 353) K. \bigcirc , oleic acid; Δ , linolic acid; ∇ , octadecatrienoic acid.

Figure 7. Solubility diagram in the ternary system $C_{60} + C_{70} + C_6H_4Cl_2$ at T = 423 K. Solid line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$ based on C_{60} fullerene; dashed line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$ based on C_{70} fullerene. $S(C_{60})$, the concentration of C_{60} in solution; $S(C_{70})$, the concentration of C_{70} in solution. "O" corresponds to simultaneous saturation of two solids.

fullerene's solvates are held together with weak van der Waals forces, and charge transfer was not detected by changes in infrared spectra. Some data on the stability of the solvated

Figure 8. Fullerene component distribution between liquid and solid solutions in the ternary system $C_{60} + C_{70} + C_6H_4Cl_2$ at T = 423 K. $w^l(C_{60})$ is the mass fraction of the C_{60} fullerene in liquid solution; $w^s(C_{60})$ is the mass fraction of the C_{60} fullerene in solid solution.

Table 5. Equilibrium Liquid–Solid Phase Composition in the Ternary System $C_{60} + C_{70} + (o-C_6H_4Cl_2)$ at 423 $K^{a,b}$

$S(C_{60})/g \cdot L^{-1}$	$S(C_{70})/g \cdot L^{-1}$	$w^{l}(C_{60})/\%$	$w^{s}(C_{60})/\%$	solid phase
14.4	0.00	1.000	1.000	C ₆₀
16.4	6.90	0.796	0.918	$(C_{60})_x(C_{70})_{1-x}$ (1)
18.0	10.0	0.664	0.870	$(C_{60})_x(C_{70})_{1-x}$ (1)
19.6	19.9	0.477	0.783	$(C_{60})_x(C_{70})_{1-x}$ (1)
23.6	41.9	0.356	0.683	$(C_{60})_{x}(C_{70})_{1-x}(1) +$
				$(C_{60})_x(C_{70})_{1-x}$ (2)
14.1	40.9	0.264	0.145	$(C_{60})_x(C_{70})_{1-x}$ (2)
7.19	40.0	0.182	0.076	$(C_{60})_x(C_{70})_{1-x}$ (2)
0.00	40.0	0.000	0.000	C ₇₀

^{*a*}(1), (2)-solid solutions enriched by C_{60} and C_{70} fullereness correspondingly. ^{*b*} $S(C_{60})$, concentration of C_{60} in solution; $S(C_{70})$, concentration of C_{70} in solution; $w^{l}(C_{60})$, mass fraction of the C_{60} fullerene in liquid solution; $w^{s}(C_{60})$, mass fraction of the C_{60} fullerene in solid solution.

Figure 9. Solubility of the C₆₀ fullerene in 1,2-dimethylbenzene. Solid line corresponds to crystallization of C₆₀ • 2C₆H₄(CH₃)₂; dashed line corresponds to crystallization of C₆₀. "O" is the dissociation point of bisolvated C₆₀ • 2C₆H₄(CH₃)₂ according to the reaction: C₆₀ • 2C₆H₄(CH₃)₂(solid) \rightarrow C₆₀(solid) + 2C₆H₄(CH₃)₂(liquid). •, 18; •, 15; •, 8; O, 18; solid triangle pointing left, 19; Δ , 20; \diamondsuit , 50.

crystals of C₆₀, both measured by DSC and calculated through thermodynamic equations, are presented in ref 37.

The sigmoid shape⁷² of the solubility temperature dependence (for example in the binary system C_{70} + 1,2-dimethylbenzene)

is evidence of a nonsolvatic process of a fullerene dissolution (see Figure 11).

A thermodynamic model describing unusual temperature dependence of the solubility was proposed by Korobov. Thermodynamic equations derived show that the reason of anomalous solubility temperature dependence is the abnormal correlation between two enthalpies, namely, the enthalpy of solid solvate formation and the enthalpy of saturated liquid solution formation.^{37,48,61,78} The model describes the equilibrium saturated solution of C₆₀ + solid solvate on the low-temperature branch of the solubility curve up to the point of solubility maximum and saturated solution of C₆₀ + solid individual C₆₀ on the high-temperature branch of the solubility curve. Korobov's model assumes that fullerene solutions are infinitely diluted and simultaneously the composition dependence of activity coefficients can be neglected (this corresponds to Henry's law behavior).

A linear relation between logarithm of composition in saturated solution and inversed temperature was observed in a number of works;^{40,18,21} this fact led them to conclude that enthalpy and entropy of the C₆₀ dissolution are independent of composition and temperature (see Figure 12).

The constancy of activity coefficient was shown by Korobov by direct calculation using dissolution curves of C_{60} in toluene in the temperature range $T = (285 \text{ to } 383) \text{ K.}^{78}$ The existence of a linear relation between the logarithm of composition in saturated solution and inversed temperature can be used to examine calorimetric data on the basis of data obtained for dissolution curves.⁷⁸

It has been found that there is no relationship between composition and partial molar volume of C_{60} for 12 organic solvents in a wide range of composition (from infinitely diluted to saturated solutions).⁷⁹ From the equation for partial molar volume of C_{60} in asymmetrical standardizing scale and taking into consideration that the standard state is the infinitely diluted solution (extrapolated value of partial molar volume to the point related to pure C_{60}), we can conclude that the standard state coincides with partial molar volume at infinite dilution.

$$V_{C_{60}}^{(l)} = V_{C_{60}}^{\infty} + RT \left(\frac{\partial \ln \gamma_{C_{60}}^{(l)}}{\partial p} \right)_{T}$$
(3)

where $V(C_{60})$ is the partial molar volume of C_{60} in solution; $V^{\infty}(C_{60})$ is the partial molar volume of C_{60} at infinite dilution; γ_i is the activity coefficient of C_{60} ; *T* is the absolute temperature (K); and *R* is the gas constant.

The absence of functional dependence between partial molar volume and composition can be observed only in two cases: $\gamma(C_{60}) = 1$ (the case of ideal solution) and $\gamma(C_{60}) = \text{const in}$ the whole composition range (the case of infinitely diluted solution).

It should be marked that dissolution of C_{60} is accompanied by a decrease of the molar volume of C_{60} compared with the solid crystalline phase. Ruelle et al. showed that the reason for such abnormal behavior for nonelectrolyte results from repulsion between π -orbitals which make molecules orientate themselves to diminish the repulsion effect from surrounding molecules.⁷⁹ Thus the repulsion prevents molecules from approaching each other and maintains them in equilibrium distance in the solid phase. This is not the case in solution. Sawamura et al. showed that the decrease of molar volume of C_{60} in the process of dissolution in toluene and hexane is the reason for the increase of solubility with an increase of pressure (see Table 8(a) and 8(b)).^{38,80} The latest fact is a

Table 6. Temperature Dependences of Solubility of Light Fullerenes (C₆₀ and C₇₀) in Various Solvents

Solubility of C ₆₀								
solvent	T/K	$S/g \cdot L^{-1}$	ref	solvent	<i>T</i> /K	$S/g \cdot L^{-1}$	ref	
hexane (C_6H_6)	195	0.006	40	benzene (C ₆ H ₆)	298.1	0.89	24	
hexane (C_6H_6)	238	0.017	40	benzene (C ₆ H ₆)	308.1	0.97	24	
hexane (C_6H_6)	273	0.038	40	benzene (C_6H_6)	328.1	1.22	24	
hexane (C_6H_6)	283	0.066	40	benzene (C_6H_6)	338.1	1.46	24	
hexane (C, H)	288	0.055	40	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	253	1.6	18	
hexane (C_6H_6)	318	0.039	40	1.2-dimethylbenzene ($C_6H_4(CH_3)_2$)	203	3.5	18	
hexane (C_6H_6)	338	0.039	40	1.2-dimethylbenzene ($C_6H_4(CH_3)_2$)	283	5.0	18	
toluene $(C_6H_5CH_3)$	195	0.1	40	1,2-dimethylbenzene $(C_6H_4(CH_3)_2)$	288	6.2	18	
toluene $(C_6H_5CH_3)$	233	0.75	40	1,2-dimethylbenzene (C ₆ H ₄ (CH ₃) ₂)	293	7.7	18	
toluene ($C_6H_5CH_3$)	243	0.96	40	1,2-dimethylbenzene $(C_6H_4(CH_3)_2)$	298	9.3	18	
toluene $(C_6H_5CH_3)$	248	1.3	40	1,2-dimethylbenzene $(C_6H_4(CH_3)_2)$	300.5	10.2	18	
toluene ($C_6H_5CH_3$)	253	1.5	18	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	303	10.3	18	
toluene (C.H.CH.)	258	1.31	18	1.2-dimethylbenzene ($C_{c}H_{c}(CH_{a})_{a}$)	305.5	93	18	
toluene $(C_6H_5CH_3)$	263	2.5	18	1.2-dimethylbenzene ($C_6H_4(CH_3)_2$)	308	8.4	18	
toluene $(C_6H_5CH_3)$	268	3.2	18	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	313	7.4	18	
toluene ($C_6H_5CH_3$)	273	4.0	18	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	323	6.1	18	
		3.26	40	• • • • • • •				
toluene ($C_6H_5CH_3$)	278	3.9	18	1,2-dimethylbenzene (C ₆ H ₄ (CH ₃) ₂)	333	5.3	18	
toluene ($C_6H_5CH_3$)	278.2	3.59	38	1,2-dimethylbenzene $(C_6H_4(CH_3)_2)$	343	4.9	18	
toluene ($C_6H_5CH_3$)	283	3.7	18	1,2-dimethylbenzene ($C_6H_4(CH_3)_2$)	353	4.4	18	
toluene ($C_6H_5CH_3$)	288	2.58	40	1,2-dichlorobenzene ($C_6H_4Cl_2$)	277.1	17.7	21	
toluono (C II CII)	200 2	2.68	40	1,2-dichlorobenzene ($C_6H_4Cl_2$)	288.1	18.4	21	
toluene ($C_6\Pi_5C\Pi_3$)	200.2	3.15	50 18	1,2-dichlorobenzene ($C_6\Pi_4Cl_2$)	295.1	20.8	21	
toluene ($C_6H_5CH_3$)	295	2.86	40	1.2-dichlorobenzene ($C_6H_4Cl_2$)	295.6	21.0	21	
toluene $(C_6H_5CH_3)$	298	2.9	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	298.1	7.12	24	
		0.54	24	,				
		2.77	40					
toluene ($C_6H_5CH_3$)	298.15	2.45	43	1,2-dichlorobenzene (C ₆ H ₄ Cl ₂)	298.15	27.13	42	
toluene ($C_6H_5CH_3$)	298.2	2.80	38	1,2-dichlorobenzene ($C_6H_4Cl_2$)	304.1	25.7	21	
toluene $(C_6H_5CH_3)$	303	2.7	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	308.1	8.60	24	
toluene ($C_6H_5CH_3$)	308.1	0.62	24	1,2-dichlorobenzene ($C_6H_4Cl_2$)	308.1	23.34	42	
toluene ($C_6H_5CH_3$)	308.15	2.24	43	1,2-dichlorobenzene ($C_6H_4Cl_2$)	309.1	26.7	21	
toluene ($C_6H_5CH_3$)	313	2.33	38 40	1,2-dichlorobenzene ($C_6H_4Cl_2$)	318.1	20.8	21	
toruene (Conserta)	515	2.24	18	$1,2$ diemorobenzene ($C_0 f f_4 c f_2$)	510.1	2.02	24	
toluene ($C_6H_5CH_3$)	318.15	2.11	43	1,2-dichlorobenzene ($C_6H_4Cl_2$)	318.15	15.04	42	
toluene $(C_6H_5CH_3)$	323	2.2	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	319.1	24.4	21	
toluene $(C_6H_5CH_3)$	328.1	0.82	24	1,2-dichlorobenzene (C ₆ H ₄ Cl ₂)	325.1	18.7	21	
toluene ($C_6H_5CH_3$)	328.15	2.03	43	1,2-dichlorobenzene ($C_6H_4Cl_2$)	328.1	11.4	24	
toluene ($C_6H_5CH_3$)	333	1.9	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	328.15	12.28	42	
toluene ($C_6H_5CH_3$)	338.1	1.02	24	1,2-dichlorobenzene ($C_6H_4Cl_2$)	333.1	12.6	24	
toluene ($C_{6}H_{5}CH_{3}$)	338.15 343	1.90	43	1,2-dichlorobenzene ($C_6H_4Cl_2$)	330.1	10.5	21	
toluene ($C_6H_5CH_3$)	353	1.0	18	1,2-dichlorobenzene ($C_6H_4Cl_2$)	346.1	14.00	24	
toruene (Conserta)	555	1.07	40	$1,2$ diemorobenzene ($C_0 f f_4 c f_2$)	540.1	15.5	21	
toluene ($C_6H_5CH_3$)	383	0.88	40	1,2-dichlorobenzene ($C_6H_4Cl_2$)	352.1	13.95	21	
thiophene (C_4H_4S)	298.1	0.25	24	1,2-dichlorobenzene ($C_6H_4Cl_2$)	367.1	11.5	21	
thiophene (C_4H_4S)	308.1	0.28	24	1,2-dichlorobenzene (C ₆ H ₄ Cl ₂)	378.1	10.4	21	
thiophene (C_4H_4S)	318.1	0.34	24	1,2,4-trichlorobenzene (C ₆ H ₃ Cl ₃)	298.1	4.83	24	
thiophene (C_4H_4S)	328.1	0.50	24	1,2,4-trichlorobenzene (C ₆ H ₃ Cl ₃)	308.1	5.70	24	
tetrahydrothiophene (C_4H_8S)	298.1	0.12	24	1,2,4-trichlorobenzene ($C_6H_3CI_3$)	318.1	6.90	24	
tetrahydrothiophene (C_4H_8S)	308.1	0.14	24	1,2,4-trichlorobenzene ($C_6H_3CI_3$)	328.1	8.00	24	
tetrahydrothiophene (C ₄ H ₈ S)	328.1	0.20	24	$(C_{6}^{-13}C_{13}^{-13})$	195	>0.12	24 4	
tetrahydrofuran (C ₄ H ₈ O)	298.1	0.06	24	carbon disulfide (CS_2)	238	0.72	40	
tetrahydrofuran (C_4H_8O)	303.1	0.12	24	carbon disulfide (CS_2)	248	1.40	18	
tetrahydrofuran (C_4H_8O)	308.1	0.17	24	carbon disulfide (CS_2)	253	5.97	40	
tetrahydrofuran (C ₄ H ₈ O)	313.1	0.23	24	carbon disulfide (CS ₂)	258	3.10	18	
tetrahydrofuran (C ₄ H ₈ O)	318.1	0.32	24	carbon disulfide (CS_2)	263	4.70	18	
tetrahydrofuran (C_4H_8O)	328.1	0.51	24	carbon disulfide (CS ₂)	268	6.60	18	
1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	297.1	1.45	21	carbon disulfide (CS_2)	213	8.60	18	
13-diphenylacetone ((CUCU) CO)	313 1	1 70	21	cathon disulfide (CS.)	278	/.1/ 8.10	40 19	
1,3-diphenylacetone (($C_6\Pi_5C\Pi_2)_2CO$)	338.1	2.10	21	carbon disulfide (CS_2)	210	8.10 8.20	10	
1.3-diphenylacetone ($(C_6H_5CH_2)_2CO$)	359.1	2.90	21	carbon disulfide (CS_2)	288	6.69	40	
1,3-diphenylacetone ($(C_6H_5CH_2)_2CO$)	383.1	3.42	21	carbon disulfide (CS_2)	293	8.00	18	
1,3-diphenylacetone ($(C_6H_5CH_2)_2CO$)	397.1	3.74	21	carbon disulfide (CS_2)	298	7.70	18	
						7.88	40	
1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	409.1	3.96	21	carbon disulfide (CS_2)	303	7.70	18	
1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	424.1	3.65	21	carbon disulfide (CS ₂)	308	7.60	18	
1,3-diphenylacetone ($(C_6H_5CH_2)_2CO$)	450.1	3.47	21	carbon disulfide (CS_2)	313	7.70	18	

Table 6. Continued

			Solubility	v of C_{60}			
solvent	T/K	$S/g \cdot L^{-1}$	ref	solvent	T/K	$S/g \cdot L^{-1}$	ref
1.3 diphenvlacetone ((C.H.CH.).CO)	466.1	3.13	21	carbon disulfide (CS.)	318	6.45	40
1 3-diphenylacetone ((C ₆ H ₅ CH ₂) ₂ CO)	400.1	2.86	21	carbon disulfide (CS_2)	318	5 14	40
<i>n</i> -butylamine (C.H.NH ₂)	298.1	3.69	21	carbon disulfide (CS_2)	318	4 90	40
n-butylamine (C ₄ H ₃ NH ₂)	308.1	1 44	24	tetralin (CieHie)	293.2	13.7	21
<i>n</i> -butylamine ($C_4H_0NH_2$)	318.1	1.77	24	tetralin $(C_{10}H_{12})$	294.2	14.2	21
butanoic acid $(C_4H_9O_2)$	293.15	0.01	57	tetralin $(C_{10}H_{12})$	295.2	14.2	21
butanoic acid $(C_4H_8O_2)$	303.15	0.016	57	tetralin (C ₁₀ H ₁₂)	307.2	15.2	21
butanoic acid $(C_4H_8O_2)$	313.15	0.018	57	tetralin (C ₁₀ H ₁₂)	321.2	17.5	21
butanoic acid $(C_4H_8O_2)$	323.15	0.010	57	tetralin ($C_{10}H_{12}$)	321.2	21.5	21
butanoic acid $(C_4H_8O_2)$	333.15	0.019	57	tetralin ($C_{10}H_{12}$)	325.2	21.5	21
butanoic acid $(C_4H_8O_2)$	343.15	0.020	57	tetralin (C ₁₀ H ₁₂)	338.2	20.0	21
butanoic acid $(C_4H_8O_2)$	353.15	0.033	57	tetralin (C ₁₀ H ₁₂)	340.2	19.6	21
becapoic acid $(C_4H_8O_2)$	293.15	0.033	58	tetralin ($C_{10}H_{12}$)	351.2	19.0	21
hexanoic acid $(C_6H_{12}O_2)$	303.15	0.107	58	tetralin ($C_{10}H_{12}$)	360.2	14.6	21
hexanoic acid $(C_6H_{12}O_2)$	313 15	0.197	58	pentanoic acid $(C_2H_2O_2)$	203.15	0.058	58
hexanoic acid $(C_6H_{12}O_2)$	323.15	0.170	58	pentanoic acid (C-H ₁₀ O ₂)	303.15	0.055	58
hexanoic acid $(C_6H_{12}O_2)$	333.15	0.176	58	pentanoic acid (C-H ₁₀ O ₂)	313 15	0.005	58
hexanoic acid $(C_6H_{12}O_2)$	3/3 15	0.140	58	pentanoic acid (C-H ₁₀ O ₂)	323 15	0.000	58
hexanoic acid $(C_{6}H_{12}O_{2})$	353 15	0.135	58	pentanoic acid $(C_{2}H_{10}O_{2})$	323.15	0.071	58
$C_{6}(C_{112}O_{2})$	203.15	0.127	50	pentanoic acid $(C_{2}H_{10}O_{2})$	343.15	0.080	58
$C_{116}(C_{116})$	293.15	0.047	50	pentanoic acid $(C_{110}O_{2})$	252.15	0.030	50
octanoic acid $(C_8H_{16}O_2)$	212 15	0.050	50	bentanoic acid ($C_5H_{10}O_2$)	202.15	0.070	57
octanoic acid $(C_8H_{16}O_2)$	222.15	0.000	50	heptanoic acid $(C_7H_{14}O_2)$	293.13	0.279	57
octanoic acid $(C_8H_{16}O_2)$	323.13	0.008	59	heptanoic acid $(C_7 H_{14} O_2)$	303.13	0.270	57
octanoic acid $(C_8H_{16}O_2)$	242.15	0.050	59	heptanoic acid $(C_7 H_{14} O_2)$	202.15	0.209	51
octanoic acid $(C_8H_{16}O_2)$	343.15	0.052	59	heptanoic acid $(C_7H_{14}O_2)$	323.15	0.254	51
octanoic acid $(C_8H_{16}O_2)$	353.15	0.043	59	heptanoic acid $(C_7H_{14}O_2)$	333.15	0.271	51
nonanoic acid $(C_9\Pi_{18}O_2)$	295.15	0.101	59	heptanoic acid $(C_7 H_{14} O_2)$	343.13	0.287	57
nonanoic acid $(C_9\Pi_{18}O_2)$	212.15	0.170	59	here $1 \text{ of } (C \text{ II} \text{ OII})$	202.15	0.521	12
nonanoic acid $(C_9H_{18}O_2)$	313.15	0.185	59	hexan-1-ol ($C_6H_{13}OH$)	293.15	0.064	13
nonanoic acid $(C_9\Pi_{18}O_2)$	323.13	0.228	59	here $1 \text{ of } (C_6 \Pi_{13} \cup \Pi)$	303.13	0.055	13
nonanoic acid $(C_9\Pi_{18}O_2)$	242 15	0.223	59	here $1 \text{ of } (C_6 \Pi_{13} \cup \Pi)$	202.15	0.000	13
nonanoic acid $(C_9H_{18}O_2)$	343.15	0.217	59	hexan-1-ol ($C_6H_{13}OH$)	323.15	0.059	13
nonanoic acid $(C_9H_{18}O_2)$	353.15	0.213	59 12	hexan-1-ol ($C_6H_{13}OH$)	333.15	0.000	13
pentan-1-ol $(C_5H_{11}OH)$	293.15	0.039	13	hexan-1-ol ($C_6H_{13}OH$)	343.15	0.076	13
pentan-1-ol $(C_5H_{11}OH)$	303.15	0.030	13	hexan-1-ol ($C_6H_{13}OH$)	353.15	0.087	13
pentan-1-ol $(C_5H_{11}OH)$	313.15	0.037	13	heptan-1-ol ($C_7H_{15}OH$)	293.15	0.069	13
pentan-1-ol $(C_5H_{11}OH)$	323.15	0.041	13	heptan-1-ol ($C_7H_{15}OH$)	303.15	0.056	13
pentan-1-ol ($C_5H_{11}OH$)	333.15	0.043	13	heptan-1-ol ($C_7H_{15}OH$)	313.15	0.061	13
pentan-1-ol ($C_5H_{11}OH$)	343.15	0.045	13	heptan-1-ol ($C_7H_{15}OH$)	323.15	0.073	13
pentan-1-ol ($C_5H_{11}OH$)	353.15	0.047	13	heptan-1-ol ($C_7H_{15}OH$)	333.15	0.076	13
octan-1-ol ($C_8H_{17}OH$)	293.15	0.152	13	heptan-1-ol ($C_7H_{15}OH$)	343.15	0.080	13
octan-1-ol ($C_8H_{17}OH$)	303.15	0.146	13	heptan-1-ol ($C_7H_{15}OH$)	353.15	0.086	13
octan-1-ol ($C_8H_{17}OH$)	313.15	0.144	13	nonan-1-ol ($C_9H_{19}OH$)	293.15	0.214	13
octan-1-ol ($C_8H_{17}OH$)	323.15	0.138	13	nonan-1-ol ($C_9H_{19}OH$)	303.15	0.218	13
octan-1-ol ($C_8H_{17}OH$)	333.15	0.145	13	nonan-1-ol $(C_9H_{19}OH)$	313.15	0.222	13
octan-1-ol ($C_8H_{17}OH$)	343.15	0.149	13	nonan-1-ol $(C_9H_{19}OH)$	323.15	0.227	13
octan-1-ol ($C_8H_{17}OH$)	353.15	0.150	13	nonan-1-ol $(C_9H_{19}OH)$	333.15	0.231	13
decan-1-ol ($C_{10}H_{21}OH$)	293.15	0.270	13	nonan-1-ol $(C_9H_{19}OH)$	343.15	0.248	13
decan-1-ol ($C_{10}H_{21}OH$)	303.15	0.291	13	nonan-1-ol ($C_9H_{19}OH$)	353.15	0.283	13
decan-1-ol ($C_{10}H_{21}OH$)	313.15	0.301	13	undecan-1-ol ($C_{11}H_{23}OH$)	293.15	0.354	13
decan-1-ol ($C_{10}H_{21}OH$)	323.15	0.283	13	undecan-1-ol ($C_{11}H_{23}OH$)	303.15	0.377	13
decan-1-ol ($C_{10}H_{21}OH$)	333.15	0.249	13	undecan-1-ol ($C_{11}H_{23}OH$)	313.15	0.388	13
decan-1-ol ($C_{10}H_{21}OH$)	343.15	0.240	13	undecan-1-ol ($C_{11}H_{23}OH$)	323.15	0.400	13
decan-1-ol ($C_{10}H_{21}OH$)	353.15	0.206	13	undecan-1-ol ($C_{11}H_{23}OH$)	333.15	0.330	13
heptane (C_7H_{16})	273.15	0.025	6	undecan-1-ol ($C_{11}H_{23}OH$)	343.15	0.306	13
heptane (C_7H_{16})	293.15	0.027	6	undecan-1-ol ($C_{11}H_{23}OH$)	353.15	0.284	13
heptane (C_7H_{16})	303.15	0.032	6	styrene ($C_6H_5CH=CH_2$)	258.15	5.90	25
heptane (C_7H_{16})	313.15	0.040	6	styrene ($C_6H_5CH=CH_2$)	273.15	5.55	25
heptane (C_7H_{16})	323.15	0.035	6	styrene ($C_6H_5CH=CH_2$)	293.15	4.02	25
heptane (C_7H_{16})	333.15	0.038	6	styrene ($C_6H_5CH=CH_2$)	303.15	4.18	25
heptane (C_7H_{16})	343.15	0.044	6	styrene ($C_6H_5CH=CH_2$)	313.15	4.82	25
heptane (C_7H_{16})	353.15	0.044	6	styrene ($C_6H_5CH=CH_2$)	323.15	4.18	25
				styrene ($C_6H_5CH=CH_2$)	333.15	3.95	25
				styrene ($C_6H_5CH=CH_2$)	343.15	3.83	25
			Solubility	v of C ₇₀			
toluene (C _c H _c CH _a)	233	13	18	1 2-dimethylbenzene ((C-H-(CH-)))	253	5.6	18
toluene ($C_{c}H_{c}CH_{a}$)	253	1.3	18	1.2 dimethylbenzene ($(C_{114}(CH_3)_2)$	263	6.8	18
toluene ($C_{c}H_{c}CH_{s}$)	233	1.3	10	1.2 dimethylbenzene (($C \amalg (C \amalg)$))	203	0.0	19
toluene ($C_{0}H_{1}CH_{2}$)	213	1.5	10	1,2-dimethylbenzene (($C H (CH)$))	213	7.0 13.1	10
toluene ($C_{15}CH_{3}$)	203	1.4	10	1,2-dimethylbenzene (($C H (CH)$))	203	15.1	10
toluene $(C_{115}CH_3)$	273	1.5	10	1,2-dimethylbenzene (($C \sqcup (C \sqcup)$)	273	10.0	10
(0100110(C6115CH3)	270	1.5	10	1,2-unitetityittetizette (($C_6\Pi_4(C\Pi_3)_2$)	290	13.0	10
		1.07	17				
toluene (C.H.CH.)	312	1.400	40	1.2 dimethylbenzene ((C.H.(CH.))	312	18.2	10
$(C_{6}\Pi_{5}C\Pi_{3})$	515	1.0	10	$1,2$ -uniterry identicate (($C_6\Pi_4(C\Pi_3)_2$)	515	10.2	10

Table 6. Continued

	Solubility of C ₆₀										
solvent	T/K	$S/g \cdot L^{-1}$	ref	solvent	T/K	$S/g \cdot L^{-1}$	ref				
toluene (C ₆ H ₅ CH ₃)	333	1.6	18	1,2-dimethylbenzene (($C_6H_4(CH_3)_2$)	333	20.7	18				
toluene $(C_6H_5CH_3)$	353	1.7	18	1,2-dimethylbenzene (($C_6H_4(CH_3)_2$)	353	21.8	18				
carbon disulfide (CS_2)	233	6.0	18	tetralin ($C_{10}H_{12}$)	277.1	10.2	21				
carbon disulfide (CS_2)	253	7.7	18	tetralin ($C_{10}H_{12}$)	293.1	11.7	21				
carbon disulfide (CS_2)	203	9.5	18	tetralin ($C_{10}H_{12}$)	294.1	11.9	21				
carbon disulfide (CS_2)	283	12.8	18	tetralin $(C_{10}H_{12})$	298	12.1	21				
carbon disulfide (CS_2)	293	14.4	18	tetralin ($C_{10}H_{12}$)	301.1	12.4	21				
carbon disulfide (CS ₂)	298	15.3	18	tetralin ($C_{10}H_{12}$)	310.1	14.4	21				
		9.875	46								
1.2 dishlarahangan (C.H.Cl.)	202.1	10.16	17	totalia (C. II.)	215 1	165	21				
1,2-dichlorobenzene ($C_6\Pi_4CI_2$)	292.1	23.4 24.4	21	tetralin ($C_{10}\Pi_{12}$)	321.1	10.5	21				
1,2 dichlorobenzene $(C_6H_4Cl_2)$ 1,2-dichlorobenzene $(C_6H_4Cl_2)$	294.1	25.5	21	tetralin $(C_{10}H_{12})$	329.1	16.7	21				
1,2-dichlorobenzene $(C_6H_4Cl_2)$	298	36.21	52	tetralin $(C_{10}H_{12})$	338.1	16.0	21				
1,2-dichlorobenzene (C ₆ H ₄ Cl ₂)	312.1	27.7	21	tetralin ($C_{10}H_{12}$)	351.1	13.4	21				
1,2-dichlorobenzene ($C_6H_4Cl_2$)	321.1	33.9	21	tetralin ($C_{10}H_{12}$)	360.1	11.7	21				
1,2-dichlorobenzene ($C_6H_4Cl_2$)	323.1	36.0	21	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	292.1	1.80	21				
1,2-dichlorobenzene ($C_6H_4Cl_2$)	337.1	36.9	21	1.3-diphenylacetone ($(C_6H_5CH_2)_2CO$)	303.1	2.69	21				
1,2-dichlorobenzene ($C_6H_4Cl_2$)	342.1	28.8	21	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	310.1	2.87	21				
1,2-dichlorobenzene (C ₆ H ₄ Cl ₂)	347.1	27.5	21	1,3-diphenylacetone ((C ₆ H ₅ CH ₂) ₂ CO)	314.1	3.21	21				
1,2-dichlorobenzene ($C_6H_4Cl_2$)	359.1	26.3	21	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	316.6	3.18	21				
butanoic acid $(C_4H_8O_2)$	293.15	0.013	51	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	320.1	2.75	21				
butanoic acid $(C_4H_8O_2)$	303.15	0.016	51	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	328.1	2.19	21				
butanoic acid $(C_4H_8O_2)$	323.15	0.012	51	1.3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	339.1	1.96	21				
butanoic acid $(C_4H_8O_2)$	333.15	0.037	51	1,3-diphenylacetone (($C_6H_5CH_2$) ₂ CO)	351.1	1.56	21				
butanoic acid (C ₄ H ₈ O ₂)	343.15	0.036	51	1,3-diphenylacetone ((C ₆ H ₅ CH ₂) ₂ CO)	361.1	1.44	21				
butanoic acid $(C_4H_8O_2)$	353.15	0.048	51	hexanoic acid $(C_6H_{12}O_2)$	293.15	0.125	51				
pentanoic acid ($C_5H_{10}O_2$)	293.15	0.013	51	hexanoic acid $(C_6H_{12}O_2)$	303.15	0.131	51				
pentanoic acid $(C_5H_{10}O_2)$	313 15	0.020	51	hexanoic acid $(C_6H_{12}O_2)$	323 15	0.140	51				
pentanoic acid $(C_5H_{10}O_2)$	323.15	0.022	51	hexanoic acid $(C_6H_{12}O_2)$	333.15	0.140	51				
pentanoic acid $(C_5H_{10}O_2)$	333.15	0.031	51	hexanoic acid $(C_6H_{12}O_2)$	343.15	0.150	51				
pentanoic acid (C ₅ H ₁₀ O ₂)	343.15	0.033	51	hexanoic acid (C ₆ H ₁₂ O ₂)	353.15	0.154	51				
pentanoic acid $(C_5H_{10}O_2)$	353.15	0.039	51	octanoic acid $(C_8H_{16}O_2)$	293.15	0.110	51				
heptanoic acid $(C_7H_{14}O_2)$	293.15	0.330	51	octanoic acid ($C_8H_{16}O_2$)	303.15	0.135	51				
heptanoic acid $(C_7H_{14}O_2)$	313.15	0.380	51	octanoic acid $(C_8H_{16}O_2)$	323.15	0.152	51				
heptanoic acid $(C_7H_{14}O_2)$	323.15	0.381	51	octanoic acid $(C_8H_{16}O_2)$	333.15	0.154	51				
heptanoic acid (C ₇ H ₁₄ O ₂)	333.15	0.400	51	octanoic acid (C ₈ H ₁₆ O ₂)	343.15	0.154	51				
heptanoic acid $(C_7H_{14}O_2)$	343.15	0.447	51	octanoic acid $(C_8H_{16}O_2)$	353.15	0.166	51				
heptanoic acid $(C_7H_{14}O_2)$	353.15	0.439	51	nonanoic acid $(C_9H_{18}O_2)$	293.15	0.056	51				
butan-1-ol (C_4H_0OH)	303.15	0.014	52	nonanoic acid ($C_9H_{18}O_2$)	313 15	0.057	51				
butan-1-ol (C_4H_9OH)	313.15	0.016	52	nonanoic acid $(C_9H_{18}O_2)$	323.15	0.057	51				
butan-1-ol (C ₄ H ₉ OH)	323.15	0.019	52	nonanoic acid $(C_9H_{18}O_2)$	333.15	0.084	51				
butan-1-ol (C ₄ H ₉ OH)	333.15	0.019	52	nonanoic acid (C ₉ H ₁₈ O ₂)	343.15	0.101	51				
butan-1-ol (C_4H_9OH)	343.15	0.019	52 52	nonanoic acid $(C_9H_{18}O_2)$	353.15	0.117	51				
pentan-1-ol (C_4H_9OH)	353.15 293.15	0.023	52 52	hexan-1-ol ($C_6H_{13}OH$)	293.15	0.120	52 52				
pentan 1-ol (C_5H_1OH)	303.15	0.021	52	hexan-1-ol ($C_6H_{13}OH$)	313.15	0.129	52				
pentan-1-ol ($C_5H_{11}OH$)	313.15	0.026	52	hexan-1-ol ($C_6H_{13}OH$)	323.15	0.142	52				
pentan-1-ol (C ₅ H ₁₁ OH)	323.15	0.027	52	hexan-1-ol (C ₆ H ₁₃ OH)	333.15	0.153	52				
pentan-1-ol ($C_5H_{11}OH$)	333.15	0.027	52	hexan-1-ol ($C_6H_{13}OH$)	343.15	0.175	52				
pentan-1-ol ($C_5H_{11}OH$)	343.15	0.028	52 52	hexan-1-ol ($C_6H_{13}OH$)	353.15	0.219	52 52				
octan-1-ol ($C_5H_{11}OH$)	293.15	0.028	52	heptan-1-of $(C_7H_{15}OH)$	303.15	0.040	52 52				
octan-1-ol (C_8H_1OH)	303.15	0.031	52	heptan-1-ol ($C_7H_{15}OH$)	313.15	0.054	52				
octan-1-ol ($C_8H_{17}OH$)	313.15	0.034	52	heptan-1-ol (C ₇ H ₁₅ OH)	323.15	0.058	52				
octan-1-ol (C ₈ H ₁₇ OH)	323.15	0.041	52	heptan-1-ol $(C_7H_{15}OH)$	333.15	0.061	52				
octan-1-ol ($C_8H_{17}OH$)	333.15	0.044	52	heptan-1-ol $(C_7H_{15}OH)$	343.15	0.071	52				
octan-1-01 ($C_8H_{17}OH$)	545.15 353 15	0.048	52 52	neptan-1-ol $(C_7H_{15}OH)$	333.15 203.15	0.115	52 52				
decan-1-ol ($C_{10}H_{21}OH$)	293.15	0.034	52 52	nonan-1-ol ($C_9H_{19}OH$)	293.13	0.204	52 52				
decan-1-ol ($C_{10}H_{21}OH$)	303.15	0.299	52	nonan-1-ol $(C_9H_{19}OH)$	313.15	0.238	52				
decan-1-ol $(C_{10}H_{21}OH)$	313.15	0.294	52	nonan-1-ol (C ₉ H ₁₉ OH)	323.15	0.258	52				
decan-1-ol ($C_{10}H_{21}OH$)	323.15	0.294	52	nonan-1-ol (C ₉ H ₁₉ OH)	333.15	0.257	52				
decan-1-ol $(C_{10}H_{21}OH)$	333.15	0.293	52	nonan-1-ol ($C_9H_{19}OH$)	343.15	0.258	52				
decan-1-of $(C_{10}H_{21}OH)$	545.15 353 15	0.283	52 52	1000000000000000000000000000000000000	555.15 293.15	0.204	52 52				
styrene ($C_6H_5CH=CH_2$)	258.15	2.95	25	undecan-1-ol ($C_{11}H_{23}OH$)	303.15	0.227	52				
styrene ($C_6H_5CH=CH_2$)	273.15	5.60	25	undecan-1-ol (C ₁₁ H ₂₃ OH)	313.15	0.326	52				

 Table 6.
 Continued

solvent	<i>T</i> /K	$S/g \cdot L^{-1}$	ref	solvent	T/K	$S/g \cdot L^{-1}$	ref
styrene ($C_6H_5CH=CH_2$)	293.15	4.72	25	undecan-1-ol (C ₁₁ H ₂₃ OH)	323.15	0.328	52
styrene (C ₆ H ₅ CH=CH ₂)	303.15	5.01	25	undecan-1-ol (C ₁₁ H ₂₃ OH)	333.15	0.314	52
styrene (C ₆ H ₅ CH=CH ₂)	313.15	7.35	25	undecan-1-ol (C ₁₁ H ₂₃ OH)	343.15	0.314	52
styrene (C ₆ H ₅ CH=CH ₂)	323.15	7.88	25	undecan-1-ol (C ₁₁ H ₂₃ OH)	353.15	0.314	52
styrene (C ₆ H ₅ CH=CH ₂)	333.15	8.14	25	heptane (C_7H_{16})	273.15	0.021	6
styrene (C ₆ H ₅ CH=CH ₂)	343.15	9.71	25	heptane (C_7H_{16})	293.15	0.031	6
styrene (C ₆ H ₅ CH=CH ₂)	353.15	9.84	25	heptane (C_7H_{16})	303.15	0.032	6
-				heptane (C_7H_{16})	313.15	0.039	6
				heptane (C_7H_{16})	323.15	0.041	6
				heptane (C_7H_{16})	333.15	0.039	6
				heptane (C ₂ H ₁)	343 15	0.039	6

heptane (C7H16)

direct consequence from Planck-van-Laar's equation for infinitely diluted solutions

$$\left(\frac{d\ln x_{C_{60}}^{(1)}}{dp}\right)_T = -\frac{\Delta V}{RT} \tag{4}$$

Actually, the Planck–van-Laar equation in the above form can be used for the description of pressure effect on solubility of the C_{60} fullerene since the dependence of logarithm of the C_{60} fullerene mole fraction in the saturated solution as a function of pressure is linear (see Figure 13). This fact is additional evidence that a fullerene activity coefficient is constant in a saturated solution.

While studying the solubility of light fullerenes in various solvents, particular attention has been paid to searching for correlations between solubility and various molecular characteristics of the solvents. Sivarman et al. determined the solubility of C_{60} in 15 polar and nonpolar solvents and discussed a correlation between solubility and Hildebrand's solubility parameter (molecular characteristic of solvent–solvent and solute–solute interactions) determined by^{2.81}

$$\delta = \left[(\Delta_{\text{vap}} H - RT) / V \right]^{1/2} \tag{5}$$

where $\Delta_{\text{vap}}H$ is the molar enthalpy of vaporization; *T* is the temperature; *V* is the molar volume, and *R* is the gas constant.

As a result, Sivarman et al. showed that solubility reaches its maximum when the Hildebrand solubility parameters for solute and for solvent are similar.² According to Hildebrand's

Figure 10. Solubility of the Th(SO₄)₂ in water. Solid line corresponds to crystallization of Th(SO₄)₂•9 H₂O; dashed line corresponds to crystallization of Th(SO₄)₂•4 H₂O. "O" is the dissociation point of bisolvated Th(SO₄)₂•9H₂O according to the reaction: Th(SO₄)₂•9H₂O(solid) \rightarrow Th(SO₄)₂•4H₂O(solid) + 5H₂O(liquid).

theory, solubility parameters are determined only for the liquid state, and in the case of fullerene, the standard state corresponds to hypothetical supercooled liquid of fullerene. Later, Ruoff et al. showed that to determine the Hildebrand cohesion parameter one can replace the enthalpy of vaporation by the sublimation enthalpy.^{1,53} Ruoff et al. also demonstrated that there are no molecular parameters which can universally predict the solubility of fullerenes; however, they determined a set of solvent parameters which can predict well fullerene solubility.¹ These solvent characteristics are the following: high value of refraction index; value of dielectric permittivity equal to 4; high molecular volume of the solvent; value of Hildebrand's solubility parameter equal to 20 [*J*/cm³]^{1/2}; nucleophilic properties of a solvent.

353.15

6

0.057

The fundamental characteristics of fullerene molecules are the first electron affinity (EA) and the first ionization energy (IE). For $C_{60} EA = (4.273 \pm 0.002) \cdot 10^{-19}$ J and IE = (12.13 $\pm 0.02) \cdot 10^{-19}$ J.^{82–84} Notable is that the value of electron affinity of C_{60} is higher than that of aromatic solvents. This illustrates the strong electron-acceptor properties of fullerenes. Herbst et al. investigated the dissolution enthalpies of the C_{60} in five solvents (benzene, toluene, brombenzene, 1,2,-dichlorobenzene, nitrobenzene).⁵⁴ Since fullerenes are the Lewis acids, one can expect more exothermic dissolving effect with increasing number of donor groups in the solvent molecule (due to more effective solvent—solute interaction).

Herbst et al. showed that not only the above-mentioned molecular characteristics of solvents but also a dissolution enthalpy can predict the solubility of fullerenes.⁵⁴

Heyman used the Scatchard-Hildebrand regular solution model to describe solubility data of the C₆₀ fullerene in alkanes, branched alkanes, 1-alkanols, branched alkanols, and diols.³ The second-order polynomial dependence between solubility and Hildebrand's solubility parameter was determined on the basis of approximations of the theory and conditions of chemical equilibrium between C60 in the solid phase and saturated solution. However, the derived equation was suitable to describe only homologous series of alkanes. Korobov et al. marked that the model of regular solution cannot be used for describing solubility of fullerenes.³⁷ According to Skatchard-Hildebrand's equation, the model considers the cases only with positive excess enthalpy of solution and with zero excess entropy of solution.85,86 In the case of dissolution of fullerene, the exothermic effect $\Delta_{\text{diss}}H < 0$ and $\Delta_{\text{diss}}S < 0$ and is smaller than the enthalpy. Thus, the dissolution of fullerene is controlled by the entropy process.

Phase Equilibria in the Ternary Systems. $C_{60}-C_{70}$ **Solvent.** There are little data on the solubility of C_{60} and C_{70} fullerenes in the same solvent and the solubility of particular fullerenes in mixed solvents. Ponomarev et al.^{50,96} investigated the solubility in ternary system $C_{60} + C_{70} + o$ -xylene at (253,

Table 7. Composition of Solid Solvates of C_{60} and $C_{70}{}^a$

Table 7. Composition of Solid S	forvates of C ₆₀ and C ₇₀			
system fullerene + solvent (S)	$T_{ m imp}/ m K^c$	solvate composition, $C_{60} \cdot nS$ (<i>n</i> , number of solvent molecules)	method ^b	ref.
		Solid Solvates of C ₆₀		
C_{60} + bromobenzene	350 ± 1	2.0 ± 0.2^{c}	TG	48
$(C_{60} + C_6 n_5 BI)$ $C_{60} + 1,2$ -dibromobenzene	350.9 ± 1.1	$\frac{2}{2.9 \pm 0.1}$	DSC	62
$(C_{60} + 1, 2 - C_6 H_4 B r_2)$				
C_{60} + 1,3-dibromobenzene	336.0 ± 5.1	1.9 ± 0.1	DSC	62, 44
$(C_{60} + 1, 3 - C_6 H_4 B r_2)$	484.4 ± 6.8	- 2.8 + 0.2	TC	19
C_{60} + Delizente (C_{c0} + $C_{c}H_{c}$)	522 ± 1	5.8 ± 0.2 4	10	40 64-66
C_{60} + toluene	285.0 ± 0.2	1.8 ± 0.2	TG	48.63
$(C_{60} + C_6 H_5 C H_3)$	285 ± 1 331 ± 1			
$C_{60} \pm 1.2$ -dimethylbenzene	318	2.0 to 3.4	TG	48
$(C_{60} + 1,2 - C_6 H_4 (CH_3)_2)$	322.0 ± 2.6	2.1 ± 0.2	10	23
C_{60} + 1,2-dimethylbenzene	294.0 ± 1.0	2.3 to 3.6	TG	48
$(C_{60} + 1, 3 - C_6 H_4 (CH_3)_2)$	332.0 ± 1.2 370.0 ± 3.7	0.6		63
C_{60} + 1,2-dichlorobenzene	322	2.0 to 2.7	TG	48
$(C_{60} + 1, 2 - C_6 H_4 C l_2)$	342	2.0 ± 0.5	TC	40
$C_{60} + 1.3$ -dichlorobenzene	308.5 ± 1.3 406 ± 3	2.3 ± 0.5	IG	48
$C_{60} + 1.2.4$ -trichlorobenzene	340.3 ± 2.4	2.0 ± 0.1	DSC	44
$C_{60} + 1,2,4-C_6H_3Cl_3$				
C_{60} + 1,2-iodobenzene	384 (389)	2	DSC	63
$(C_{60} + C_6 H_5 I)$	202 . 200		-	-
$C_{60} + 1.3.5$ -trimethylbenzene	292 to 300	2.0 to 4.0	TG	67
$(C_{60} + 1, 5, 5 - C_6 \Pi_3 (C \Pi_3)_3)$	460.8 ± 1.5	0.3 ± 0.2		05
C_{60} + 1,2,4-trimethylbenzene	322	1.7 to 2.4	TG	48
$C_{60} + 1,2,4-C_6H_3(CH_3)_3$ $C_{60} + 1,1-dichloroethane$	343	1	TG	68
$(C_{60} + 1, 1 - C_2 H_4 C I_2)$ $C_{60} + 1, 2$ -dichloroethane	350	1	TGA	66
C_{60} + 1,2- $C_2H_4Cl_2$ C_{60} + 1,1,2-trichloroethane	430	1	TG	68
$(C_{60} + Cl_2H - CCH_2Cl)$	436			
C_{60} + trichloroethylene	416	1	TG	68
$\begin{array}{l} (C_{60} + C_2 HCl_3) \\ C_{60} + hexane \end{array}$	383	1	TG	71
$(C_{60} + C_6 H_{14})$ $C_{60} + heptane$	383	1	TG	70
$(C_{60} + C_7 H_{16})$ $C_{60} + octane$	398	1	TG	73
$(C_{60} + C_8 H_{18})$ C ₆₀ + nonane	300	2/3	TG	70
$(C_{60} + C_9H_{20})$	577		10	70
C_{60} + tetrachloromethane	319	13	TG	74, 75
$(C_{60} + CCl_4)$	402	2	TG	63
C_{60} + cyclohexane	350	13	TG	37
$(C_{60} + C_6 \Pi_{12})$ $C_{c0} + tribromomethane$	_	2	TG	9 76
$(C_{60} + CHBr_3)$		-	10	10
C_{60} + trichlorobromomethane	344	12	TG	77
$(C_{60} + BrCCl_3)$ $C_{60} + styrene$	407 _	2 2	TG	25
$(C_{60} + C_6H_5CH=CH_2)$ $C_{60} + but inc acid$	_	1	TG	57
$(C_{60} + C_3H_7COOH)$		1	тс	50
C_{60} + Valenc acid (C_{60} + C_4H_9COOH)	—	1	IG	58
C_{60} + caproic acid (C_{60} + C_5H_{11} COOH)	_	1	TG	58
C_{60} + heptanoic acid (C_{60} + $C_{6}H_{13}COOH$)	—	1	TG	57
C_{60} + caprylic acid (C_{c0} + $C_{7}H_{c2}COOH$)	_	1	TG	59
C_{60} + pelargonic acid	_	1	TG	59
$C_{60} + C_8 H_{17} COOH)$ $C_{60} + n$ -pentanol	_	1	TG	13
$\begin{array}{l} (\mathrm{C}_{60} + n - \mathrm{C}_{5}\mathrm{H}_{11}\mathrm{OH}) \\ \mathrm{C}_{60} + n - \mathrm{hexanol} \end{array}$	_	1	TG	13
$(C_{60} + n - C_6 H_{13} OH)$ $C_{c0} + n$ -heptanol	_	1	тG	13
$(C_{60} + n - C_7 H_{15} OH)$			10	10
$C_{60} + n$ -octanol ($C_{60} + n$ - $C_8H_{17}OH$)	_	1	IG	13

Table 7. Continued

system fullerene + solvent (S)	$T_{\rm imp}/{ m K}^c$	solvate composition, $C_{60} \cdot nS$ (<i>n</i> , number of solvent molecules)	method ^b	ref.
$C_{60} + n$ -nonanol	_	1	TG	13
$(C_{60} + n - C_9 H_{19} OH)$				
$C_{60} + n$ -decanol	-	1	TG	13
$(C_{60} + n - C_{10}H_{21}OH)$				
C_{60} + <i>n</i> -undecanol	-	1	TG	13
$(C_{60} + n - C_{11}H_{23}OH)$				
C_{60} + natural oils, animal fats		0.17 ± 0.05	TG	30
		Solid Solvates of C_{70}		
C_{70} + 1,2-dimethylbenzene	283.0 ± 1.2	3.0 to 4.0	TG	48
$(C_{70} + 1, 2 - C_6 H_4 (CH_3)_2)$	368.7 ± 0.8	2.0 ± 0.5		
C_{70} + 1,2-dichlorobenzene	327.9 ± 1.1	-	-	48
$(C_{70} + 1, 2 - C_6 H_4 C l_2)$	397.5 ± 1.0			
C_{70} + bromobenzene	290 ± 1.0	1.9 ± 0.2	TG	48
$(C_{70} + C_6 H_5 Br)$				
C_{70} + 1,3,5-trimethylbenzene	422.0 ± 2.2	2.0 ± 0.2	DSC	44
$(C_{70} + 1,3,5-C_6H_3(CH_3)_3)$				
C_{70} + butyric acid	—	1	TG	51
$(C_{70} + C_3H_7COOH)$			-	
C_{70} + valeric acid	-	1	TG	51
$(C_{70} + C_4H_9COOH)$		1	TC	51
C_{70} + caproic acid	—	1	IG	51
$(C_{70} + C_5 \Pi_{11} COOH)$	_	1	TG	51
$(C_{70} + C_{2}H_{2}COOH)$		1	10	51
C_{70} + caprylic acid	_	1	TG	51
$(C_{70} + C_7 H_{15}COOH)$		1	10	51
C_{60} + pelargonic acid	_	1	TG	51
$(C_{70} + C_8H_{17}COOH)$		-	10	51
C_{70} + natural oils, animal fats		0.17 ± 0.05	TG	30

 ${}^{a}T_{imp}$ is the temperature of incongruent melting of the solvate. b TG, thermogravimetric method; DSC, differential scanning calorimetry. ${}^{c}\pm$, uncertainty of solvate composition determination.

Figure 11. Solubility of the C_{70} fullerene in 1,2-dimethylbenzene. •, 18; \diamond , 89.

298, and 353) K (see Figures 14 and 15). It was determined that at all temperatures in the two substitutional solid solutions $(C_{60})_x(C_{70})_{1-x} \cdot n(o-C_6H_4(CH_3)_2)$ are crystallized, and at 353 K both solid solutions are unsolvated. At 298 K, the solid solution enriched with the C_{60} fullerene is bisolvated, whereas the solid solution enriched with the C_{70} fullerene is unsolvated. At 253 K, both solid solutions are bisolvated (see Table 9). Also, the presence of a eutonic point corresponding to simultaneous saturation with the two solid solutions was determined. The phase diagram of the system enabled the authors to develop a prechromatographic separation of an industrial fullerene mixture. Stukalin et al.¹⁹ investigated the same system ($C_{60} + C_{70} +$ o-xylene) and determined the presence of three solid phases and two eutonic points (invariant points, corresponding to simultaneous saturation with two solid phases) in the phase diagram which form two three-phases areas: solid solution based

Figure 12. Dependence of logarithm of composition of the C_{60} fullerene in the saturated solution vs inversed temperature in homologous series of alkan-1-ols C_nH_{2n+1} OH (n = 5 to 11). \blacksquare , pentan-1-ol; \bullet , hexan-1-ol, \blacktriangle , heptan-1-ol, \checkmark , octan-1-ol, \blacklozenge , nonan-1-ol, \diamondsuit , decan-1-ol, \bigcirc , undecan-1-ol.

on $C_{60} \cdot 2(o - C_6H_4(CH_3)_2)$ + eutonic (1) + phase of constant composition $(C_{60})_{0.22}(C_{70})_{0.78} \cdot 4(o - C_6H_4(CH_3)_2)$ and $(C_{60})_{0.22}(C_{70})_{0.78} \cdot 4(o - C_6H_4(CH_3)_2)$ at 298 K; $C_6H_4(CH_3)_2$) + eutonic (2) + $C_{70} \cdot 2(o - C_6H_4(CH_3)_2)$ at 298 K; C_{60} + eutonic (1) + phase of constant composition $(C_{60})_{0.22}(C_{70})_{0.78} \cdot 4(o - C_6H_4(CH_3)_2)$ and $(C_{60})_{0.22}(C_{70})_{0.78} \cdot 4(o - C_6H_4(CH_3)_2)$ + eutonic (2) + $C_{70} \cdot 2(o - C_6H_4(CH_3)_2)$ at 330 K; C_{60} + eutonic (1) + phase of constant composition $(C_{60})_{0.22}(C_{70})_{0.78} \cdot n(o - C_6H_4(CH_3)_2)$ + eutonic (2) + $C_{70} \cdot 2(o - C_6H_4(CH_3)_2)$ at 360 K; C_{60} + eutonic (1) + phase of constant composition $(C_{60})_{0.22}(C_{70})_{0.78} \cdot n(o - C_6H_4(CH_3)_2)$, where n < 4 and $(C_{60})_{0.22}(C_{70})_{0.78} \cdot n(o - C_6H_4(CH_3)_2)$ + eutonic (2) + $C_{70} \cdot 2(o - C_6H_4(CH_3)_2)$ at 360 K; C_{60} + eutonic (1) + phase of constant composition $(C_{60})_{0.22}(C_{70})_{0.78} \cdot n(o - C_6H_4(CH_3)_2)$, where n < 4 and $(C_{60})_{0.22}(C_{70})_{0.78} \cdot n(o - C_6H_4(CH_3)_2)$ + eutonic (2) + C_{70} at 380 K.

We have previously studied the ternary system $C_{60} + C_{70} +$ styrene at (258, 273, and 298) K (see Table 9).^{26,27} We chose this ternary systems for the following reasons. It is known that

Table 8. Solubility of the C_{60} Fullerene in the Binary Systems (a) C_{60} + Toluene ($C_6H_5CH_3$) as a Function of Temperature and Pressure³⁸ and (b) C_{60} + Hexane (C_6H_{14}) at 298.2 K⁸⁰

(a)		T	/K	
P/MPa	278.2	288.2	298.2	308.2
		S/g·	•L ⁻¹	
0.1	5.30	4.65	4.13	3.73
21	n.d. ^a	6.57	n.d. ^a	n.d. ^a
43	n.d. ^a	10.3	8.86	7.35
77	n.d. ^a	7.41	n.d. ^a	n.d. ^a
85	4.57	7.19	10.5	11.6
102	n.d. ^a	n.d. ^a	9.23	n.d. ^a
111	n.d. ^a	6.41	n.d. ^a	12.59
128	3.96	5.84	7.95	11.47
145	n.d. ^a	n.d. ^a	7.42	10.71
170	3.17	4.67	6.81	9.53
213	2.77	4.09	5.67	7.23
255	2.41	3.13	4.67	6.08
298	2.15	2.79	4.19	4.94
340	2.01	2.52	3.54	4.11
(t))			

P/MPa	$S/g \cdot L^{-1}$	
50	0.102	
100	0.165	
150	0.213	
200	0.230	
250	0.256	
300	0.281	
350	0.290	
400	0.324	

^a n.d - not determined.

Figure 13. Dependence of logarithm of mole fraction x of the C₆₀ fullerene in the saturated solution vs pressure in the C₆₀-toluene system at T = 288.2 K.

an admixture of both fullerenes and the fullerene mixture to a liquid/melt monomer, followed by polymerization, can form a fullerene-containing copolymer, if the formation of true solution/ melt occurs. New polymer materials with unique or at least with improved commercial characteristics can be prepared this way. Styrene is one of a few monomers, capable of copolymerization and at the same time allowing to reach a high true solubility of light fullerenes of up to $10 \text{ g} \cdot \text{L}^{-1}$.

The solubility diagrams of the ternary system $C_{60} + C_{70} + C_6H_5CH=CH_2$ at (258, 273, and 298) K consist of two branches. The first one corresponds to crystallization of bisolvated solid solutions $(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH=CH_2$ enriched with the C_{60} fullerene, while the second one corresponds to crystallization

Figure 14. Solubility diagram in the ternary system $C_{60} + C_{70} + 1$,2-dimethylbenzene (o- $C_6H_4(CH_3)_2$) at T = 298 K. Solid line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$, dashed line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$, $2C_6H_5(CH_3)_2$. $S(C_{60})$, concentration of C_{60} in solution; $S(C_{70})$, concentration of C_{70} in solution. "O" corresponds to simultaneous saturation of two solids.

Figure 15. Fullerene component distribution between liquid and solid solutions in the ternary system $C_{60} + C_{70} + 1,2$ -dimethylbenzene $(C_6H_4 (CH_3)_2)$ at T = 298 K. $w^{l}(C_{60})$ is the mass fraction of the C_{60} fullerene in the liquid solution, and $w^{s}(C_{60})$ is the mass fraction of the C_{60} fullerene in solid solution.

of the unsolvated solid solutions $(C_{60})_x(C_{70})_{1-x}$, enriched with the C₇₀ fullerene. At any temperature, there is the only invariant point corresponding to simultaneous saturation with the two solid solutions.^{93–95} During crystallization, the immiscibility regions for solid state components are observed if the mass ratio $C_{60}/(C_{60} + C_{70})$ is within the range from 0.35 to 0.50. A saltingin effect is observed in the crystallization branches of the bisolvated solid solutions enriched with the C_{60} fullerene; i.e., the concentration of C_{60} increases with the concentration of C_{70} in saturated solutions. However, in the crystallization branches of unsolvated solid solutions enriched with the C70 fullerene, the salting-out effect is observed; i.e., the concentration of the C_{70} fullerene decreases monotonously with increase of the C_{60} fullerene concentration (see Figures 16 and 17). Noteworthy is that the investigation of phase equilibrium in this system can help to optimize the thermocatalytic process of synthesis of polystyrene modified with fullerenes.

We have previously studied the solubility of an industrial fullerene mixture (60 % of C_{60} + 39 % of C_{70} + 1 % of

Table 9.	Equilibrium Liquid-Solid Phase Composition in the Ternary Systems: C	$C_{60}^{(1)} + C_{70}^{(2)} + C_{70}^{(2)}$	$1,2-C_6H_4(CH_3)_2^{(3)}$	at (253.15, 298.15, and
353.15) K	K_{5} $C_{60} + C_{70} + C_{6}H_{5}CH = CH_{2}$ at (258.15, 273.15, and 298.15) $K^{a,b}$			

$S(C_{60})$	$S(C_{70})$	$w^{l}(C_{60})$	$w^{s}(C_{60})$	
$\overline{\mathbf{g} \cdot \mathbf{L}^{-1}}$	$\overline{\mathbf{g} \cdot \mathbf{L}^{-1}}$	%	%	solid phase
0	0	C ₆₀ -	$+ C_{70} + 1.2$ -Dime	ethvlbenzene $(1.2-C_{c}H_{4}(CH_{3})_{2})50, 96$
		- 00	- 10 - 1	T = 353.15 K
4 44	0.00	1.00	1.00	I = 555.15 K
3.78	2.06	0.647	0.950	$(C_{60})_{1}(C_{70})_{1}$, (2)
4.15	4.26	0.493	0.900	$(C_{60})_{x}(C_{70})_{1-x}(2)$ $(C_{60})_{x}(C_{70})_{1-x}(2)$
5.26	7.50	0.412	0.850	$(C_{60})_x(C_{70})_{1-x}$ (2)
6.74	11.18	0.376	0.327	$(C_{60})_x(C_{70})_{1-x}$ (1)+ $(C_{60})_x(C_{70})_{1-x}$ (2)
4.59	11.18	0.291	0.120	$(C_{60})_x(C_{70})_{1-x}$ (1)
2.15	13.23	0.140	0.045	$(C_{60})_x(C_{70})_{1-x}$ (1)
0.55	16.76	0.032	0.027	$(C_{60})_x(C_{70})_{1-x}$ (1)
0.00	21.47	0.000	0.000	C_{70}
				T = 298.15 K
9.25	0.00	1.00	1.00	$C_{60} \cdot 2(o - C_6 H_4 (CH_3)_2)$
9.00	2.40	0.714	0.939	$(C_{60})_x(C_{70})_{1-x} \cdot 2(o - C_6H_4(CH_3)_2)$ (2)
10.54	5.17	0.576	0.912	$(C_{60})_x(C_{70})_{1-x} \cdot 2(o - C_6H_4 (CH_3)_2)$ (2)
11.99	/.80	0.506	0.850	$(C_{60})_x(C_{70})_{1-x} \cdot 2(o - C_6H_4 (CH_3)_2) (2)$
15.11	9.96	0.470	0.407	$(C_{60})_x(C_{70})_{1-x}$ (1) \pm $(C_{60})_x(C_{70})_{1-x}$ *2(0- $C_6\Pi_4$ (C $\Pi_3)_2$) (2)
3.00	10.54	0.308	0.141	$(C_{60})_x(C_{70})_{1-x}$ (1) $(C_{-x})_x(C_{-x})_x$ (1)
0.74	13.07	0.036	0.043	$(C_{60})_{x}(C_{70})_{1-x}$ (1) $(C_{50})_{x}(C_{70})_{1-x}$ (1)
0.00	15.17	0.000	0.000	$C_{70}(1)$
				T = 252.15 V
0.00	1 34	0.000	0.000	I = 255.15 K $C_{\pi\pi} \cdot 2(\rho_{\pi}C_{\pi}H_{\pi}(CH_{\pi})_{\pi})$
0.00	3 20	0.230	0.000	$(C_{ro}) (C_{ro}) \cdot \cdot$
2.39	2.90	0.452	0.110	$(C_{60})_{*}(C_{70})_{1-x} = 2(0 + C_{6})_{*}(C_{70})_{1-x} = 2(0 + C_{70})_{*}(C_{70})_{1-x} = 2(0 + C_{70})_$
2.16	4.20	0.509	0.402	$(C_{60})_{r}(C_{70})_{1-r} \cdot 2(o - C_{6}H_{4}(CH_{3})_{2}) (1) + (C_{60})_{r}(C_{70})_{1-r} \cdot 2(o - C_{6}H_{4}(CH_{3})_{2}) (1) + (C_{60})_{r}(C_{70})_{1-r} \cdot 2(o - C_{6}H_{4}(CH_{3})_{2}) (2)$
3.43	1.75	0.653	0.897	$(C_{60})_{x}(C_{70})_{1-x} \cdot 2(o - C_{6}H_{4}(CH_{3})_{2})$ (2)
2.33	0.77	0.751	0.951	$(C_{60})_x(C_{70})_{1-x} \cdot 2(o - C_6 H_4(CH_3)_2)$ (2)
1.81	0.00	1.000	1.000	$C_{60} \cdot 2(o - C_6 H_4 (CH_3)_2)$
			$C_{60} + C_{70} +$	$-C_{c}H_{s}CH=CH_{2}26, 27, 69$
			- 00 - 70	T = 209.15 V
4.02	0.00	1.00	1.00	I = 298.15 K
4.02	0.00	0.98	0.93	$(C_{c0}) (C_{c0}), \cdot (C_{c0}$
5.64	0.32	0.95	0.89	$(C_{60})_{*}(C_{70})_{1-*} 2C_{6}H_{5}CH = CH_{2}(1)$
6.55	0.77	0.90	0.83	$(C_{60})_{*}(C_{70})_{1-*} \cdot 2C_{6}H_{5}CH = CH_{2} (1)$
6.96	1.08	0.87	0.80	$(C_{60})_{x}(C_{70})_{1-x} \cdot 2C_{6}H_{5}CH = CH_{2}$ (1)
7.20	1.70	0.80	0.75	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
7.84	2.63	0.75	0.70	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
8.46	3.08	0.73	0.67	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
8.55	4.00	0.64	0.59	$(C_{60})_x(C_{70})_{1-x}$ (2) + $(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
6.03	3.99	0.60	0.50	$(C_{60})_x(C_{70})_{1-x}$ (2)
4.97	4.02	0.55	0.40	$(C_{60})_x(C_{70})_{1-x}$ (2)
2.01	4.30	0.39	0.30	$(C_{60})_x(C_{70})_{1-x}(2)$
1.27	5.25	0.19	0.15	$(C_{60})_{x}(C_{70})_{1-x}(2)$ $(C_{70})_{x}(C_{70})_{x}(2)$
0.60	6.02	0.09	0.05	$(C_{60})_{x}(C_{70})_{1-x}(2)$ $(C_{60})_{x}(C_{70})_{1-x}(2)$
0.00	6.02	0.00	0.00	C_{70}
				T = 273.15 K
5 50	0.00	1.00	1.00	$\Gamma = 275.15$ K $C_{co} \cdot 2C_{cH} \cdot CH = CH_{c}$
6.84	1.29	0.84	0.89	$(C_{60})_{*}(C_{70})_{*} * 2C_{6}H_{5}CH = CH_{2}$ (1)
7.22	2.17	0.77	0.86	$(C_{60})_{*}(C_{70})_{1-*} \cdot 2C_{6}H_{5}CH = CH_{2} (1)$
7.24	2.39	0.76	0.81	$(C_{60})_{r}(C_{70})_{1-r} \cdot 2C_{6}H_{5}CH = CH_{2} (1)$
7.69	3.57	0.76	0.74	$(C_{60})_x(C_{70})_{1-x}$ (2) + $(C_{60})_x(C_{70})_{1-x}$ • 2C ₆ H ₅ CH=CH ₂ (1)
5.45	3.79	0.59	0.50	$(C_{60})_x(C_{70})_{1-x}$ (2)
4.99	4.20	0.54	0.38	$(C_{60})_x(C_{70})_{1-x}$ (2)
3.84	4.59	0.46	0.32	$(C_{60})_x(C_{70})_{1-x}$ (2)
2.53	5.38	0.32	0.23	$(C_{60})_x(C_{70})_{1-x}$ (2)
0	5.60	0.00	0.00	C_{70}
				T = 258.15 K
5.90	0.00	1.00	1.00	$C_{60} \cdot 2C_6H_5CH = CH_2$
6.41	0.49	0.93	0.86	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
7.16	1.23	0.85	0.84	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2$ (1)
7.84	2.62	0.75	0.71	$(C_{60})_x(C_{70})_{1-x} \cdot 2C_6H_5CH = CH_2 (1)$
8.01	3.50	0.69	0.66	$(U_{60})_x(U_{70})_{1-x}$ (2) + $(U_{60})_x(U_{70})_{1-x}$ · 2 $U_6H_5UH=UH_2$ (1)
5.55 2.07	2.09	0.00	0.40	$(C_{60})_{x}(C_{70})_{1-x}(2)$ $(C_{70})_{x}(C_{70})_{x}(2)$
2.97	2.13	0.32	0.37	$(C_{60})_x(C_{70})_{1-x}(\Delta)$ (C ₅₀) (C ₅₀), (2)
1.35	2.80	0.33	0.17	$(\bigcirc_{00})_{x}(\bigcirc_{10})_{1-x}(\frown_{20})$ $(\bigcirc_{60})_{x}(\bigcirc_{70})_{1-x}(\frown_{20})$
0.31	2.82	0.1	0.09	$(C_{60})_{r}(C_{70})_{1,r}(2)$
0.00	2.84	0.00	0.00	C ₇₀

 a (1), (2)-solid solutions enriched by C₆₀ and C₇₀ fullerenes correspondingly. b S(C₆₀), concentration of C₆₀ in solution; S(C₇₀), concentration of C₇₀ in solution; w^{l} (C₆₀), mass fraction of the C₆₀ fullerene in liquid solution; w^{s} (C₆₀), mass fraction of the C₆₀ fullerene in solid solution.^{26,27,50,69,96}

Figure 16. Solubility diagram in the ternary system $C_{60} + C_{70} +$ styrene $(C_6H_5CH=CH_2)$ at T = 298 K. Solid line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$; dashed line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$; dashed line corresponds to crystallization of $(C_{60})_x(C_{70})_{1-x}$; 2C₆H₅CH=CH₂. $S(C_{60})$, concentration of C_{60} in solution; $S(C_{70})$, concentration of C_{70} in solution. "O" corresponds to simultaneous saturation of two solids.

Figure 17. Fullerene component distribution between liquid and solid solutions in the ternary system $C_{60} + C_{70} + C_6H_5CH=CH_2$ at T = 298 K. $w^{l}(C_{60})$ is the mass fraction of the C_{60} fullerene in liquid solution; $w^{s}(C_{60})$ is the mass fraction of the C_{60} fullerene in solid solution.

 $C_{76}-C_{90}$) in different solvents (1-alcohols, carboxylic acids, heptane, and styrene) in the temperature range T = (293 to 353) K (see Table 10).^{6,13,16,57–59} It is significant that such investigations are useful for developing chromatographic and prechromatographic (based on liquid–liquid and liquid–solid equilibria) methods of light fullerenes separation.

 C_{60} Solvent (1)-Solvent (2). Data on the solubility of an individual light fullerene in mixed solvents are limited. The solubility of fullerenes has been investigated in ten systems, while the temperature dependence has been investigated in two systems. Such studies are important because a knowledge of the fullerene solvation mechanism can allow one to selectively carry out chemical reactions with participation of fullerenes as well as to develop effective criteria for selection of solvents for separation of fullerene mixtures.

Kolker et al.^{42,43} studied the C_{60} fullerene solubility in tetrachloromethane + toluene and tetrachloromethane + *o*-

Table 10. Temperature Dependences of Solubility of the Industrial Fullerene Mixture Solubility with Mass Fraction (60 to 65) % of C_{60} + (33 to 39) % of C_{70} + (1 to 2) % of C_{76} - C_{90})* in Various Solvents^{6,13,16,57-59}

				T/K				
solvent	293.15	303.15	313.15	323.15	333.15	343.15	353.15	ref
				S/g•	L^{-1}			
butyric acid	0.032^{a} :	0.038^{a} :	0.052^{a} :	0.053^{a} :	0.055^{a} :	0.064^{a} :	0.067^{a}	57
-	0.016^{b}	0.018^{b}	0.031^{b}	0.037^{b}	0.053^{b}	0.075^{b}	0.085^{b}	
valeric acid	0.194^{a} :	0.190^{a} :	0.148^{a} :	0.135^{a} :	0.147^a :	0.159^a :	0.162^a :	58
	0.039^{b}	0.041 ^b	0.046 ^b	$0.048^{b'}$	0.047 ^b	0.054^{b}	0.071 ^b	
caproic acid	0.424^{a} :	0.405^{a} :	0.344^{a} :	0.315^{a} :	0.310^{a} :	0.241^{a} :	0.258^{a} :	58
	0.303 ^b	0.290^{b}	0.275 ^b	0.263 ^b	$0.258^{b'}$	$0.254^{b'}$	0.315 ^b	
heptanoic acid	0.491 ^a ;	$0.472^{a};$	0.456 ^a ;	$0.421^{a};$	$0.464^{a};$	0.417 ^a ;	0.334 ^a ;	57
-	$0.374^{b'}$	$0.374^{b'}$	0.375^{b}	0.376^{b}	$0.434^{b'}$	0.429^{b}	0.512^{b}	
caprylic acid	$0.183^{a};$	0.190^{a} ;	0.176^{a} ;	0.188^{a} ;	$0.246^{a};$	$0.269^{a};$	0.308^{a} ;	59
	$0.144^{b'}$	0.144 ^b	0.181 ^b	0.218 ^b	0.217 ^b	0.216 ^b	$0,230^{b}$	
pelargonic acid	0.598^{a} ;	0.615^{a} ;	0.675^{a} ;	0.715^{a} ;	$0.575^{a};$	0.537^{a} ;	0.541^{a} ;	59
	$0.182^{b'}$	0.238 ^b	$0.237^{b'}$	$0.237^{b'}$	$0.240^{b'}$	0.273 ^b	$0.337^{b'}$	
n-pentanol-1	$0.071^{a};$	$0.054^{a};$	$0.062^{a};$	$0.069^{a};$	0.079 ^a ;	$0.090^{a};$	0.099 ^a ;	13
	0.040^{b}	0.040^{b}	0.039^{b}	0.039^{b}	0.054^{b}	0.079^{b}	0.079^{b}	
n-hexanol-1	$0.140^{a};$	$0.130^{a};$	$0.128^{a};$	$0.118^{a};$	$0.138^{a};$	$0.145^{a};$	0.157 ^{<i>a</i>} ;	13
	0.172^{b}	0.156 ^b	0.124^{b}	0.125^{b}	0.124^{b}	0.114^{b}	0.108^{b}	
n-heptanol-1	$0.078^{a};$	$0.071^{a};$	$0.079^{a};$	$0.080^{a};$	0.093 ^{<i>a</i>} ;	$0.100^{a};$	$0.114^{a};$	13
	0.042^{b}	0.042^{b}	0.052^{b}	0.064^{b}	0.064^{b}	0.063^{b}	0.063^{b}	
n-octanol-1	0.248 ^{<i>a</i>} ;	0.230 ^{<i>a</i>} ;	0.219 ^{<i>a</i>} ;	0.214 ^{<i>a</i>} ;	0.227 ^{<i>a</i>} ;	0.233 ^{<i>a</i>} ;	0.243 ^{<i>a</i>} ;	13
	0.087^{b}	0.088^{b}	0.088^{b}	0.088^{b}	0.101^{b}	0.114^{b}	0.154^{b}	
<i>n</i> -nonanol-1	0.437 ^{<i>a</i>} ;	$0.402^{a};$	0.356 ^{<i>a</i>} ;	0.353 ^{<i>a</i>} ;	$0.350^{a};$	$0.350^{a};$	0.348 ^{<i>a</i>} ;	13
	0.196^{b}	0.197^{b}	0.217^{b}	0.217^{b}	0.217^{b}	0.224^{b}	0.258^{b}	
n-decanol-1	$0.576^{a};$	$0.617^{a};$	$0.629^{a};$	$0.582^{a};$	0.559 ^a ;	$0.536^{a};$	$0.424^{a};$	13
	0.282^{b}	0.352^{b}	0.352^{b}	0.353 ^b	0.354^{b}	0.354^{b}	0.433 ^b	
n-undecanol-1	0.507 ^{<i>a</i>} ;	0.615 ^{<i>a</i>} ;	$0.620^{a};$	$0.664^{a};$	$0.624^{a};$	0.585 ^{<i>a</i>} ;	0.561 ^{<i>a</i>} ;	13
	0.434^{b}	0.416^{b}	0.399^{b}	0.398^{b}	0.399^{b}	0.400^{b}	0.337^{b}	
styrene	6.600 ^{<i>a</i>} ;	7.651 ^a ;	9.450 ^{<i>a</i>} ;	7.800 ^a ;	5.700 ^{<i>a</i>} ;	3.967 ^{<i>a</i>} ;	2.979 ^a ;	25, 27
	2.760 ^b	3.320 ^b	4.172 ^b	3.780 ^b	3.520 ^b	2.830 ^b	2.498 ^b	
^a Correspon	ids to	solub	ility o	f C ₆₀	from	fullere	ene m	ixture.

^b Corresponds to solubility of C_{70} from fullerene mixture.

Table 11. Temperature Dependences of Mole Fraction Solubility *x* of the C₆₀ Fullerene (3) in Tetrachloromethane (1) + Toluene (2) and Tetrachloromethane (1) + *o*-Dichlorobenzene (2)^{42,43}

			T/K		
w_2	298.15	308.15	318.15	328.15	338.15
	Tetra	chloromethar	ne(1) + Tolu	ene (2)	
			$10^4 x_3$		
0	0.376	0.423	0.401	0.407	0.413
0.103	0.503	0.510	0.517	0.525	0.532
0.302	0.680	0.831	0.828	0.839	0.793
0.502	1.18	1.25	1.22	1.33	1.33
0.706	1.82	1.77	1.83	1.97	1.75
0.890	2.83	3.07	2.56	2.44	2.32
1	3.61	3.31	3.12	3.00	2.80
	Tetrachloro	omethane (1)	+ o-Dichlore	obenzene (2)	
			$10^4 x_3$		
0	0.376	0.423	0.401	0.406	0.413
0.103	0.63	0.693	0.632	0.655	0.692
0.306	1.7	1.8	1.7	1.91	2.15
0.500	4.52	4.72	4.77	5.13	5.34
0.691	9.94	11.7	12.0	12.1	11.1
0.900	29.3	31.1	18.8	16.0	17.8
1	42.2	36.3	23.4	19.1	21.9

dichlorobenzene mixtures in the temperature range T = (298.15) to 338.15) K (see Table 11). In this work, the equations

Table 12. Solubility of the C_{60} Fullerene in Decalin (1) + Naphthalene (2), Toluene (1) + Naphthalene (2), and Dodecane (1) + Naphthalene (2) Solvent Mixtures³⁶

Tuphthalene (2) bortent maxures						
decalin (1) + naphthalene (2)		toluen naphtha	toluene (1) + naphthalene (2)		ne (1) + alene (2)	
$100 w_2$	$S/g \cdot L^{-1}$	100 w ₂	$S/g \cdot L^{-1}$	100 w ₂	$S/g \cdot L^{-1}$	
0	1.7	0	2.7	0	0.09	
5	2.0	10	3.8	2.5	0.07	
10	2.4	15	4.5	5	0.1	
15	3.5	20	7.2	6	0.11	
		25	7.0	7.8	0.11	
		30	7.0	10	0.15	
				10.1	0.23	

Table 13. Solubility of the C_{60} Fullerene in Acetonitrile (1) + Toluene (2) Solvent $Mixtures^{87}$

100 w ₂	$S/g \cdot L^{-1}$	100 w ₂	$S/g \cdot L^{-1}$
0	0.000	60	0.067
5	0.003	80	0.300
10	0.005	90	0.710
30	0.018	95	0.920
50	0.031	100	2.600

describing the solubility dependence on temperature and solvent composition were derived, and thermodynamic functions of the C_{60} solution were calculated. The temperatures and enthalpies of incongruent melting of the solid solvates were determined using DSC.

 $\text{Beck}^{36,87}$ investigated the isothermal solubility of the C₆₀ fullerene in decaline + naphthalene, toluene + naphthalene,

dodecane + naphthalene, and acetonitrile + toluene. Their experimental data listed in this paper are summarized in Tables 12 and $13.^{36.87}$

Kulkarni et al.^{14,97} measured isothermal solubility of C_{60} in toluene + acetonitrile, toluene + ethanol, toluene + tetrahydrofuran, acetonitrile + tetrahydrofuran, ethanol + water, and tetrahydrofuran + water (see Table 14) solvent mixtures, and the solubility data were modeled using the Wohl equation.

Solubility of Light Fullerenes in Multicomponent Systems. Studies on the solubility of light fullerenes in natural solvents (vegetable oils, animal, fats and essential oils) are extremely important for the following reasons:

Fullerenes are soluble in natural solvents with the solubility varing from (0.1 to 1) $g \cdot L^{-1}$ tenth to units gram of fullerenes per liter of solvent;

1.18

3.09 2.96

1

Table 14.Solubility of the C₆₀ Fullerene in Toluene (1) + Acetonitrile (2), Toluene (1) + Ethanol (2), Toluene (1) + Tetrahydrofuran (2),Acetonitrile (1) + Tetrahydrofuran (2), Ethanol (1) + Water (2), and Tetrahydrofuran (1) + Water (2)^a

ethanol	(1) + water (2)	tetrahydrofu	uran (1) + water (2)	toluene (1) + acetonitrile	
Ø ₁	$S/g \cdot L^{-1}$	Ø ₁	$S/g \cdot L^{-1}$	Ø ₁	$S/g \cdot L^{-1}$
0	$8.00 \cdot 10^{-9}$	0	$8.00 \cdot 10^{-9}$	0	$4.37 \cdot 10^{-5}$
					$5.16 \cdot 10^{-5}$
					$4.24 \cdot 10^{-5}$
					$4.61 \cdot 10^{-5}$
0.5	$1.18 \cdot 10^{-6}$	0.5	$1.23 \cdot 10^{-5}$	0.3	$2.39 \cdot 10^{-3}$
	$1.45 \cdot 10^{-6}$		$2.73 \cdot 10^{-5}$		$2.41 \cdot 10^{-3}$
0.6	$4.96 \cdot 10^{-6}$	0.6	$8.98 \cdot 10^{-5}$	0.5	0.0222
	$4.97 \cdot 10^{-6}$		$9.36 \cdot 10^{-5}$		0.0215
0.7	$2.89 \cdot 10^{-5}$	0.7	$3.15 \cdot 10^{-4}$	0.7	0.244
	$2.41 \cdot 10^{-5}$		$3.18 \cdot 10^{-4}$		0.284
0.8	$7.07 \cdot 10^{-5}$	0.8	$1.02 \cdot 10^{-3}$	0.9	1.11
	$7.32 \cdot 10^{-5}$				1.09
0.9	$4.51 \cdot 10^{-4}$	0.9	$3.06 \cdot 10^{-3}$	1	3.09
	$4.41 \cdot 10^{-4}$		$3.32 \cdot 10^{-3}$		2.96
1	$1.74 \cdot 10^{-3}$	1	$1.14 \cdot 10^{-2}$		
	$1.43 \cdot 10^{-3}$		$1.08 \cdot 10^{-2}$		
toluene (1) + ethanol (2)	tetrahydrofuran	(1) + acetonitrile (2)	tetrahydrofura	n(1) + toluene(2)
Ø ₁	$S/g \cdot L^{-1}$	Ø ₁	$S/g \cdot L^{-1}$	Ø ₁	$S/g \cdot L^{-1}$
0	$2.00 \cdot 10^{-3}$	0	$4.70 \cdot 10^{-5}$	0	0.0116
			$4.30 \cdot 10^{-5}$		0.0111
			$3.70 \cdot 10^{-5}$		
0.1	$2.79 \cdot 10^{-3}$	0.1	$1.10 \cdot 10^{-4}$	0.05	0.0111
	$3.04 \cdot 10^{-3}$		$9.40 \cdot 10^{-5}$		0.0106
0.3	0.0237	0.15	$4.70 \cdot 10^{-5}$	0.1	0.0145
	0.0232				0.0141
0.5	0.124	0.2	$6.60 \cdot 10^{-5}$	0.15	0.0138
	0.121		$4.90 \cdot 10^{-5}$		0.0136
0.7	0.494	0.25	$6.70 \cdot 10^{-5}$	0.2	0.0174
	0.542				0.0166
0.9	1.38	0.4	$1.60 \cdot 10^{-4}$	0.3	0.0217
	1.38		$1.20 \cdot 10^{-4}$		0.0144
1	3.00	0.5	$2.80 \cdot 10^{-4}$	0.35	0.0245
					0.0241
		0.6	$5.70 \cdot 10^{-4}$	0.50	0.0458
			$6.10 \cdot 10^{-4}$		0.0463
		0.75	$1.59 \cdot 10^{-3}$	0.6	0.0660
			$1.61 \cdot 10^{-3}$		0.0641
		0.8	$2.57 \cdot 10^{-3}$	0.65	0.0890
			$3.08 \cdot 10^{-3}$		0.0957
		0.9	$5.59 \cdot 10^{-3}$	0.7	0.104
			$6.40 \cdot 10^{-3}$		0.130
		1	0.0111	0.75	0.180
			0.0105		0.160
				0.8	0.323
					0.284
				0.9	1.23

 a Ø₁, volume fraction of component 1.^{14,97} The values of solubility are absent in ref 14. The authors kindly shared with us these values. The rounding of the values of solubility down to 3 digits after comma was performed by us.

Table 15.	Solubility of Light Fullerenes in	Natural Oils (Temperatures Different	From 298 K Are Presented in Brackets)
		····· · · · · · · · · · · · · · · · ·	

			T/K			
solvent	273.15	293.15	313.15	333.15	353.15	ref
		$S(C_{60})/g \cdot L^{-1}$				
≪Stavropolje≫ (unrefined sunflower oil)	0.294	0.451	0.727	0.708	0.638	29
«Zlato» (refined sunflower oil)	0.299	0.377	0.456	0.570	0.697	29
sunflower triglyceride		0.116				33
sunflower oil «Venus»		6.91				31
sunflower oil «Flonol»		4.01				31
«Milora» (corn oil)	0 196	0.609	0.846	0.945	1 319	29
walnut oil	0.269	0.485	0.694	0.718	1.017	29
	0.264	0.470	0.751	0.858	1.206	29
olive oil	5.99 (283.15 K)	4.61 (303 K)	3.88 (313 K)			31
onve on		0.909				32
1' '1		0.04	23.6 ^a (323 K)			47
olive oil «Carapelli»		2.84				31
olive oil ≪Olatalia≫		3.97				31
olive triglyceride		0.173				33
	0.229	0.513	0.639	0.717	1.033	29
linseed oil		0.365				32
				53.1 ^a (328 K)		47
linseed triglyceride	0.000	0.091	0.010	1.050	1.000	33
pignolia oil	0.323	0.485	0.818	1.053	1.099	29
apricot-kernel oil	0.327	0.571	0.003	0.748	0.897	29 29
	0.372	0.187	0.702	0.199	0.750	33
brassica methyl ester (biodiesel)		0.859				32
soybean triglyceride		0.134				33
castor oil		0.392				32
peanut oil		0.751				32
sunseed oil		0.522				32
soybean oll		0.495		13 2a(328 K)		32 47
cedur oil				43.2 (328 K) $51.8^{a}(343 \text{ K})$		47
				51.0 (515 R)		.,
(uprofined surflewer cil)	0.504	$S(C_{70})/g \cdot L^{-1}$	2 647	2 872	2 212	20
«Stavropoije» (unrenned sunnower oii) «Zlato» (refined sunflower oil)	0.304	1.627	2.047	2.872	3.215	30
«Milora» (corn oil)	0.506	1.957	2.963	3.404	4.286	30
walnut oil	0.315	1.390	1.829	2.650	2.837	30
olive oil	0.402	0.756	1.286	2.735	3.278	30
		1.035				32
linseed oil	0.505	1.198	1.639	2.118	2.773	30
mianalia ail	0.279	0.727	1 512	2 020	2 710	32
grape-seed oil	0.578	0.737	1.512	2.020	2.710	30
apricot-kernel oil	0.378	1.009	2.208	2.772	3.090	30
castor oil	0.070	0.636	21200		51070	32
peanut oil		0.852				32
sunseed oil		0.867				32
soybean oil		0.753				32
brassica oil		1.034				32
S(60 % to 65	% C_{60} + 33 % to 39	$9 \% C_{70} + 1 \%$ to 2 9	% C ₇₆₋₉₀ mass fraction	$d)/g \cdot L^{-1 b}$		
≪Stavropolie≫ (unrefined sunflower oil)	1.831	2.234	2.068	1.839	1.612	29
T J (0.898	1.045	1.361	1.843	2.320	29
≪Zlato≫ (refined sunflower oil)	1.828	2.284	2.510	2.003	2.804	29
	1.949	2.294	2.746	2.619	2.735	29
≪Milora≫ (corn oil)	1.209	1.201	1.346	1.664	1.976	29
walnut oil	1.378	2.127	2.156	2.264	2.340	29
wannut on	0.752	0.890	1.362	1.517	1.546	29
olive oil	1.239	2.900	2.224	2.135	2.150	29
	0.913	1.123	1.518	1.747	1.999	29
linseed oil	1.755	2.097	2.007	1.987	1.923	29 20
	1.711	2.026	2.479	2.484	2.607	29
pignolia oil	1.370	1.681 ^b	1.826	2.079	2.294	29
grape seed oil	1.693	1.801	2.092	2.263	2.224	29
grape-seeu on	1.059	1.214	1.301	1.517	1.675	29
apricot-kernel oil	1.437	1.791	1.905	2.086	2.097	29
-r	0.908	1.056	1.463	1.487	1.553	29

^{*a*} Saturation of fullerene solutions was carried out using ultrasonic machining. ^{*b*} Upper value corresponds to the solubility of C_{60} from the fullerene mixture; lower value corresponds to the solubility of C_{70} from the fullerene mixture.

Table 10. Solubility of Light Functiones in Aminal I	Table 1	16. Solubilit	v of Light	Fullerenes	in	Animal	Fat
--	---------	---------------	------------	------------	----	--------	-----

			T/K					
solvent	323.15 K	333.15 K	343.15 K	353.15 K	ref			
$S(C_{50})/g \cdot L^{-1}$								
pork fat	0.052	0.145	0.231	0.257	34			
bird fat	0.024	0.059	0.093	0.122	34			
beef fat	0.041	0.131	0.153	0.168	34			
margarine ≪Rumjashka≫	—	0.019	0.028	0.029	34			
lamb fat	0.041	0.212	0.385	0.541	34			
desi	0.021	0.046	0.063	0.087	34			
molten cow butter		solul	ole		32			
cod-liver oil		53.0 ^a (338 K)			47			
		$S(C_{70})/g \cdot L^{-1}$						
pork fat	0.143	0.291	0.529	0.582	34			
bird fat	0.148	0.344	0.661	0.688	34			
beef fat	0.054	0.096	0.134	0.160	34			
margarine ≪Rumjashka≫	_	0.080	0.132	0.252	34			
lamb fat	0.053	0.132	0.238	0.317	34			
desi	0.159	0.360	0.556	0.587	34			
molten cow butter		solul	ole		32			
S(60	0 % to 65 % C_{60} + 33 %	to 39 % C_{70} + 1 % to 2 %	6 C ₇₆₋₉₀ mass fraction)/g	• $L^{-1 b}$				
1.0.	0.109	0.437	0.649	0.650	24			
pork fat	0.184	0.381	0.571	0.670	34			
1:1 6-4	0.195	0.401	0.533	0.571	24			
bird fat	0.191	0.284	0.428	0.495	54			
basef fat	0.126	0.226	0.521	0.551	24			
beel lat	0.045	0.190	0.477	0.476	54			
margaring Pumiashka>	_	0.021	0.135	0.199	24			
margarme «Rumjasnka»	_	0.098	0.193	0.240	54			
lamh fat	0.058	0.282	0.409	0.512	34			
lanio lat	0.194	0.306	0.460	0.546	54			
desi	0.177	0.261	0.354	0.426	34			
ucor	0.154	0.258	0.309	0.368	54			

^{*a*} Saturation of fullerene solutions was carried out using ultrasonic machining. ^{*b*} Upper value corresponds to solubility of C_{60} from the fullerene mixture; lower value corresponds to solubility of C_{70} from the fullerene mixture.

Further, fullerene solutions in these natural solvents are stable and absolutely transparent true solutions;

Additionally, these solutions are nontoxic and biocompatible with respect to animals and humans when they are prepared by extraction of a fullerene mixture from fullerene soot by natural oils and adipose; i.e., they do not contain any toxic impurities. Individual fullerenes obtained from solutions in aromatic solvents (toluene, *o*-xylene, dichlorobenzene) well contain residuals of these solvents which are retained even after drying under vacuum at 1.33 Pa and $t = (473 \text{ to } 523) \,^{\circ}\text{C}$, their content varying from (0.001 to 0.01) %. An alternative way for the complete purification of a fullerene from solvent admixtures is a high-temperature sublimation of a fullerene at low pressure ($\approx 0.001 \, \text{Pa}$), but the latter process is very expensive and laborious;

Fullerene solutions in oils and fats possess pronounced antibacterial and antioxidative properties, and they can absorb free radicals and ionic radicals from condensed phases in which they are present as well as photons in the ultraviolet area region.³⁰⁻³⁴

Due to the complexity of these solvents, there are no theoretical approaches for prediction of solubility of fullerenes except for the work in which solubility of individual light fullerenes was qualitatively estimated using Hansen's solubility model.³² All available experimental data on the solubility of fullerenes in liquid natural vegetable oils, animal fats, and essential oils are summarized in Tables 15, 16, and 17.

We have also studied solid solvate formation in systems of individual light fullerenes with natural oils and animal fats.^{29,30,34} Because the quantities of di- and monoglycerides, phospholipids, glycolipids, diolic lipids, free fatty acids, stearins and their esters, dye-stuffs, vitamins, polyphenols and their esters, and other substances are present as traces in a given oil, the oils (fats)

can be considered to consist entirely of triglycerides. Such an assumption is quite reasonable as the content of triglycerides is actually high and reaches up to 98 % in vegetable oils. For a hypothetic oil consisting of the only triglyceride (for example, of the only triglyceride $TG \equiv R_1(CO)OCH_2 - CH(COOR_2) -$ CH₂O(CO)R₃, R₁, R₂, R₃ - radicals of saturated and unsaturated fatty acids with molecular mass 10²⁻³ au having the mixed composition), the solid crystal solvate would have a strictly determined composition and a strictly determined dissociation temperature. The dissociation would occur according to the scheme: $C_{60} \cdot N(TG)_{(solid)} \rightarrow C_{60(solid)} + N(TG)_{(liquid)}$. However, in reality the situation described above is impossible. First, natural oils contain five and more various fatty acids which cannot be "packed" into one triglyceride, and second, molar ratios of acids in such a triglyceride must be either 1:1:1 or 1:2 which is never observed for natural oils.

Natural oil is a multicomponent mixture of different triglycerides: $TG_1 + TG_2 + ... + TG_m$ (*m* is the number of various triglycerides in the particular oil). All such triglycerides could replace each other in the structure of solid crystal solvate, for example, in solid crystal solvate of the following composition: $KS \equiv C_{60} \cdot (TG_1)_{N1} (TG_2)_{N2} ... (TG_{m-1})_{Nm-1} (TG_m)_{N-N1-N2-...-Nm-1}$ ($N_1, N_2, ..., N_m$ are the number of various triglycerides in the mixed solvate formed in fullerene-natural oil system) owing to their structural and chemical similarity. So a thermogravimetric experiment carried out^{29,30,34} showed that the average composition of the solid crystal solvate formed in the systems individual light fullerenes + natural oils, animal fats is $C_{60,70} \cdot (0.17 \pm 0.05)$ TG. Thus, one acid residual in triglyceride holds two molecules of C_{60} .

The industrial mixture of highly isomeric carboxylic acids (mixture of α, α^1 -branched isomeric carboxylic acids with carbon chain including 9 to 11 carbon atoms) was chosen as an

Table 17.	Solubility	of Light	Fullerenes	in	Essential	Oils ^{35,47}

	T/K							
solvent	293.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K	
$S(C_{60})/g \cdot L^{-1}$								
essential oil of carnation essential oil of lemon essential oil of orange essential oil of cypress essential oil of eucalyptus	1.551	1.778	2.168	2.880 18.8 ^{<i>a</i>} 21.3 ^{<i>a</i>} (329 K) 20.6 ^{<i>a</i>} 23.4 ^{<i>a</i>} (328 K)	3.011	3.275	3.864	
gum spirit					25.6 ^a (338 K)			
			$S(C_{70})/g \cdot L^2$	-1				
essential oil of carnation	0.906	1.026	1.267	1.715	2.037	2.662	5.619	
		S(65 % C ₆₀ -	+ 34 % C ₇₀ + 1	% $C_{76-90}/g \cdot L^{-1 b}$				
assantial oil of cornation	3.554	3.544	3.576	3.622	4.057	4.631	7.095	
essential on of carnation	1.742	1.962	2.108	2.107	2.448	2.463	2.897	
essential oil of cade (wood)	3.068 3.223	3.205 3.586	3.520 4.239	4.441 5.022	5.403 5.731	5.530 6.315	5.677 6.458	
essential oil of cade (leafage)	2.872 3.196	2.956 3.278	3.506 3.682	3.793 4.094	4.136 3.246	4.337 2.654	4.348 2.402	

^{*a*} Saturation of fullerene solutions was carried out using ultrasonic machining. ^{*b*} Upper value corresponds to solubility of C_{60} from the fullerene mixture; lower value corresponds to solubility of C_{70} from the fullerene mixture.

Table 18. Solubility of Individual Light Fullerenes and Industrial Fullerene Mixture That Includes High Fullerenes with Mass Fraction of C₆₀, w = 38.8 %, C₇₀, w = 33.0 %, C₇₆₋₇₈, w = 5.6 %, C₈₄, w = 8.6 %, C₉₀, w = 2.6 %, C₉₆, w = 3.3 % in Highly Isomeric Carboxylic Acids (Mixture of α, α^1 -Branched Isomeric Carboxylic Acids with Carbon Chain Including 9 to 11 Carbon Atoms)⁸⁸

	T/K							
	293.15	303.15	313.15	323.15	333.15	343.15	353.15	
$\overline{S(C_{60})/g \cdot L^{-1}}$	0.083	0.127	0.157	0.173	0.177	0.178	0.176	
$S(C_{70})/g \cdot L^{-1}$	0.157	0.183	0.190	0.287	0.366	0.369	0.531	
$S(38.8 \% C_{60} + 33 \% C_{70} + 5.6 \% C_{76-78} + 8.6 \% C_{84} + 2.6 \% C_{90} +$	0.168	0.183	0.183	0.238	0.254	0.385	0.397	
3.3 % Coc								

extraction agent for fullerenes.⁸⁸ The experimental data obtained are listed in Table 18.

Solubility of Fullerene Derivatives in Various Solvents and Solvent Mixtures. There are many studies devoted to the solubility of fullerenes (especially at room temperature) in water and in general to the problems of solubilizing individual light fullerenes by means of formation of water suspensions, stable colloidal solutions, water-soluble complexes with hydrophilic organic molecules (including polymers), and finally by means of formation of water-soluble derivatives. This kind of research is extremely important for the development of medical and cosmetology products based on fullerenes since fullerenes reveal antibacterial, anticancer, and antiviral activity as well as antioxidant properties. All the biological properties listed above along with the fullerene solubilizing methods are described in monograph by Piotrovskyi et al.⁸⁹ and are not discussed here.

Analysis of literature data shows that data on isothermal and polythermal solubility of light fullerene derivatives in various solvents are few in number. Only two papers devoted to this question were found. Tian et al.^{22,90,91} investigated the isothermal solubility of the C₆₀-piperazine derivative in 13 solvents (benzene, toluene, o-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chlorobenzene, o-dichlorobenzene, mdiclorobenzene, 1,2,4-dichlorobenzene, bromobenzene, iodobenzene, dicloromethane) at 293 K (see Table 16). They also described the spectrophotometric method for determination of solubility of this complex in various solvents; in the case of the C_{60} + piperazine derivative in 1,3,5-trimethylbenzene, m-dichlorobenzene, and iodobenzene, the authors observed from DSC measurements the formation of solid solvates, whereas in the C_{60} + piperazine + *m*-dichlorobenzene system no solvate formation was detected. The temperatures and enthalpies of firstorder transition in the incongruent melting points are also presented.22,90,91

It is notable that in general the solubility of C_{60} -piperazine is lower than that of C_{60} except in three aromatic solvents

Table 19. Solubility of the Complex $[C_{60} + Piperazine (C_{60}N(CH_2CH_2)_2N)]$ in Different Solvents at 298 $K^{22,44,90,91}$

S(C ₆₀ N (CH ₂ CH ₂) ₂ N)		S(C ₆₀ N (CH ₂ CH ₂) ₂ N)	
solvent	$g \cdot L^{-1}$	solvent	$g \cdot L^{-1}$
benzene	0.50	chlorobenzene	0.63
toluene	0.17	o-dichlorobenzene	1.79
o-xylene	0.72	m-diclorobenzene	6.03
<i>p</i> -xylene	0.20	1,2,4-trichlorobenzene	4.11
			3.58
1,2,4-trimethylbenzene	3.30	bromobenzene	1.59
1,3,5-trimethylbenzene	7.12	iodobenzene	50.30
2		dicloromethane	1.37

(namely, 1,3,5-trimethylbenzene, 1,3-dichlorobenzene, and iodobenzene) and in dichloromethane (see Table 19). It is assumed that the functional group of C_{60} -piperazine increases the total polarity of the molecule.

We have synthesized the bromine derivatives of C_{60} Br_n, n = 6, 8, 24) and developed a spectrophotometric method of analysis and studied their solubility in *o*-xylene, *o*-dichlorobenzene, 1-decanol, and heptanoic acid in the temperature range (293 to 353) K⁹² (see Table 20). Comparative data on the solubility of C₆₀ and C₆₀Br_n, n = 6, 8, and 24 in *o*-xylene, *o*-dichlorobenzene, *n*-decanol-1, and enanthic acid, in the temperature range (293 to 353) K are presented in Figure 18.

Conclusions

The authors have collected and systematized the data on the solubility of individual light fullerenes in binary systems (individual fullerene + solvent), ternary systems (individual fullerene + solvent (1) + solvent (2), $C_{60} + C_{70}$ + single solvent), and multicomponent systems (individual light fullerenes, industrial fullerene mixture + animal fats and natural oils). The data concerning isothermal and polythermal solubility of fullerene derivatives (fullerene bromides and C_{60} -piperazine

Table 20. Solubility of the Bromine Derivative of C_{60} ($C_{60}Br_n$, n = 6, 8, 24) in Different Solvents⁹²

		solv	rent						
T/K	o-xylene	o-dichlorobenzene	decan-1-ol	enanthic acid					
	$S(C_{60}Br_{24})/g \cdot L^{-1}$								
293.15	0.333	0.184	0.497	0.567					
303.15	0.390	0.228	0.592	0.638					
313.15	0.450	0.239	0.947	0.709					
323.15	0.466	0.255	1.421	0.808					
333.15	0.488	0.271	2.013	1.084					
343.15	0.640	0.320	2.723	1.417					
353.15	0.867	0.412	3,789	2.069					
	$S(C \mathbf{p}_{r})/2.\mathbf{I}^{-1}$								
203 15	1 180	1 /01	0 155	0.177					
293.13	1.160	1.491	0.155	0.177					
212 15	1.507	1.900	0.242	0.208					
202.15	1.015	2.403	0.404	0.404					
525.15 222.15	1.739	2.754	0.497	0.462					
242 15	2.030	3.293	0.777	0.752					
252 15	2.347	5.970	1.110	1.030					
555.15	5.970	5.591	2.174	1.//1					
		$S(C_{60}Br_{6})$;)/g•L '						
293.15	6.662	11.40	1.063	1.114					
303.15	9.096	19.30	1.140	1.166					
313.15	9.352	23.10	1.166	1.306					
323.15	10.37	25.73	1.244	1.399					
333.15	11.02	26.02	1.296	1.451					
343.15	11.53	33.04	1.322	1.685					
353.15	11.92	33.33	1.399	1.840					
Г		. [.]		1 1 1					
1.5	0Q			_					
			<u> </u>	<u>م</u>					
	<u> </u>								
1.0	<u> </u>	Q		<u>o</u>					
	à	*****	-						
$\sim \alpha ^{\geq}$	0								
50.0 F	6			1					
<u>)</u>	*			a					
<u>S</u> =	X A		- X	\$					
~ 0.0	°								
	0		V	8					
	ô	0	-						
-0.5	\$			<u> </u>					
	. z	;							
ſ									
-1.0	<u>т I</u>	. [.]	· · · ·						
0.0028	8 0.0029	0.0030 0.0031 <i>K</i> / <i>T</i>	0.0032 0.0	0033 0.0034					

Figure 18. Comparative data on the solubility of C_{60} and $C_{60}Br_n$, n = 6, 8, and 24, in *o*-xylene, *o*-dichlorobenzene, *n*-decanol-1, and heptanoic acid in the temperature range (293 to 353) K. °, $C_{60}Br_{24} + o$ -xylene; \bigcirc , $C_{60}Br_8 + o$ -xylene; \bigcirc , $C_{60}Br_6 + o$ -xylene; \bigcirc , $C_{60}Br_6 + o$ -xylene; \bigcirc , $C_{60}Br_6 + o$ -dichlorobenzene; \diamondsuit , $C_{60}Br_8 + o$ -dichlorobenzene; \diamondsuit , $C_{60}Br_6 + o$ -dichlorobenzene; \diamondsuit , $C_{60}Br_8 + decan-1-ol; \Delta$, $C_{60}Br_6 + decan-1-ol; \Delta$, $C_{60}Br_8 + decan-1-ol; \nabla$, $C_{60}Br_{24} + heptanoic acid; <math>\nabla$, $C_{60}Br_6 + heptanoic acid; <math>\nabla$, $C_{60}Br_6 + heptanoic acid$.

derivative) in various solvents are also presented. Moreover, in the context of this review, the authors have investigated the solubility of individual light fullerenes and industrial fullerene mixture in oleic acid, oleinic acid, and linolenoic acid as well as solubility of fullerenes in the ternary system $C_{60} + C_{70} +$ 1,2-dichlorobenzene at 423 K.

Supporting Information Available:

Additional data for Tables 1, 2, 3, 6, and 7.

This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

 Ruoff, R. S.; Tse, D.; Malhorta, R.; Lorents, D. C. Solubility of fullerene C₆₀ in a variety of solvents. *J. Phys. Chem.* **1993**, *97*, 3379– 3383.

- (2) Sivarman, N.; Dhamodaran, R.; Kallippan, I.; Srinivassan, T. G.; Vasudeva, P. R.; Mathews, C. K. Solubility of C₆₀ in organic solvents. *J. Org. Chem.* **1992**, *57*, 6077–6079.
- (3) Heyman, D. Solubility of C₆₀ in alcohols and alkanes. *Carbon* 1996, 34, 627–631.
- (4) Kimata, K.; Hirose, T.; Moriuchi, K.; Hosoya, K.; Araki, T.; Tanaka, N. High-capacity stationary phases containing heavy atoms for HPLC separation of fullerenes. *Anal. Chem.* **1995**, *67*, 2556–2561.
- (5) Chen, W.; Xu, Z. Temperature dependence of C₆₀ solubility in different solvents. *Fullerene Sci. Technol.* **1998**, *6*, 285–290.
- (6) Semenov, K. N.; Charykov, N. A.; Arapov, O. V. Solubility of light fullerenes in heptane in the temperature range 0–800°C. Vestnik of Saint-Petersburg State University, in press.
- (7) Talukdar, S.; Pradhan, P.; Banerji, A. Electron donor-acceptor interactions of C₆₀ with n-and π-donors: A rational approach towards its solubility. *Fullerene Sci. Technol.* **1997**, *5*, 547–557.
- (8) Beck, M. T.; Mandi, G.; Keki, S. R. R. S., Kadish, K. M., Eds. 187th Electrochemical Society Meeting; Electrochemical Society, 1995.
- (9) Nagano, Y.; Tamura, T.; Kiyobayashi, T. Stoichiometry and thermodynamic property of massively cyclohexane-solvated C₆₀. *Chem. Phys. Lett.* **1994**, 228, 125–130.
- (10) Beck, M. T. Mandi, G. Ruoff, R. S. Kadish, Eds., K. M. 189th Electrochemical Society Meeting, Los Angeles, CA; Electrochemical Society, 1996.
- (11) Lozano, K.; Chibante, L. P. F.; Sheng, X. Y.; Gaspar-Rosas, A.; Barrera, E. V. Physical Examination and Handling of Wet and Dry C₆₀. *Processing and Handling of Powders and Dusts*; Battle, T. P., Henein, H., Eds.; Minerals, Metals, and Materials Society, 1997.
- (12) Nagano, Y.; Nakamura, T. C₆₀-CCl₄ solvate: An AB₁₃ type binary crystal. *Chem. Phys. Lett.* **1997**, 265, 358–360.
- (13) Semenov, K. N.; Arapov, O. V.; Charykov, N. A. The solubility of fullerenes in n-alkanols-1. *Russ. J. Phys. Chem.* 2008, 82, 1318–1326.
- (14) Kulkarni, P. P.; Jafvert, C. T. Solubility of C₆₀ in solvent mixtures. *Environ. Sci. Technol.* 2008, 42, 845–851.
- (15) Scrivens, W. A.; Tour, J. M. Potent solvents for C₆₀ and their utility for the rapid acquisition of 13C NMR data for fullerenes. *J. Chem. Soc., Chem. Commun.* **1993**, *15*, 1207–1209.
- (16) Semenov, K. N.; Charykov, N. A.; Pyartman, A. K.; Keskinov, V. I.; Lishuk, V. V.; Arapov, O. V.; Alekseyev, N. I. Solubility of fullerenes in *n*-alkanoic acids C₂-C₉. *Russ J. Appl. Chem.* **2007**, *80*, 456–460.
- (17) Tomiyama, T.; Uchiyama, S.; Shinohara, H. Solubility and partial specific volumes of C₆₀ and C₇₀. *Chem. Phys. Lett.* **1997**, 264, 143– 148.
- (18) Zhou, X.; Liu, J.; Jin, Z.; Gu, Z.; Wu, Y.; Sun, Y. Solubility of fullerene C₆₀ and C₇₀ in toluene, o-xylene and carbon disulfide at various temperatures. *Fullerene Sci. Technol.* **1997**, *5*, 285–290.
- (19) Stukalin, E. B.; Avramenko, N. V.; Korobov, M. V.; Ruoff, R. Ternary system of C₆₀ and C₇₀ with 1,2,-dimethylbenzene. *Fullerene Sci. Technol.* 2001, 9, 113–130.
- (20) Michaud, F.; Barrio, M.; Lopez, D. O.; Tamarit, J. Ll.; Agafonov, V.; Toscani, S.; Szwarc, H.; Ceolin, R. Solid-State Studies on a C₆₀ Solvate Grown from 1,1,2-Trichloroethane. *Chem. Mater.* **2000**, *12*, 3595– 3602.
- (21) Doome, R. J.; Dermaut, S.; Fonseca, A.; Hammida, M.; Nagy, J. B. New evidence for the anomalous temperature-dependent solubility of C₆₀ and C₇₀ fullerenes in various solvents. *Fullerene Sci. Technol.* **1997**, *5*, 1593–1606.
- (22) Tian, J. Comparative solubility study of C₆₀ and C₆₀-piperazine and applications on quartz crystal microbalance/heat conduction calorimeter. A Thesis Submitted to the Faculty of Drexel University by Jun Tian in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 2002.
- (23) Tian, J.; Smith, A. L. Comparative study of solubility of C₆₀ and C₆₀ piperazine in organic solvents. *Abstr. Papers Am. Chem Soc.* 2000, 220, 207–207.
- (24) Letcher, T. M.; Domanska, U.; Goldon, A.; Mwenesongole, E. M. Solubility of buckminsterfullerene in terahydrofuran, thiophene, terahydrothiophene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and n-butilamine. *S.-Afr. J. Chem.* **1997**, *50*, 51–53.
- (25) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Trofimova, M. A. The solubility of light fullerenes in styrene over the temperature range 20-80°C. *Russ. J. Phys. Chem.* **2008**, *82*, 1975–1978.
- (26) Jafvert, C. T.; Kulkarni, P. P. Buckminsterfullerene's (C₆₀) octanol water partition coefficient (K_{ow}) and aqueous solubility. *Environ. Sci. Technol.* 2008, 42, 5945–5950.
- (27) Semenov, K. N.; Charykov, N. A.; Alekseev, N. I.; Arapov, O. V. Solubility of light fullerenes in styrene. J. Chem. Eng. Data 2009, 54 (3), 756–761.
- (28) Arsalani, N.; Geckeler, K. E. Radical bulk polymerization of styrene in the presence of fullerene ⁶⁰. Fullerene Sci. Technol. **1996**, *4*, 897– 912.

- (29) Semenov, K. N.; Charykov, N. A.; Namazbaev, V. I.; Arapov, O. V.; Pavlovetz V. V.; Keskinov, V. A.; Pjartman, A. K. Solubility of light fullerenes in natural oils. *Russ. J. Gen. Chem.*, in print.
- (30) Semenov, K. N.; Charykov, N. A.; Arapov, O. V. Temperature dependence of solubility of light fullerenes in natural oils and animal fats. *Fullerene Sci. Technol.*, in print.
- (31) Braun, T.; Mark, L.; Ohmacht, R. P.; Sharma, U. Olive oil as a biocompatible solvent for pristine C₆₀. Fullerenes, Nanotubes, Carbon Nanostruct. 2007, 15, 311–314.
- (32) Cataldo, F.; Da Ros, T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes; Springer: Netherlands, 2008; Vol. 1.
- (33) Cataldo, F.; Braun, T. The solubility of C₆₀ fullerene in long chain fatty acids esters. *Fullerenes, Nanatubes Carbon Nanostruct.* 2007, 15, 331–339.
- (34) Semenov, K. N.; Charykov, N. A.; Namazbaev, V. I.; Arapov, O. V.; Pavlovetz, V. V.; Keskinov, V. A.; Pjartman, A. K.; Strogonova, E. N.; Saf'jannikov, N. M. Solubility of light fullerenes in animal oils (fats). *Vestnik of Saint-Petersburg State University*, in print.
- (35) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Stroganova, E. N.; Saf'jannikov, N. M. Solubility of light fullerenes in pink oil. Vestnik of Saint-Petersburg State University, in print.
- (36) Beck, M. T.; Mandi, G. Solubility of C₆₀. *Fullerene Sci. Technol.* 1997, 5, 291–310.
- (37) Korobov, M. V.; Smith, A. L. Solubility of Fullerenes. In *Physics, and Technology*; Kadish, K. M., Ruoff, R. S., Eds.; A JOHN WIELY & SONS, 2000; pp 53–59.
- (38) Sawamura, S.; Fujita, N. High-pressure solubility of fullerene C₆₀ in toluene. *Carbon* **2007**, *45*, 965–970.
- (39) Gripon, C.; Legrand, L.; Rosenman, I.; Boue, F.; Regnaut, C. Relation between the solubility and the effective solute-solute interaction for C₆₀ solutions and lysozyme solutions: A comparison using the sticky hard-sphere potential. *J. Crystal Growth.* **1998**, *183*, 258–268.
- (40) Ruoff, R. S.; Malhorta, R.; Huestis, D. L.; Tse, D. S.; Lorents, D. C. Anomalous solubility behaviour of C₆₀. *Nature* **1993**, *362*, 140–141.
- (41) Beck, M. T.; Mandi, G. Fullerenes; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington, 1996; Vol. 3, p 32.
- (42) Kolker, A. M.; Islamova, N. I.; Avramenko, N. V.; Kozlov, A. V. Thermodynamic properties of C₆₀ fullerene solutions in individual and mixed organic solvents. *J. Mol. Liq.* **2007**, *131–132*, 95–100.
 (43) Kolker, A. M.; Islamova, N. I.; Avramenko, N. V.; Kozlov, A. V.
- (43) Kolker, A. M.; Islamova, N. I.; Avramenko, N. V.; Kozlov, A. V. Thermodynamic properties of fullerene C₆₀ solutions in a mixture of tetrachloromethane and toluene. *Russ. J. Phys. Chem. A* 2006, *80*, 1622–1625.
- (44) Avramenko, N. V.; Korobov, M. V.; Parfenova, A. M.; Dorozhko, P. A.; Kiseleva, N. A.; Dolgov, P. V. Thermochemistry of C₆₀ and C₇₀ fullerene solvates. *J. Therm. Anal. Calorim.* **2006**, *84*, 259–262.
- (45) Avramenko, N. V.; Stukalin, E. B.; Korobov, M. V. Thermodynamic properties of the molecular complexes of C₆₀ with monosubstituted naphthalenes. J. Therm. Anal. Calorim. 2005, 82, 125–127.
- (46) Sivaraman, N.; Dhamodaran, R.; Kaliappan, I.; Srinivassan, T. G.; Vasudeva, P. R.; Rao, R. P. V.; Mathrws, C. K. Solubility of C₇₀ in organic solvents. *Fullerene Sci. Technol.* **1994**, *2*, 233–246.
- (47) Pogorelii, P. A.; Pogorelii, Ju.P.; Berezin, A. B.; Mayers, F. E.; Roginskii, K. M.; Slita, A. V.; Kiselev, O. I.; Aleksandrov, S. N.; Zarubaev, V. V. Method of obtaining of fullerene solution. Patent. 10.02.2006, No. 2283273.
- (48) Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Olofsson, G.; Smith, A. L.; Ruoff, R. S. Calorimetric studies of solvates of C₆₀ and C₇₀ with aromatic solvents. *J. Phys. Chem. B* **1999**, *103*, 1339–1346.
- (49) Heymann, D. Solubility of Fullerenes C₆₀ and C₇₀ in Seven Normal Alcohols and Their Deduced Solubility in Water. *Fullerene Sci. Technol.* **1996**, *4*, 509–515.
- (50) Ponomarev, A. N.; Aksel'rod, B. M.; Barchenko, V. T.; Belousov, V. P.; Egorova, Z. S.; Igonchenkov, I. V.; Isakov, A. Yu.; Yurin, A. L. Solution-solid phase equilibria in the fullerene C₆₀-fullerene C₇₀-C₆H₅CH₃ and fullerene C₆₀-fullerene C₇₀-0-C₆H₄(CH₃)₂ systems at 25 and 80°C, respectively. *Russ. J. Phys. Chem.* **2000**, *74*, 1942–1945.
- (51) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Keskinov, V. A.; Pyartman, A. K.; Gutenev, M. S.; Proskurina, O. V.; Matuzenko, M. Ju.; Klepikov, V. V. The solubility of fullerene C₇₀ in monocarboxylic acids C_n. 1H_{2n}. 1COOH (*n* = 1–9) over the temperature range 20– 80°C. *Russ. J. Phys. Chem.* 2008, 82, 1045–1047.
- (52) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Keskinov, V. A.; Pyartman, A. K.; Gutenev, M. S.; Proskurina, O. V.; Matuzenko, M. Ju.; Klepikov, V. V. The solubility of C₇₀ in n-alkanols-1 C₁-C₁₁ over the temperature range 20–80°C. *Russ. J. Phys. Chem.* **2008**, 82, 753– 757.
- (53) Sivaraman, N.; Dhamodaran, R.; Kaliappan, I.; Srinavasan, T. G.; Vasudeva Rao, P. R.; Mathews, C. K. Solubility of C₆₀ in organic solvents. *Recent advances in chemistry and physics of fullerenes and related materials*; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington, 1994; pp 156–165.

- (54) Herbst, M. H.; Dias, G. H. M.; Magalhaes, J. G.; Torres, R. B.; Volpeet, P. L. O. Enthalpy of solution of fullerene⁶⁰ in some aromatic solvents. *J. Mol. Liq.* 2005, *118*, 9–13.
- (55) Shahporonov, M. I. Introduction to molecular theory of solutions; Gosudarstvennoe izdatelstvo tehnico-teoreticheskoi literaturi: Moscow, 1956.
- (56) Smith, A. L.; Walter, E.; Korobov, M. V.; Gurvich, O. L. Some enthalpies of solution of C₆₀ and C₇₀. Thermodynamics of the temperature dependence of fullerene solubility. *J. Phys. Chem.* **1996**, *100*, 6775–6780.
- (57) Semenov, K. N.; Charykov, N. A.; Pyartman, A. K.; Keskinov, V. A.; Arapov, O. V.; Alekseev, N. I.; Lischuk, V. V. The solubility of fullerenes in butyric and enanthic acids at 20–80°C. *Russ. J. Phys. Chem.* 2008, 82, 728–731.
- (58) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Keskinov, V. A.; Pyartman, A. K.; Gutenev, M. S.; Proskurina, O. V.; Matuzenko, M. Ju.; Klepikov, V. V. Polythermal solubility of light fullerenes in valeric and caproic acids in the temperature range 20–80°C. *Russ. J. Phys. Chem.* 2008, *81*, 23–25.
- (59) Semenov, K. N.; Charykov, N. A.; Pyartman, A. K.; Keskinov, V. A.; Arapov, O. V.; Alekseev, N. I.; Lishuk, V. V. Polythermal study of the solubility of fullerenes in pelargonic and caprylic acids. *Russ. J. Appl. Chem.* **2007**, *80*, 557–561.
- (60) Kirginzev, A. N.; Trushnikova, L. N.; Lavrent'eva, V. G. Solubility of inorganic substances in water; Himijan: Leningrad, 1972.
- (61) Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Valeev, E. F.; Neretin, I. S.; Slovokhotov, Yu. L.; Smith, A. L.; Olofsson, G.; Ruoff, R. S. C₆₀·Bromobenzene solvate: crystallographic and thermochemical studies and their relationship to C₆₀ solubility in bromobenzene. *J. Phys. Chem. B* **1998**, *102*, 3712–3717.
- (62) Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Olofsson, G.; Smith, A. L.; Ruoff, R. S. Calorimetric studies of solvates of C₆₀ and C₇₀ with aromatic solvents. *J. Phys. Chem. B* **1999**, *103*, 1339–1346.
- (63) Marcus, Y.; Smith, A.; Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Stukalin, E. B. Solubility of C₆₀ fullerene. J. Phys. Chem. B 2001, 105, 2499–2506.
- (64) Meidine, M. F.; Hitchcock, P. B.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Single crystal X-ray structure of benzene-solvated C₆₀. *J. Chem. Soc., Chem. Commun.* **1992**, 20, 1534–1537.
- (65) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. Disorder in a crystalline form of buckminsterfullerene: C₆₀•4C₆H₆. J. Chem. Soc., Chem. Commun. **1993**, 1, 56–58.
- (66) Talyzin, A. V. Phase transition $C_{60} C_{60} \cdot 4C_6H_6$ in liquid benzene. J. Phys. Chem. B **1997**, 101, 9679–9681.
- (67) Avramenko, N. V.; Mirakyan, A. L.; Neretin, I. S.; Slovokhotov, Yu.L.; Korobov, M. V. Thermodynamic properties of the binary system C₆₀-1,3,5-trimethylbenzene. *Thermochim. Acta* **2000**, *344*, 23–28.
- (68) Ceolin, R.; Michand, F.; Toscani, S.; Agafonov, V.; Tamarit, J. Ll.; Dworkin, A. Crystals of C₆₀ solvates. *Recent advances in chemistry* and physics of fullerenes and related materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington, 1997; pp 373– 381.
- (69) Semenov, K. N.; Charykov, N. A.; Arapov, O. V.; Alekseev, N. I.; Trofimova, M. A. The solubility of fullerene C₆₀-fullerene C₇₀ mixtures in styrene at 25°C. *Russ. J. Phys. Chem.* **2009**, *83*, 59–62.
- (70) Ceolin, R.; Lopez, D. O.; Barrio, M.; Tamarit, J. Ll.; Espeau, P.; Nicolai", B.; Allouchi, H.; Papoular, R. Solid state studies on C₆₀ solvates formed with *n*-alcanes: orthorhombic C₆₀ 2/3 n-nonane. *Chem. Phys. Lett.* **2004**, 399, 401–405.
- (71) Toscani, S.; Allouchi, H.; Tamarit, J. Ll.; López, D. O.; Barrio, M.; Agafonov, V.; Rassat, A.; Szwarc, H.; Céolin, R. Decagonal C₆₀ crystals grown from*n*-hexane solutions: solid-state and aging studies. *Chem. Phys. Lett.* **2000**, *330*, 491–496.
- (72) Bezmel'nitsyn, V. N.; Eletskii, A. V.; Okun', M. V. Fullerenes in solutions. Usp. Fiz. Nauk. 1998, 168, 1091–1115.
- (73) Ceolin, R.; Agafonov, V.; Toscani, S.; Gardette, M. F.; Gonthier-Vassal, A.; Szwarc, H. C₆₀ hexagonal solvate grown from n-octane: Solid-state studies. *Fullerene Sci. Technol.* **1997**, *5*, 559–565.
- (74) Nagano, Y.; Tamura, T. Stoichiometry and phase behavior of carbon tetrachloride solvates of C₆₀. *Chem. Phys. Lett.* **1996**, *252*, 362–366.
- (75) Barrio, M.; Lopez, D. O.; Tamarit, J. Ll.; Szwarc, H.; Toscani, S.; Ceolin, R. C₆₀-CCl₄ phase diagram: polythermal behavior of solvates C₆₀, 12 CCl₄ and C₆₀, 2 CCl₄. *Chem. Phys. Lett.* **1996**, 260, 78–81.
- (76) Collins, C.; Foulkes, J.; Bond, A. D.; Klinowski, J. Crystalline C₆₀•2CHBr₃ solvate: A solid-state study. *Phys. Chem. Chem. Phys.* 1999, *1*, 5323–5326.
- (77) Barrio, M.; Lopez, D. O.; Tamarit, J. Ll.; Espeau, P.; Ceolin, R. Solidstate studies of C₆₀ solvates formed in the C₆₀-BrCCl₃ system. *Chem. Mater.* **2003**, *15*, 288–291.
- (78) Korobov, M. V.; Mirak'yan, A. L.; Avramenko, N. V.; Ruoff, R. Unusual temperature dependence of solubility of C₆₀. *Dokl. Akad. Nauk* **1996**, *349*, 346–349.

- (79) Ruelle, P.; Farina-Cuendet, A.; Kesselring, U. W. Changes of molar volume from solid to liquid and solution: The particular case of C₆₀. *J. Am. Chem. Soc.* **1996**, *118*, 1777–1784.
- (80) Sawamura, S.; Nobuyuki, F. Anomalous pressure dependence of the solubility of C₆₀ in *n*-hexane. *Chem. Phys. Lett.* **1999**, 299, 177–179.
- (81) Hildebrand, J. H., Scott, R. L. *Regular Solutions*; Prentice Hall: New York, 1962.
- (82) Bochvar, D. A.; Gal'pern, E. G. Electronic structure of molecules C₂₀ and C₆₀. Dokl. Akad. Nauk 1973, 209, 610–612.
- (83) Hugh, A. *The most beautiful molecule*; JOHN WILEY& SONS: New York, 1995.
- (84) Smit, V.; Bochkov, A.; Keypl, R. Organic synthesis; Mir: Moscow, 2001.
- (85) Prigogine, I.; Defay, R. Chemical thermodynamics; Longmans Green and Co: New York, 1954.
- (86) Smirnova, N. A. Molecular theory of solutions; Khimija: Leningrad, 1987.
- (87) Beck, M. T. Solubility and molecular state of C₆₀ and C₇₀ in solvents and solvent mixtures. *Pure Appl. Chem.* **1998**, *70*, 1881–1887.
- (88) Semenov, K. N.; Pyartman, A. K.; Arapov, O. V.; Keskinov, V. I.; Charykov, N. A.; Lishuk, V. V.; Alekseyev, N. I. Polythermal solubility of fullerenes in higher isomeric carboxylic acids. *Russ J. Appl. Chem.* 2007, 80, 38–41.
- (89) Piotrovskij, L. B.; Kiselev, O. I. Fullerenes in biology; Rostok: Saint-Petersburg, 2006.
- (90) Tian, J.; Šcheesley, D.; Smith, A. L.; Stukalin, E.; Avramenko, N.; Korobov, M. Trends in Solubility Behavior of C₆₀, C₇₀, and a C₆₀ Piperazine Derivative. *Proc. Electrochem. Soc.* **2001**, *11*, 381–393.

- (91) Tian, J.; Li, D.; Smith, A. L.; Korobov, M. V.; Stukalin, E. B.; Avramenko, N. V. Solubility and Solvate Formation For a Fullerene Derivative: the C₆₀-Piperazine Monoadduct. *Proc. Electrochem. Soc.* **2000**, *12*, 121–128.
- (92) Semenov, K. N.; Charykov, N. A.; Keskinov, V. A.; Pjartman, A. K.; Jakovlev, V. V., Arapov, O. V. Solubility of C₆₀Br_n (n = 6, 8, 24) in various solvents. *Russ. J. Phys. Chem.*, in print.
- (93) Charykov, N. A.; Rumyantcev, A. V.; Charykova, M. V. Topological isomorphism of solubility and fusibility diagrams: nonvariant points in multicomponent systems. *Russ. J. Phys. Chem.* **1998**, *10*, 1746– 1750.
- (94) Storonkin, A. V. Thermodynamics of heterogeneous systems; Leningrad State University: Leningrag, 1967.
- (95) Charykova, M. V.; Charykov, N. A. Thermodynamic modelling of the processes of evaporite sedimentation; Nauka: Saint-Petersburg, 2003.
- (96) Arapov, O. V.; Aksel'rod, B. M.; Pronkin, A. A.; Charykov, N. A.; Ryazanova, O. Yu. Solubility in the fullerene C₆₀-fullerene C₇₀-o-C₆H₁₄(CH₃)₂ system. *Russ J. Appl. Chem* **2003**, *76*, 33–36.
- (97) Kulkarni, P. P. Solubility and partitioning studies of buckminsterfullerene (C_{60}). A Dissertation Submitted to the Faculty of Purdue University by Pradnya Prakash Kulkarni in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 2007.

Received for review March 29, 2009. Accepted September 15, 2009.

JE900296S