Transport Properties in 1,4-Dioxane + Water + Saturated KCl Critical Mixture by Measuring Viscosity and Electrical Conductivity

Taoufik Kouissi^{†,§} and Moncef Bouanz^{*,†,‡}

Laboratoire de Physique des Liquides et d'Optique Non Linéaire, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, 2092 El Manar, Tunisia, and Laboratoire de Physique des Liquides Critiques, Département de Physique, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia

The ternary critical mixture of 1,4-dioxane (1) + water (2) + saturated KCl (3) has a lower critical point. The viscosity η and electrical conductivity κ of this system have been measured as function of temperature for nine critical mixtures along the coexistence curve below the temperature of phase transition. The water mole fraction in free basis x'_2 in the mixtures extends from (0.550 to 0.880) and the molality *m* of KCl from (0.47 to 2.039) mol·kg⁻¹. The viscosity was found to decrease with an increase in temperature, water mole fraction, and the molality of KCl, while the electrical conductivity increases with an increase in temperature, with the water mole fraction and molality of salt. The viscosity and electrical conductivity represented anomalies near the critical temperature T_c . The critical electrical conductivity κ_c varies with water mass fraction w_2 as a second degree polynomial and with the molality of salt as a third degree polynomial. The variation of critical composition in water and in the molality of salt varied the temperature of separation of phase, T_t . The activation energy $E_a(\kappa)$ for ionic conduction energy $E_a(\eta)$ for viscous flow.

Introduction

Research on the physicochemical properties of liquid-liquid mixtures has been attempted to understand the thermodynamic behavior and transport properties. These properties provide information about intermolecular interactions and also for association, pair-formation, and clustering phenomena. We have been investigating and reporting data for the critical properties of isobutyric acid + water for many years: transport phenomena,² ionic structures,³ solvation phenomena in the binary fluid,⁴ the effect of ions on mixture,⁵ and phase equilibrium properties occurring in the presence of added ions.⁶⁻⁸ The electrical conductivity of the above mixture has been also studied.⁹⁻¹⁴ In a previous paper,¹ we investigated conductivity κ and refractive index n along the coexistence curve of the system 1,4-dioxane (1) + water (2) + saturated KCl (3) and in the one-phase region near and far away from the critical temperature. We note that 1,4-dioxane and water are miscible in all proportions at all temperatures. We have reported that the electrical conductivity κ in the above system constitutes an order parameter as well as the refractive index n.¹ The addition of salt to a homogeneous 1,4-dioxane + water mixture causes at in certain composition, a phase separation.¹⁵⁻²³

We report in this paper the viscosity η and electrical conductivity κ of the ternary system 1,4-dioxane (1) + water (2) + saturated KCl (3) along the coexistence curve below of the temperature of phase transition for nine compositions in that the water mole fraction in free basis x'_2 extends from (0.550 to 0.880) and the molality *m* of KCl extends from (0.7 to 2.039) mol·kg⁻¹.

- [‡] Faculté des Sciences de Bizerte.
- § E-mail: taoufik.kouissi@fst.rnu.tn.

Figure 1. Variation of the temperature of phase separation with the molality *m* of KCl.

Experimental Procedure

Sample Preparation. The 1,4-dioxane was provided by Merck. The purity was stated to be 99.99 %. The water was obtained from deionized and three times distilled water and has a specific conductivity of about $10^{-6} \Omega^{-1} \cdot \text{cm}^{-1}$ or less.

The guaranteed purity of the potassium chloride (Merck product) is better than 99.5 %. All mixtures were prepared by masses, with a resolution of 10^{-3} g. Some care was taken to avoid moisture and dust in the final sample, by baking the syringes and the cells overnight under vacuum and preparing the mixtures in a dust-free area.

The solution was brought to temperature equilibrium, with stirring to dissolve completely the excess salt. Additional purification had not been considered necessary. The main impurity in the salt and 1,4-dioxane was probably water. After, the sample is let to reach the equilibrium which continues with a separation of two phases.

10.1021/je900351t CCC: \$40.75 © 2010 American Chemical Society Published on Web 11/04/2009

^{*} To whom all correspondences should be addressed. E-mail: moncef.bouanz@fsb.rnu.tn.

[†] Faculté des Sciences de Tunis.

Figure 2. Variation of the temperature of phase separation with a function of water mass fraction w_2 .

Figure 3. Temperature dependence of viscosity η for 1,4-dioxane (1) + water (2) + saturated KCl (3) with composition: $\bigcirc, w_2 = 0.20, m = 0.470$ mol·kg⁻¹; right-pointing triangle, $w_2 = 0.25, m = 0.488$ mol·kg⁻¹; $\blacksquare, w_2 = 0.328, m = 0.55$ mol·kg⁻¹; $\times, w_2 = 0.40, m = 0.792$ mol·kg⁻¹; $\triangle, w_2 = 0.45, m = 1.154$ mol·kg⁻¹; $\bullet, w_2 = 0.50, m = 1.446$ mol·kg⁻¹; $\triangle, w_2 = 55, m = 1.771$ mol·kg⁻¹; $\square, w_2 = 0.57, m = 1.906$ mol·kg⁻¹; left-pointing triangle, $w_2 = 0.60, m = 2.039$ mol·kg⁻¹.

Figure 4. Arrhenius plots of viscosity η for 1,4-dioxane (1) + water (2) + saturated KCl (3) with composition: \bigcirc , $w_2 = 0.20$, $m = 0.470 \text{ mol}\cdot\text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25$, $m = 0.488 \text{ mol}\cdot\text{kg}^{-1}$; \blacksquare , $w_2 = 0.328$, $m = 0.55 \text{ mol}\cdot\text{kg}^{-1}$; \times , $w_2 = 0.40$, $m = 0.792 \text{ mol}\cdot\text{kg}^{-1}$; \triangle , $w_2 = 0.45$, $m = 1.154 \text{ mol}\cdot\text{kg}^{-1}$; \blacklozenge , $w_2 = 0.50$, $m = 1.446 \text{ mol}\cdot\text{kg}^{-1}$; \blacktriangle , $w_2 = 55$, $m = 1.771 \text{ mol}\cdot\text{kg}^{-1}$; \square , $w_2 = 0.57$, $m = 1.906 \text{ mol}\cdot\text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60$, $m = 2.039 \text{ mol}\cdot\text{kg}^{-1}$.

Transition Temperature. The temperature was measured using a quartz thermometer (HP 2804 A) giving a resolution of $\pm 2 \cdot 10^{-4}$ K. The densities, the kinematic viscosities, and electrical conductivities data are measured in the one-phase region at each temperature *T* below the temperature of phase

Figure 5. Reduced temperature *t* dependence of viscosity η for 1,4-dioxane (1) + water (2) + saturated KCl (3) with composition: $\bigcirc, w_2 = 0.20, m = 0.470 \text{ mol} \cdot \text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25, m = 0.488 \text{ mol} \cdot \text{kg}^{-1}$; $\blacksquare, w_2 = 0.328, m = 0.55 \text{ mol} \cdot \text{kg}^{-1}$; $\times, w_2 = 0.40, m = 0.792 \text{ mol} \cdot \text{kg}^{-1}$; $\triangle, w_2 = 0.45, m = 1.154 \text{ mol} \cdot \text{kg}^{-1}$; $\bigoplus, w_2 = 0.50, m = 1.446 \text{ mol} \cdot \text{kg}^{-1}$; $\blacktriangle, w_2 = 55, m = 1.771 \text{ mol} \cdot \text{kg}^{-1}$; $\square, w_2 = 0.57, m = 1.906 \text{ mol} \cdot \text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60, m = 2.039 \text{ mol} \cdot \text{kg}^{-1}$.

Figure 6. Representation of activation energy as function of water mass fraction w_2 . The symbols are noted as follows: \blacksquare , $E_a(\kappa)$; \bullet , $E_a(\eta)$.

transition T_t . To determine the transition temperature of phase transition T_t , that is, the temperature where the meniscus becomes visible, we proceeded as follows.

For all studied compositions of 1,4-dioxane (1) + water (2) + saturated KCl (3), the samples prepared are rigorously shaken and introduced into a thermostat bath at temperature T_1 until all of the quantity of salt is dissolved and the meniscus becomes visible. Then $T_1 > T_t$, the temperature of the bath was decreased to T_2 , and the same operation was repeated. If the meniscus was not visible, the temperature of the bath was changed to T_3 , while shaking the sample. This method allows T_t to be determined by $T^+ > T_t$ and $T^- < T_t$. When $(T^+ - T^-) \cong 2 \cdot 10^{-3}$ K, we stopped the operation and verified that, after having heated and vigorously shaken the sample outside the bath, the meniscus was again visible at T^+ and not visible at T^- .

Density. The density data in the homogeneous phase was measured with a commercial digital densitometer (Anton Paar, model DMA 46, Austria) which was modified in our laboratory. The density of the mixture was calculated from the electronically measured frequency of a mechanical oscillator filled with the fluid. The filling was accomplished by means of a medical syringe to prevent preferential evaporation and to reduce possible the errors. The densitometer needs to be carefully calibrated periodically with triple-distilled water²⁴ and methanol²⁵ at

322 Journal of Chemical & Engineering Data, Vol. 55, No. 1, 2010

Table 1. Viscosities η and Electrical Conductivies κ of the Mixture at Different Temperatures for $(w_2 = 0.20; m = 0.470 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.25; m = 0.488 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.328; m = 0.55 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.40; m = 0.792 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.45; m = 1.154 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.50; m = 1.446 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 55; m = 1.771 \text{ mol} \cdot \text{kg}^{-1}), (w_2 = 0.57; m = 1.906 \text{ mol} \cdot \text{kg}^{-1}), and (w_2 = 0.60; m = 2.039 \text{ mol} \cdot \text{kg}^{-1})^a$

T	η	κ	Т	η	κ	T	η	κ
K	mPa•s	$\overline{\text{mS}\cdot\text{cm}^{-1}}$	K	mPa•s	$mS \cdot cm^{-1}$	K	mPa•s	$\overline{\text{mS}\cdot\text{cm}^{-1}}$
	$r = 0.470 \text{ mol} \cdot k_{2}$	r ⁻¹ .	m	$= 0.488 \text{ mol} \cdot k$	<u>,</u> −1.	n	$r = 0.55 \text{ mol} \cdot kg$	-1.
$w_2 = 0.20$: $T_{\text{Exprtl}}^{\text{Exprtl}} = 313.973 \text{ K}$			$w_2 = 0.25$: $T_{\rm Exprtl}^{\rm Exprtl} = 312.567$ K			$w_2 = 0.$	$328: T_{Exprtl}^{Exprtl} = 31$, 1.032 К
298.151	2.21289	0.898	298.158	2.15543	1.773	298.205	2.13371	7.95
298.662	2.18623	0.947	298.706	2.12772	1.836	298.827	2.10267	8.17
299.086	2.16450	0.996	299.162	2.10509	1.891	299.311	2.0789	8.30
299.585	2.13915	1.014	299.660	2.08044	1.951	299.820	2.05427	8.40
300.144	2.11133	1.008	300.133	2.03088	2.05	300.294	2.05109	8.00
301 174	2.06139	1 188	301 565	1 99119	2.059	301 590	1 97155	9.00
301.674	2.03768	1.246	302.305	1.95743	2.26	301.986	1.95361	9.20
302.165	2.01452	1.303	302.954	1.92846	2.33	302.480	1.93166	9.40
302.641	1.99254	1.358	303.436	1.90736	2.391	302.968	1.91009	9.50
303.037	1.97457	1.403	304.167	1.87575	2.47	303.505	1.88678	9.70
303.64	1.94757	1.473	304.852	1.84694	2.55	304.066	1.86287	9.94
304.070	1.92846	1.523	305.163	1.83395	2.60	304.490	1.84506	10.04
305 172	1.90337	1.554	306 255	1 78945	2.05	305.615	1 7988	10.27
305.653	1.86058	1.706	306.812	1.76731	2.781	306.012	1.78284	10.51
306.176	1.83951	1.767	307.151	1.75391	2.819	306.274	1.77241	10.61
306.662	1.81902	1.823	307.653	1.73450	2.88	306.701	1.75553	10.77
307.152	1.79905	1.880	308.154	1.71530	2.94	307.010	1.74347	10.85
307.758	1.77496	1.950	308.814	1.69048	3.001	307.310	1.7319	10.92
308.287	1.75435	2.011	309.170	1.67732	3.06	307.647	1.7190	11.08
308.760	1.73594	2.066	309.680	1.65861	3.11	307.975	1.70653	11.19
309.230	1./1005	2.121	310.104	1.04114	3.107	308.203	1.09494	11.23
310 358	1.67603	2.100	311 151	1.60617	3 29	308.806	1.67582	11.54
310.731	1.66248	2.294	311.680	1.58785	3.34	309.04	1.66689	11.51
311.239	1.64416	2.353	312.223	1.56936	3.41	309.275	1.65828	11.65
311.581	1.63197	2.393	$m = 1.154 \text{ mol} \cdot \text{kg}$	$^{-1}$; $w_2 = 0.45$; T_t^{Ex}	ortl = 312.357 K	309.52	1.6494	11.77
311.923	1.61994	2.432				309.80	1.63932	11.87
312.274	1.60771	2.473	298.243	2.1588	26.12	310.043	1.63062	11.93
312.519	1.59935	2.501	298.685	2.13775	26.35	310.32	1.62083	11.95
312.898	1.58623	2.545	299.31	2.1050	20.78	$m = 1.446 \text{ mol} \cdot \text{kg}$	$r; w_2 = 0.50; T_t^{LAP}$	$M^{\rm ad} = 314.122 \ {\rm K}$
313.227	1.57505	2.385	300.132	2.0035	27.38	298 150	2 03157	39.88
313 670	1.56019	2.635	301 113	2.03323	27.92	298 802	2.00381	40.48
$m = 0.792 \text{ mol} \cdot \text{k}$	$g^{-1}; w_2 = 0.40; T_t^E$	$x_{prtl} = 311.17 \text{ K}$	301.576	1.98909	28.43	299.260	1.98163	40.86
	6 /··2 ··· / (302.102	1.96481	28.70	299.783	1.95739	41.29
298.153	2.10047	17.58	302.654	1.94134	29.07	300.283	1.9375	41.81
298.752	2.07064	17.91	303.142	1.91802	29.43	300.760	1.91397	42.14
299.16	2.04582	18.13	303.608	1.89678	29.79	301.280	1.89116	42.59
299.653	2.02725	18.35	304.202	1.87046	30.10	301.754	1.87251	42.98
300.151	2.00307	18.02	304.080	1.84828	30.55	302.255	1.84945	43.52
301 322	1.97092	19 19	305 674	1.82737	31.02	303 258	1.82305	44 52
301.82	1.92792	19.54	306.19	1.78659	31.58	303.749	1.78824	44.83
302.167	1.91265	19.67	306.703	1.7664	31.97	304.305	1.76562	45.36
302.674	1.89055	19.98	307.181	1.74677	32.25	304.772	1.74688	45.70
302.973	1.87566	20.13	307.56	1.73207	32.50	305.290	1.72673	45.92
303.444	1.85735	20.37	307.992	1.71561	32.82	305.771	1.7082	46.45
303.843	1.84078	20.58	308.343	1.70509	33.03	306.160	1.69342	46.87
304.133	1.82715	20.70	308.97	1.67986	33.40	307 251	1.65401	47.27
305.07	1.79035	21.23	309.215	1.6686	33.63	307.762	1.63593	48.13
305.355	1.77893	21.41	309.501	1.6591	33.73	308.267	1.61795	48.76
305.921	1.75667	21.69	309.841	1.64972	33.95	308.480	1.60879	48.93
306.19	1.74593	21.85	310.065	1.64096	34.17	308.843	1.59602	48.97
306.636	1.72861	22.04	310.618	1.62139	34.60	309.282	1.58077	49.31
307.209	1.70762	22.37	310.934	1.60844	34.70	309.683	1.56549	49.85
307.730	1.68/28	22.64	311.274	1.59894	34.90	310.137	1.5517	50.06
308.092	1.67300	22.07	311.303	1.59015	35.09	310.013	1.5550	50.41
309 281	1.63051	23.15	311.029	1.58482	35.29	311 365	1.51029	51.46
309.611	1.61871	23.67	312.320	1.57178	35.52	311.720	1.50084	51.38
309.96	1.60646	23.80	$m = 1.771 \text{ mol} \cdot \text{kg}$	$^{-1}$; $w_2 = 0.55$; T_t^{Ex}	prtl = 317.565 K	312.120	1.48667	51.73
310.15	1.5998	23.871	0			312.510	1.47434	52.13
310.613	1.58346	24.21	300.194	1.88857	56.42	312.952	1.46066	52.41
311.11	1.56676	24.44	300.662	1.86866	57.02	313.226	1.45242	52.65
$m = 2.039 \text{ mol} \cdot \text{kg}$	$W_2 = 0.60; T_t^{\text{Exp}}$	= 327.365 K	301.173	1.84675	57.43	313.529	1.44415	52.89
306 25	1 57097	03.06	301.770	1.82181	58.35 58.97	515.648 313.012	1.45383	52.96
307.259	1.57507	93.00	302.280	1 780070	59.19	$m = 1.906 \text{ mol} \cdot ka^{-1}$	$^{-1} \cdot w_2 = 0.57 \cdot T_{\cdot}^{\text{Exp}}$	$_{\rm rtl} = 324\ 325\ {\rm K}$
308.246	1.5162	95 27	303 256	1.76174	59.58	1.900 mor kg	$, m_2 = 0.37, It$	527.525 K
309.264	1.48201	96.52	303.759	1.74142	60.4	302.220	1.77342	75.28
310.392	1.44758	98.19	304.248	1.72232	60.9	303.166	1.73775	76.55

Table 1. Continued

Т	η	К	Т	η	κ	Т	η	К
K	mPa•s	$\overline{\mathrm{mS}\cdot\mathrm{cm}^{-1}}$	K	mPa•s	$\overline{\mathrm{mS}\cdot\mathrm{cm}^{-1}}$	K	mPa•s	$mS \cdot cm^{-1}$
$m = 0.470 \text{ mol} \cdot \text{kg}^{-1};$ $w_2 = 0.20; T_t^{\text{Exprtl}} = 313.973 \text{ K}$			$w_2 = 0$	$n = 0.488 \text{ mol} \cdot k_{\text{g}}$ 0.25; $T_{\text{t}}^{\text{Exprtl}} = 31$	g ⁻¹ ; 2.567 K	$m = 0.55 \text{ mol} \cdot \text{kg}^{-1};$ $w_2 = 0.328; T_t^{\text{Exprd}} = 311.032 \text{ K}$		
311.252	1.42127	99.24	304.758	1.7037	61.33	304.213	1.6952	77.71
312.048	1.39902	99.91	305.271	1.68332	61.86	305.160	1.66344	78.96
312.758	1.37676	101.1	305.758	1.66526	62.36	306.050	1.62848	79.84
313.499	1.35785	101.9	306.231	1.64777	62.95	307.285	1.58526	81.51
314.207	1.3358	102.7	306.771	1.62829	63.51	308.179	1.55513	82.6
314.859	1.31812	103.6	307.272	1.61027	64.02	308.882	1.5310	82.88
315.467	1.30141	104.4	307.545	1.6010	64.30	309.86	1.49965	83.96
316.217	1.27876	105.6	307.972	1.58607	64.75	310.86	1.4674	85.17
316.883	1.26414	106.5	308.287	1.57293	65.07	311.835	1.43732	86.15
317.486	1.25186	106.9	308.708	1.56063	65.50	312.834	1.40732	87.26
318.166	1.23113	107.8	309.102	1.54734	65.91	313.853	1.37893	88.59
318.972	1.21277	108.8	309.586	1.53147	66.21	314.754	1.35198	89.69
319.590	1.19701	109.4	309.917	1.52023	66.75	315.766	1.32399	90.51
320.040	1.1863	109.9	310.278	1.50861	67.12	316.628	1.3007	91.46
320.502	1.1758	110.8	310.563	1.49923	67.41	317.632	1.27416	92.58
321.091	1.16145	111.5	310.958	1.48657	67.82	318.870	1.24246	93.95
321.62	1.14904	111.9	311.202	1.48026	68.07	319.860	1.21785	95.04
322.27	1.13452	112.7	311.59	1.46663	68.47	320.825	1.19473	96.11
322.76	1.12337	113.4	311.921	1.45626	68.82	321.750	1.1731	97.14
323.248	1.11269	113.9	312.200	1.44769	69.1	322.500	1.16113	97.97
323.72	1.10322	114.5	312.590	1.43708	69.61	323.123	1.14464	98.66
324.101	1.09434	114.9	312.881	1.42678	69.89	324.197	1.11765	99.85
324.721	1.08212	115.6	313.220	1.41664	70.15			
325.31	1.07055	116.4	313.548	1.4069	70.69			
325.705	1.0610	116.8	313.965	1.39458	70.92			
326.028	1.05486	117.2	314.305	1.38759	71.37			
326.351	1.04765	117.8	314.580	1.3767	71.66			
326.75	1.03924	118.7	314.850	1.36974	71.83			
327.06	1.03364	118.7	315.231	1.35737	72.43			
			315.552	1.34897	72.76			
			315.860	1.34165	72.88			
			316.231	1.33007	73.56			
			316.51	1.32238	73.75			
			316.896	1.3208	73.95			
			317.485	1.29958	74.55			

 $^{a}w_{2}$ and T_{t}^{Exprtl} are respectively the water mass fraction and temperature of phase transition.

Figure 7. Temperature dependence of electrical conductivity κ for 1,4dioxane (1) + water (2) + saturated KCl (3) with composition: \bigcirc , $w_2 = 0.20$, $m = 0.470 \text{ mol} \cdot \text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25$, m = 0.488mol $\cdot \text{kg}^{-1}$; \blacksquare , $w_2 = 0.328$, $m = 0.55 \text{ mol} \cdot \text{kg}^{-1}$; \times , $w_2 = 0.40$, m = 0.792mol $\cdot \text{kg}^{-1}$; \triangle , $w_2 = 0.45$, $m = 1.154 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 0.50$, m = 1.446mol $\cdot \text{kg}^{-1}$; \blacktriangledown , $w_2 = 55$, $m = 1.771 \text{ mol} \cdot \text{kg}^{-1}$; \square , $w_2 = 0.57$, m = 1.906mol $\cdot \text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60$, $m = 2.039 \text{ mol} \cdot \text{kg}^{-1}$.

298.15 K. The uncertainties of the measured values of density were $\pm 10^{-4}$ g·cm⁻³, and a thermal regulation of the sample, to within 3·10⁻³ K, was needed. This was obtained by circulating water from a thermostat.

Viscosity. The viscosities η were obtained from the product $(\rho \nu)$. The kinematic viscosities ν were measured using an Ubbelohde type viscometer. The length of the capillary was 0.20 m, and its constant $k = 3.991 \text{ m}^2 \cdot \text{s}^{-2}$. The times at which

Table 2. Fit Results of the Electrical Conductivity κ According to Equation 2

т				
mol•kg ⁻¹	w_2	x'_2	Α	В
0.470	0.20	0.550	-33.184 ± 0.141	0.1141 ± 0.0004
0.488	0.25	0.620	-32.788 ± 0.168	0.1159 ± 0.0005
0.55	0.328	0.705	-91.918 ± 0.541	0.335 ± 0.002
0.792	0.40	0.765	-140.533 ± 0.370	0.530 ± 0.001
1.154	0.45	0.800	-176.254 ± 0.893	0.678 ± 0.003
1.446	0.50	0.830	-211.400 ± 1.242	0.843 ± 0.004
1.771	0.55	0.857	-258.502 ± 0.857	1.049 ± 0.002
1.906	0.57	0.866	-257.925 ± 1.479	1.103 ± 0.004
2.039	0.60	0.880	-285.474 ± 1.468	1.235 ± 0.004

the meniscus passes by two marks of the viscometer were recorded to ± 0.01 s with an electrical stop chronometer. The flow times are sufficient to minimize the kinetic energy corrections. At least five readings of the flow time with variation not exceeding ± 0.002 s were taken for each mixture. The viscosities ν were calculated from the average flow time *t*, by means of the relation $\nu = k(\tau - \theta)$ where τ is the correction time. The viscometer was calibrated with acetone and hexane of known density and viscosity^{26,27} (high performance liquid chromatography grade). The viscometer was immersed in a thermally stabilized water bath with thermal regulation of the order of $2 \cdot 10^{-3}$ K over hours.

Electrical Conductivity. The electrical conductivity was measured with a digital conductivity meter PHYWE, Demo (13701.93), using a specially designed cell (electrode LTG 1/23) suitable for low conductivity measurement (with a cell constant

Table 3.	Fitted	Values	of the	Parameters	of E	Equations	1 and 3
----------	--------	--------	--------	------------	------	-----------	---------

m				$E_{\rm a}(\kappa)$		$E_{\rm a}(\eta)$
$mol \cdot kg^{-1}$	w_2	<i>x</i> ['] ₂	$\ln(\kappa_0/mS \cdot cm^{-1})$	$kJ \cdot mol^{-1}$	$\ln(\eta_0/mPa \cdot s)$	kJ∙mol ^{−1}
0.470	0.20	0.550	21.343 ± 0.394	52.995 ± 1.005	-6.282 ± 0.009	17.541 ± 0.023
0.488	0.25	0.620	14.922 ± 0.229	35.487 ± 0.581	-6.277 ± 0.001	17.464 ± 0.004
0.55	0.328	0.705	12.547 ± 0.091	25.945 ± 0.231	-6.284 ± 0.001	17.459 ± 0.001
0.792	0.40	0.765	10.759 ± 0.050	19.548 ± 0.128	-6.280 ± 0.007	17.405 ± 0.018
1.154	0.45	0.800	10.147 ± 0.055	17.057 ± 0.140	-6.284 ± 0.005	17.374 ± 0.012
1.446	0.50	0.830	9.381 ± 0.043	14.097 ± 0.109	-6.259 ± 0.017	17.276 ± 0.045
1.771	0.55	0.857	9.136 ± 0.022	12.721 ± 0.058	-6.252 ± 0.010	17.190 ± 0.027
1.906	0.57	0.866	8.427 ± 0.028	10.298 ± 0.073	-6.223 ± 0.011	17.077 ± 0.028
2.039	0.60	0.880	8.356 ± 0.019	9.730 ± 0.050	-6.241 ± 0.007	17.061 ± 0.018

Table 4. Fit Results of the Electrical Conductivity K According to Equations 4 to 6

m			κ _c			
$mol \cdot kg^{-1}$	w_2	x'_2	$mS \cdot cm^{-1}$	A_1	$A_{ m cr}$	χ^2
0.470	0.20	0.550	2.685 ± 0.007	-24.082 ± 3.366	-8.633 ± 2.468	0.00013
0.488	0.25	0.620	3.446 ± 0.010	-37.378 ± 4.731	3.460 ± 0.836	0.00015
0.55	0.328	0.705	12.244 ± 0.033	-89.080 ± 17.113	12.380 ± -10.897	0.00132
0.792	0.40	0.765	24.469 ± 0.018	-165.312 ± 9.504	6.827 ± 0.222	0.00067
1.154	0.45	0.800	35.546 ± 0.029	-302.148 ± 15.552	65.156 ± 11.224	0.00254
1.446	0.50	0.830	53.289 ± 0.061	-366.400 ± 27.884	74.426 ± 20.427	0.0103
1.771	0.55	0.857	74.729 ± 0.056	-353.359 ± 22.334	16.565 ± 14.905	0.00827
1.906	0.57	0.866	99.893 ± 0.1166	-402.062 ± 38.021	33.506 ± 28.847	0.02344
2.039	0.60	0.880	118.961 ± 0.102	-447.658 ± 37.536	32.368 ± 28.155	0.02664

 0.875 cm^{-1}). Before any measurement the conductivity cell was calibrated with a certified $10^{-3} \text{ mol} \cdot \text{L}^{-1}$ KCl solution. The uncertainty of the conductivity measurements was estimated to be ± 0.2 %. After calibration, the cell containing the solution was immersed in a thermally stabilized bath with good thermal regulation. The long-time stability of the cell was better than $3 \cdot 10^{-3}$ K. When the temperature of the sample was stabilized, the measurements were made as soon as possible (a few seconds) to reduce any effects that would modify the measured values (as self-heating of the samples, ionization in the electrodes, etc.), and we proceed to change the temperature for the next measurement.

Results and Discussion

Transition Temperature. Figures 1 and 2 display respectively the experimental variation of the temperature of phase separation as a function of the molality of potassium chloride and the water mass fraction w_2 . We note that T_t have a minimum for the two cases equal to 311.032 K. The uncertainty of T_t is estimated to be $\pm 2 \cdot 10^{-3}$ K.

Viscosity. The viscosity results as a function of the temperature of 1,4-dioxane (1) + water (2) + saturated KCl (3) are reported in Table 1 and plotted in Figure 3. We note that the viscosity of the mixture decreases with increasing water mole fraction, molality of KCl, and temperature. It can explain why the increasing quantities of water or 1,4-dioxane weaken the force of interaction between the ions and increase their movement.

The viscosity η values can be correlated as a function of temperature, according to the following equation:

$$\eta = \eta_0 \exp\left(\frac{E_{\rm a}(\eta)}{kT}\right) \tag{1}$$

where η_0 is a constant and $E_a(\eta)$ is the activation energy for viscous flow. The Arrhenius representation is shown in Figure 4, and their fit results are depicted in Table 3. Figure 5 shows that the viscosities represented an anomaly near the critical temperature. This behavior is similar that reported in the literature.^{28,29} It is found that the activation energy $E_a(\eta)$ values for the mixture were in the range of $(17.541 \pm 0.023 \text{ to } 17.061)$

Figure 8. Arrhenius plots of electrical conductivity κ for 1,4-dioxane (1) + water (2) + saturated KCl (3) with composition: \bigcirc , $w_2 = 0.20$, $m = 0.470 \text{ mol} \cdot \text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25$, $m = 0.488 \text{ mol} \cdot \text{kg}^{-1}$; \blacksquare , $w_2 = 0.328$, $m = 0.55 \text{ mol} \cdot \text{kg}^{-1}$; \times , $w_2 = 0.40$, $m = 0.792 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 0.45$, $m = 1.154 \text{ mol} \cdot \text{kg}^{-1}$; \bigcirc , $w_2 = 0.50$, $m = 1.446 \text{ mol} \cdot \text{kg}^{-1}$; \blacktriangle , $w_2 = 55$, $m = 1.771 \text{ mol} \cdot \text{kg}^{-1}$; \square , $w_2 = 0.57$, $m = 1.906 \text{ mol} \cdot \text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60$, $m = 2.039 \text{ mol} \cdot \text{kg}^{-1}$.

 \pm 0.018) kJ·mol⁻¹. Figure 6 and results in Table 3 show that the activation energy for viscous flow is not influenced by water mole fraction and with molality of KCl.

Electrical Conductivity. The electrical conductivity results as a function of temperature of 1,4-dioxane (1) + water (2) + saturated KCl (3) are reported in Table 1 and plotted in Figure 7. We note that the electrical conductivity of mixture increases with increasing water mole fraction, molality of KCl, and temperature.

The electrical κ values can be correlated as a function of temperature, according to the following equation:

$$\kappa/\mathrm{mS}\cdot\mathrm{cm}^{-1} = A + B(T/\mathrm{K}) \tag{2}$$

The *A* and *B* coefficients for eq 2 are given in Table 2. Analyzing these coefficients, we obtained that *A* decreases linearly with the increase in water mole fraction and decreases with the increase in the concentration of salt, while *B* increases linearly with an increase in water mole fraction and increases with an increase in the concentration of salt. The conductivity

Figure 9. Reduced temperature *t* dependence of electrical conductivity κ for 1,4-dioxane (1) + water (2) + saturated KCl (3) with composition: \bigcirc , $w_2 = 0.20$, $m = 0.470 \text{ mol} \cdot \text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25$, $m = 0.488 \text{ mol} \cdot \text{kg}^{-1}$; \blacksquare , $w_2 = 0.328$, $m = 0.55 \text{ mol} \cdot \text{kg}^{-1}$; \times , $w_2 = 0.40$, $m = 0.792 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 0.45$, $m = 1.154 \text{ mol} \cdot \text{kg}^{-1}$; \bigoplus , $w_2 = 0.50$, $m = 1.446 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 55$, $m = 1.771 \text{ mol} \cdot \text{kg}^{-1}$; \square , $w_2 = 0.57$, $m = 1.906 \text{ mol} \cdot \text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60$, $m = 2.039 \text{ mol} \cdot \text{kg}^{-1}$.

Figure 10. Deviation plot in conductivity for 1,4-dioxane (1) + water (2) + saturated KCl (3) as function of reduced temperature *t* with composition: \bigcirc , $w_2 = 0.20$, $m = 0.470 \text{ mol} \cdot \text{kg}^{-1}$; right-pointing triangle, $w_2 = 0.25$, $m = 0.488 \text{ mol} \cdot \text{kg}^{-1}$; \blacksquare , $w_2 = 0.328$, $m = 0.55 \text{ mol} \cdot \text{kg}^{-1}$; \times , $w_2 = 0.40$, $m = 0.792 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 0.45$, $m = 1.154 \text{ mol} \cdot \text{kg}^{-1}$; \bigoplus , $w_2 = 0.50$, $m = 1.446 \text{ mol} \cdot \text{kg}^{-1}$; \triangle , $w_2 = 55$, $m = 1.771 \text{ mol} \cdot \text{kg}^{-1}$; \square , $w_2 = 0.57$, $m = 1.906 \text{ mol} \cdot \text{kg}^{-1}$; left-pointing triangle, $w_2 = 0.60$, $m = 2.039 \text{ mol} \cdot \text{kg}^{-1}$.

is related to the ion mobility and the number of charge carriers. An increase in temperature results in an increase in the mobility. At a fixed composition in water and salt, the ions move faster at higher temperatured because of the relatively lower viscosity of the mixture.²⁸

The variation of conductivity according to the temperature can be also fitted by Arrhenius equation:

$$\kappa = \kappa_0 \exp\left(-\frac{E_a(\kappa)}{kT}\right) \tag{3}$$

where κ_0 is a constant and $E_a(\kappa)$ is the activation energy for ionic conduction. The Arrhenius representation is shown in Figure 8, and their fit results are depicted in Table 3. It is found that the activation energy $E_a(\kappa)$ values for the mixture were in the range of (9.730 ± 0.050 to 52.995 ± 1.005) kJ·mol⁻¹. Figure 6 shows that the activation energy for ionic conduction decreases with an increase in water mole fraction and consequently with the molality of KCl. We note that solvent—solvent interaction is strongly modified at critical composition caused by cluster formation. Also, K⁺ and Cl⁻ ions are solvated

Figure 11. Critical electrical conductivity κ_c for 1,4-dioxane (1) + water (2) + saturated KCl (3) as a function of water mass fraction w_2 and molality *m* of salt.

preferentially by water, which slows down the transport phenomena.

Figure 9 shows the reduced temperature $t = |T/T_c - 1|$ dependence of the electrical conductivity, where T_c is the critical temperature of 1,4-dioxane (1) + water (2) + saturated KCl (3). The electrical conductivity anomaly was observed near the critical temperature; this behavior is similar to that reported in the literature.^{29–31} There are two possible mechanisms for the anomaly, an anomalous proton-transfer rate predicted by the exponent $(1 - \alpha)$ and an anomalous extent of dissociation.³⁰

Near the critical point of the liquid–liquid mixture, the electrical conductivity is given by:²⁹

$$\kappa = \kappa_{\rm c} + \kappa_{\rm reg}(t) + \kappa_{\rm crit}(t) \tag{4}$$

where $\kappa_{\rm c}$ is the critical electrical conductivity. $\kappa_{\rm reg}$ is the smooth analytic function that takes into account the background or noncritical change of κ with the temperature and can be expressed as:²⁹

$$\kappa_{\rm reg}(t) = A_1 t + A_2 t^2 + \dots$$
(5)

The critical contribution is given by:

$$\kappa_{\rm crit}(t) = A_{\rm cr} t^{1-\alpha} (1 + a t^{\Delta} + b t^{2\Delta} + ...)$$
(6)

where $A_{\rm cr}$ is the leading critical amplitude, while *a* and *b* are the amplitudes of the correction to simple scaling terms, and α is the critical exponent that characterizes the divergence of the heat capacity and the thermal expansivity near $T_{\rm c}$. Table 4 gives the parameters of eqs 4 to 6. After fitting the experimental data using $\alpha = 0.11$, no correction-to-scaling terms were significant in eq 6. The deviation normalized by the estimated standard deviation is plotted in Figure 10 and is defined as $(\kappa_{\rm Exp} - \kappa_{\rm Fit})/\sigma$, where the standard deviation, σ , can be expressed as following:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{i=N} \left(\frac{\kappa_{i,exp} - \kappa_{i,Fit}}{\kappa_{i,exp}}\right)^2}{N - k}}$$
(7)

where N and k are the numbers of data points and free parameters, respectively.

Figure 11 shows the critical conductivity κ_c varies with water mass fraction w_2 such as: $\kappa_c/\text{mS} \cdot \text{cm}^{-1} = (67.197 \pm 19.971) + (-4.991 \pm 1.073)w_2 + (0.096 \pm 0.013)w_2^2$ and consequently with molality *m* of KCl such as: $\kappa_c/\text{mS} \cdot \text{cm}^{-1} = (-68.001 \pm 10.001)w_2^2$ 16.132) + (223.141 ± 49.835)(m/m_0) + (-179.050 ± 44.025) (m/m_0)² + (56.302 ± 11.737)(m/m_0)³, where $m_0 = 1 \text{ mol} \cdot \text{kg}^{-1}$.

Conclusion

From the above results, it can be seen that the viscosities of the mixture 1,4-dioxane (1) + water (2) + saturated KCl (3) decrease with increasing temperature, in water mole fraction and consequently in the concentration of salt, while the electrical conductivities increase.

The temperature dependence of electrical conductivity κ can be correlated by an empirical linear equation and fitted with a good precision. The temperature dependence of viscosity η and the electrical conductivity κ can be fitted to the Arrhenius equation. The activation energy $E_a(\kappa)$ for ionic conduction decreases with the increase in water mole fraction and consequently in molality of KCl, but they are not influenced in the activation energy $E_a(\eta)$ for viscous flow.

We have shown that the electrical conductivity and the viscosity presented an anomaly near the critical point. The critical electrical conductivity κ_c varies with water mass fraction w_2 as a second-degree polynomial and consequently with molality *m* of salt as a third-degree polynomial.

The temperature of phase transition T_t was found to vary with water mass fraction w_2 and consequently with the molality *m* of KCl.

Literature Cited

- Kouissi, T.; Bouanz, M.; Ouerfelli, N. KCl-Induced Phase Separation of 1,4-dioxane + Water Mixtures Studied by Electrical Conductivity and Refractive Index. J. Chem. Eng. Data 2009, 54, 566–573.
- (2) Bouanz, M. Critical behavior of the self-diffusion coefficient in a binary fluid. *Phys. Rev. A* 1992, 46, 4888–4893.
- (3) Bouanz, M.; Gharbi, A. Ionic structure in a binary fluid. J. Phys.: Condens. Matter 1994, 6, 4429–4435.
- (4) Bouanz, M. The solvation phenomenon in a binary fluid. *Quim. Anal.* (*Barcelona, Spain*) 1996, 15, 530–533.
- (5) Bouanz, M.; Beysens, D. Effect of ion impurities on a binary mixture of isobutyric acid and water. J. Chem. Phys. Lett. 1994, 231, 105– 110.
- (6) Toumi, A.; Bouanz, M. Critical behavior of the binary-fluid isobutyric acid-water with added ion (K⁺, Cl⁻). *Eur. Phys. J. E* 2000, 211–216.
- (7) Toumi, A.; Bouanz, M.; Gharbi, A. Coexistence curves of the binary mixture isobutyric acid-water with added ions (K⁺, Cl⁻). *Chem. Phys. Lett.* 2002, *362*, 567–573.
- (8) Toumi, A.; Bouanz, M.; Gharbi, A. Comportement de la relation de Lorentz -Lorentz dans un mélange binaire critique. *Phys. Chem. News* 2003, 13, 126–131.
- (9) Kolb, H. A.; Woermann, D. Conductivity fluctuations in butyric acid /water and isobutyric acid /water mixtures. J. Chem. Phys. 1984, 80, 3781–3784.
- (10) Cherif, E.; Bouanz, M. Electrical conductivity along phase diagram of the critical mixture isobutyric acid-water with added (K⁺, Cl⁻) ions. *Int. J. Mol. Sci.* **2003**, *4*, 326–334.
- (11) Cherif, E.; Bouanz, M. Resistivity-viscosity relationship in liquidliquid critical mixtures with added ions. *Fluid Phase Equilib.* 2007, 251, 71–77.

- (12) Cherif, E.; Bouanz, M. Coexistence curves of electrical conductivity in critical solution: isobutyric acid-water with added ions. *Phys. Chem. Liq.* 2007, 44, 649–661.
- (13) Hadded, N.; Bouanz, M. Electrical conductivity of the binary mixture isobutyric acid-water with added (Zn²⁺, SO₄²⁻) ions. *Fluid Phase Equilib.* 2008, 266, 47–53.
- (14) Hadded, N.; Bouanz, M. Excess permittivity and excess conductivity of binary fluid mixture isobutyric acid-water along the coexistence curve. *Phys. Chem. Liq.* **2009**, *47* (2), 160–171.
- (15) Takamuku, T.; Yamaguchi, A.; Matsuo, D.; Tabata, M.; Yamaguchi, T.; Otomo, T.; Adachi, T. NaCl-Induced Phase Separation of 1,4-Dioxane-Water Mixtures Studied by Large-Angle X-ray Scattering and Small-Angle Neutron Scattering Techniques. J. Phys. Chem. B 2001, 105, 10101–10110.
- (16) Bogardus, H. F.; Lynch, C. C. The Ternary systems Barium Chloride-Dioxane-Water and Calcium Chloride-Dioxane-water. J. Phys. Chem. 1943, 47, 650–654.
- (17) Campbell, A. N.; Kartzmak, E. M.; Maryk, W. B. The systems Sodium Chlorate-Water-Dioxane and Lithium Chlorate-Water-Dioxane at 25°C. *Can. J. Chem.* **1966**, *44*, 935–937.
- (18) Campbell, A. N.; Lam, S. Y. Phase Diagrams of Sodium Chloride and of Potassium Chloride in Water-Dioxane. *Can. J. Chem.* 1972, 50, 3388–3390.
- (19) Bešter, R. M.; Doler, D. Phase equilibria in the (Water + 1,4-Dioxane + Magnesium Chloride) system. Acta. Chim. Slov. 1990, 46 (4), 463– 470.
- (20) Gutkowski, K.; Anisimov, M. A.; Sengers, J. V. Crossover criticality in ionic solutions. J. Chem. Phys. 2001, 114 (7), 3133–3148.
- (21) Bianchi, H. L.; Japas, M. L. Phase equilibria of a near-critical ionic system. Critical exponent of the order parameter. J. Chem. Phys. 2001, 115 (22), 10472–10478.
- (22) Gutkowski, K. I.; Bianchi, H. L.; Japas, M. L. Critical behavior of a ternary ionic system: A controversy. J. Chem. Phys. 2003, 118 (6), 2808–2814.
- (23) Gutkowski, K. I.; Bianchi, H. L.; Japas, M. L. Nonasymptotic Critical Behavior of a Ternary Ionic System. J. Phys. Chem. B 2007, 111, 2554–2564.
- (24) *Physikalisch-Technische Bundesanstalt*, 2nd ed.; license Nr. 13/1985; Chempro GmbH, D6450: Hanau, Germany, 1985; p 6.
- (25) Brunel, V. International Critical Tables; McGraw-Hill: New York, 1928; Vol. 3, p 27.
- (26) Levitte, B. P. Findlay's Practical Physical Chemistry, 9th ed.; Longman: New York, 1973.
- (27) Weast, R. C.; Astle, M. J. In CRC Handbook of Chemistry and Physics, 60th ed.; CRC Press: Boca Raton, FL, 1980.
- (28) Yanfang, G.; Siliu, C.; Tengfang, W.; Dahong, Y.; Changjun, P.; Honglai, L.; Ying, H. Density, viscosity and electrical conductivity of 1-butyl-3-methylimidazolium hexafluorophosphate + monoethanolamine and N, N-dimethylethanolamine. J. Mol. Liq. 2008, 143, 100–108. (a) Hernández, P. M.; Ortega, F.; Ramón, G. R. Crossover critical phenomena in an aqueous electrolyte solution: light scattering, density and viscosity of the 3-methylpyridine + water + NaBr system. J. Chem. Phys. 2003, 119 (8), 4428–4436.
- (29) Oleinikova, A.; Bonetti, M. Electrical conductivity of highly concentrated electrolytes near the critical consolute point: A study of tetran-butylammonium picrate in alcohols of moderate dielectric constant. J. Chem. Phys. 2001, 101 (21), 9871–9882.
- (30) Anderson, E. M.; Greer, S. C. Chemical reactions near critical points: The dissociation of weak acids. *Phys. Rev. A* 1984, 30, 3129–3135.
- (31) Shaw, C. H.; Goldburg, W. I. Electrical conductivity of binary mixtures near the critical point. J. Chem. Phys. 1976, 65 (11), 4906.

Received for review April 13, 2009. Accepted September 24, 2009.

JE900351T