Solubility of Biologically Active Chalcones in 1,4-Dioxane and *N*,*N*-Dimethyl Formamide from (298.15 to 318.15) K

Shipra Baluja,* Ravi Gajera, and Anchal Kulshreshtha

Physical Chemical Laboratory, Department of Chemistry, Saurashtra University, Rajkot (360 005), India

The solubilities of some chalcones in 1,4-dioxane and *N*,*N*-dimethyl formamide were measured by a gravimetrical method from (298.15 to 318.15) K under atmospheric pressure, and the solubility data were correlated against temperature.

Introduction

A literature survey shows that chalcones are associated with different biological activities like cardiovascular,¹ antispasmodic,² anthelmintics,³ antiulcer,⁴ anti-inflammatory,⁵ antiviral,⁶ antiallergic,⁷ fungicidal,⁸ bactericidal,⁹ insecticidal,¹⁰ antitumor,¹¹ antileishmanial,¹² herbicidal,¹³ anticancer,¹⁴ antitubercular,¹⁵ anti HIV,¹⁶ etc.

These biological properties prompted us to synthesize some new chalcones having furan. The solubility of these synthesized chalcones has been studied in 1,4-dioxane and DMF at different temperatures (298.15 K to 318.15 K). Further, enthalpy, Gibb's energy, and entropy of solution have also been evaluated.

Experimental Section

Materials. The synthesized chalcone derivatives were recrystallized in ethanol, and their purity was checked by elemental analysis, IR, NMR, and mass spectral data. Figure 1 shows the general structure of a synthesized chalcone derivative. The melting temperatures of all the synthesized compounds were determined by DSC (Universal V2.6D Instruments) and are given in Table 1 with substituted group R, molecular weight, and molecular formula.

The selected solvents DMF and 1,4-dioxane were purified by the reported method.¹⁷ The purity was determined by gas chromatography with a SHIMADZU GC-MS (model No QP-2010) and was found to have a mole fraction purity greater than 0.9970.

Solubility Measurement. The solubilities were measured by a gravimetric method.¹⁸ For each measurement, an excess mass of compound was added to a known mass of solvent. Then, the equilibrium cell was heated to a constant temperature with continuous stirring. After at least 3 h (the temperature of the water bath approached constant value, then the actual value of the temperature was recorded), the stirring was stopped, and the solution was kept still for 2 h. A portion of this solution was filtered, and by a preheated injector, 2 mL of this clear solution was taken in another weighted measuring vial (m_0) . The vial was quickly and tightly closed and weighted (m_1) to determine the mass of the sample $(m_1 - m_0)$. Then, the vial was covered with a piece of filter paper to prevent dust contamination. After the solvent in the vial had completely evaporated at room temperature, the vial was dried and reweighed (m_2) to determine the mass of the constant residue

Table 1. Physical Constants of Chalcones

	compound			MW	mp
Sr. No.	code	R	M.F.	$(g \cdot mol^{-1})$	°C
1	AKFC-01	4-OCH ₃ -C ₆ H ₄	C ₂₀ H ₁₅ NO ₅	349.33	141
2	AKFC-02	$4-NO_2-C_6H_4$	$C_{19}H_{12}N_2O_6$	364.30	218
3	AKFC-03	$3-NO_2-C_6H_4$	$C_{19}H_{12}N_2O_6$	364.30	180
4	AKFC-04	$4-NH_2-C_6H_4$	$C_{19}H_{14}N_2O_4$	334.32	171
5	AKFC-05	4-Cl-C ₆ H ₄	C19H12NO4Cl	353.75	170
6	AKFC-06	4-Br-C ₆ H ₄	C19H12NO4Br	398.20	160
7	AKFC-07	$-C_6H_5$	$C_{19}H_{13}NO_4$	319.31	142
8	AKFC-08	$4-OH-C_6H_4$	C19H13NO5	335.31	152
9	AKFC-09	2-furayl	C14H11NO5	309.27	178
10	AKFC-10	3-coumarin	C22H13NO6	387.34	172

solid $(m_2 - m_0)$. All the masses were taken using an electronic balance (Mettler Toledo AB204-S, Switzerland) with an uncertainty of ± 0.0001 g. Thus, the concentration of the solid sample in the solution, mole fraction *x*, could be determined from eq 1.

$$x = \frac{(m_2 - m_0)/M_1}{(m_2 - m_0)/M_1 + (m_1 - m_2)/M_2}$$
(1)

where M_1 is the molar mass of the compound and M_2 is the molar mass of the solvent.

Results and Discussion

The mole fraction solubilities x of chalcone derivatives in 1,4-dioxane and DMF at different temperatures (298.15 K to 318.15 K) are summarized in Tables 2 and 3. The variation of solubility with temperature is also shown in Figure 2. It is observed that solubility increases linearly with an increase in temperature. Comparison of solubility in the two solvents shows that overall solubility is greater in DMF than in 1,4-dioxane for all the chalcones. This is expected because the dielectric constant and dipole moment of DMF (36.71, 3.86) are greater than that of 1,4-dioxane (2.209, 0). Thus, these properties of solvent play an important role in the solubility.

Figure 1. General structure of the chalcone derivative.

* Corresponding author. E-mail: shipra_baluja@rediffmail.com.

Table 3. Observed Mole Fraction Solubilities (x), Calculated Mole Fraction Solubilities (x_{ci}) , and Relative Deviation (RD) of Chalcones in DMF

T/K	$10^{2}x$	$10^{2}x_{ci}$	100 RD	T/K	$10^{2}x$	$10^{2}x_{ci}$	100 RD
	AK	FC-1			Ak	KFC-1	
298.15	0.7316	0.7421	0.2703	298.15	1.1151	1.1221	0.1221
303 15	0.7310	0 7454	0 3147	303.15	1.1200	1.1277	0.1356
308.15	0.7367	0.7499	0.3147	308.15	1.1276	1.1334	0.0959
313 15	0.7507	0.7400	0.3142	313.15	1.1300	1.1390	0.1606
313.13	0.7410	0.7556	0.2055	318.15	1.1377	1.1447	0.1205
310.13	0.7441	0.7330	0.2933		Α.Τ	ZEC 2	
	AK	FC-2		208 15	AI	0 2362	-0.1000
298.15	0.2292	0.2298	0.0247	298.13	0.2374	0.2302	-0.1000 -0.1077
303.15	0.2324	0.2340	0.2664	208.15	0.2400	0.2387	-0.1077
308.15	0.2388	0.2382	-0.0614	313.15	0.2450	0.2412	-0.1838
313.15	0.2411	0.2425	0.1595	318.15	0.2450	0.2457	-0.1137
318.15	0.2454	0.2469	0.0873	510.15	0.2470	0.2405	0.1157
	ΔK	FC-3			Al	KFC-3	
208 15	0.5058	0 5052	-0.0385	298.15	0.6036	0.6013	-0.0890
298.15	0.5958	0.5952	-0.0383	303.15	0.6100	0.6056	-0.1593
200.15	0.0009	0.3961	-0.0772	308.15	0.6136	0.6098	-0.1383
308.15	0.6025	0.6011	-0.0289	313.15	0.6200	0.6141	-0.2042
313.15	0.6052	0.6041	-0.0505	318.15	0.6204	0.6184	-0.0/81
310.13	0.0084	0.0072	-0.0562		AI	KFC-4	
	AK	FC-4		298.15	0.2638	0.2639	-0.0120
298.15	0.2450	0.2498	0.3044	303.15	0.2639	0.2640	-0.0094
303.15	0.2484	0.2421	0.1224	308.15	0.2641	0.2641	-0.0126
308.15	0.2502	0.2543	0.2569	313.15	0.2641	0.2642	-0.0070
313.15	0.2522	0.2566	0.2770	318.15	0.2643	0.2643	-0.0141
318.15	0.2549	0.2590	0.2488		AI	KFC-5	
	ΔV	EC 5		298.15	0.4502	0.4495	-0.0425
200.15	0.0710 AN	.FC-3	0.1007	303.15	0.4600	0.0456	-0.1644
298.15	0.2712	0.2685	-0.1887	308.15	0.4683	0.4632	-0.2186
303.15	0.2721	0.2719	0.1027	313.15	0.4700	0.4702	-0.0066
308.15	0.2774	0.2753	-0.1485	318.15	0.4803	0.4773	-0.1318
313.15	0.2818	0.2788	-0.0899		A 1	ZEC 6	
318.15	0.2836	0.2823	-0.1002	208 15	0.7045	0 7067	0.0446
	AK	FC-6		298.15	0.7100	0.7007	0.0440
298.15	0.4887	0.4850	-0.1622	308.15	0.7136	0.7120	0.0401
303.15	0.4913	0.4884	-0.0784	313.15	0.7215	0.7228	0.0090
308.15	0.4951	0.4918	-0.1428	318.15	0.7255	0.72824	0.0599
313.15	0.5007	0.4953	-0.1957	510.15	0.7200		0.0577
318.15	0.5013	0.4987	-0.1156	200.15	Al	KFC-7	0.00.15
		TC 7		298.15	0.9833	0.9943	0.2247
	AK	FC-7		303.15	0.9900	1.0028	0.2616
298.15	0.5534	0.5611	0.2483	308.15	0.9981	1.0114	0.2705
303.15	0.5604	0.5662	0.1959	313.15	1.0100	1.0200	0.1974
308.15	0.5654	0.5713	0.1850	518.15	1.0148	1.0287	0.2791
313.15	0.5712	0.5765	0.2024		AI	KFC-8	
318.15	0.5733	0.5817	0.2649	298.15	0.6649	0.6698	0.1320
	AK	FC-8		303.15	0.6700	0.6762	0.1684
298.15	0.5729	0.5688	-0.1560	308.15	0.6754	0.6827	0.1978
303.15	0.5801	0.5734	-0.2381	313.15	0.6800	0.6892	0.2528
308.15	0.5815	0.5780	-0.1357	318.15	0.6916	0.6958	0.1050
313.15	0.5911	0.5827	-0.2602		AI	KFC-9	
318.15	0.5917	0.5873	-0.1618	298.15	0.9403	0.9457	0.1067
		70.0	0.1010	303.15	0.9452	0.9500	0.0914
	AK	FC-9		308.15	0.9500	0.9543	0.0794
298.15	0.7052	0.7132	0.2103	313.15	0.9500	0.9586	0.1760
303.15	0.7072	0.7153	0.2141	318.15	0.9589	0.9629	0.0733
308.15	0.7096	0.7175	0.2052		ΑK	FC-10	
313.15	0.7112	0.7196	0.2556	298.15	0.6957	0.6929	-0.0981
318.15	0.7138	0.7218	0.2079	303.15	0.7000	0.6998	-0.0212
	AK	FC-10		308.15	0.7101	0.7069	-0.1077
298.15	0.6171	0.6235	0.1831	313.15	0.7200	0.7140	-0.1869
303.15	0.6234	0.6263	0.1817	318.15	0.7214	0.7211	-0.0231
308.15	0.6220	0.6291	0.2066				
313.15	0.6242	0.6319	0.2263				
318.15	0.6285	0.6348	0.1775	solubility in s	olvents is desc	ribed by the m	odified Anelblat
	0.0200	0.0010		equation ^{19,20}		nood by the III	annea Aperolat

As shown in Figure 2, the mole fraction solubility x of chalcones was correlated as a function of temperature. Theoretically, solubilities (x_{ci}) were also evaluated using A and B parameters using eq 2. The temperature dependence of chalcone

 $\ln x = A + B(T/K)$ (2)

where x is the mole fraction solubility of chalcones; T is the absolute temperature; and A and B are the parameters. The

Figure 2. Variation of mole fraction solubilities (*x*) with temperature (*T*) for chalcones in DMF and doxane. ×, AKFC-1; \Box , AKFC-2; \triangle , AKFC-3; solid heart symbol, AKFC-4; *, AKFC-5; **■**, AKFC-6; **♦**, AKFC-7; -, AKFC-8; -, AKFC-9; \diamond , AKFC-10.

 Table 4. Constants A and B of Equation 2, Relative Average

 Deviations (ARD), and Root Mean Square Deviation (rmsd) of

 Chalcones in Dioxane

compounds	Α	В	10 ⁸ rmsd	100 ARD
AKFC-1	-5.1726	0.0009	5.4756	0.3021
AKFC-2	-7.1500	0.0036	0.2074	0.0953
AKFC-3	-5.4231	0.001	0.0049	-0.0503
AKFC-4	-6.5298	0.0018	0.0653	0.2419
AKFC-5	-6.6663	0.0025	0.0151	-0.0849
AKFC-6	-5.7471	0.0014	0.0445	-0.1389
AKFC-7	-5.7205	0.0018	1.9829	0.2193
AKFC-8	-5.6472	0.0016	1.1491	-0.1904
AKFC-9	-5.1229	0.0006	2.8099	0.2186
AKFC-10	-5.3468	0.0009	1.8492	0.1950

 Table 5. Constants A and B of Equation 2, Relative Average

 Deviations (ARD), and Root Mean Square Deviation (rmsd) of

 Chalcones in DMF

compounds	Α	В	10 ⁸ rmsd	100 ARD
AKFC-1	-4.7889	0.0010	2.2066	0.1269
AKFC-2	-6.6754	0.0021	0.0994	-0.1214
AKFC-3	-5.5320	0.0014	0.6057	-0.1338
AKFC-4	-5.9652	0.0009	0.0053	-0.0110
AKFC-5	-6.3000	0.0030	0.3764	-0.1128
AKFC-6	-5.4004	0.0015	0.0263	0.0505
AKFC-7	-5.1185	0.0017	6.0959	0.2467
AKFC-8	-5.5732	0.0019	1.7756	0.1712
AKFC-9	-4.9301	0.0009	1.3055	0.1054
AKFC-10	-5.5692	0.0020	0.4262	-0.0874

values of these parameters are given in Tables 4 and 5. These values were calculated, and solubilities x_{ci} are also reported in Tables 2 and 3. The experimental solubility values were compared with calculated solubility (x_{ci}).

Further, relative average deviations (ARD) and root-meansquare deviations (rmsd), calculated by eqs 3 and 4, are listed in Tables 4 and 5.

$$ARD = \frac{1}{N} \sum_{i}^{N} \frac{x_i - x_{ci}}{x_i}$$
(3)

rmsd =
$$\left[\sum_{i=1}^{N} \frac{(x_{ci} - x_i)^2}{N - 1}\right]^{1/2}$$
 (4)

where *N* is the number of experimental points and x_{ci} is the solubility calculated by eq 2.

The relative deviations (RD) between the experimental and calculated values of solubilities are also calculated by eq 5 and are given in Tables 2 and 3.

Relative Deviation
$$= \left(\frac{x - x_{ci}}{x}\right)$$
 (5)

The heat of solution (ΔH_{sol}) was calculated by the modified van't Hoff equation^{21,22}

$$\frac{\partial \ln x}{\partial (1/T - 1/T_{\rm hm})_P} = -\frac{\Delta H_{\rm sol}}{R} \tag{6}$$

where *T* is the experimental temperature and *R* is the gas constant. $T_{\rm hm}$ is the mean harmonic temperature which is given as

$$T_{\rm hm} = \frac{n}{\sum_{n=1}^{n} (1/T)} \tag{7}$$

where *n* is the number of experimental temperatures.²³ In the present case, the $T_{\rm hm}$ value obtained is only 308 K. The slope of the plot of ln *x* versus (1/T - 1/308) gives the value of $\Delta H_{\rm sol}$.

The Gibbs energy change for the solubility process was then evaluated from the following relation²¹

$$\Delta G_{\rm sol} = -RT \cdot \text{intercept} \tag{8}$$

Using these evaluated $\Delta H_{\rm sol}$ and $\Delta G_{\rm sol}$ values, the entropy of solution $\Delta S_{\rm sol}$ was obtained from the equation^{21,22}

$$\Delta S_{\rm sol} = \frac{\Delta H_{\rm sol} - \Delta G_{\rm sol}}{T_{\rm hm}} \tag{9}$$

All these thermodynamic parameters are given in Tables 6 and 7.

It is evident from Tables 6 and 7 that for all the compounds $\Delta H_{\rm sol}$ and $\Delta G_{\rm sol}$ values in both the solvents are positive, whereas $\Delta S_{\rm sol}$ values are negative. When stronger bonds are broken and weaker bonds are formed, energy is consumed. So, $\Delta H_{\rm sol}$ becomes positive.²² This indicates endothermic dissolution of compounds where the enthalpy term contributes to an unfavorable positive value of $\Delta G_{\rm sol}$. Thus, the positive value of $\Delta G_{\rm sol}$

Table 6. Thermodynamic Parameter Gibb's Free Energy (ΔG_{sol}) , Heat of Solution (ΔH_{sol}) , and Entropy of Solution (ΔS_{sol}) of the Dissolution of Chalcones in Dioxane

	ΔG	ΔH	$-\Delta S$
compounds	$\overline{kJ \cdot mol^{-1}}$	$kJ \cdot mol^{-1}$	$\overline{\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}}$
AKFC-1	3.0045	0.1601	9.2356
AKFC-2	3.6973	0.6745	9.8146
AKFC-3	3.1288	0.1900	9.5421
AKFC-4	3.6665	0.3310	10.8291
AKFC-5	3.6028	0.4730	10.1622
AKFC-6	3.2484	0.2683	9.6762
AKFC-7	3.1687	0.3552	9.1351
AKFC-8	3.1494	0.3078	9.2262
AKFC-9	3.0282	0.1063	9.4871
AKFC-10	3.1082	0.1382	9.6433

Table 7. Thermodynamic Parameters Gibb's Free Energy (ΔG_{sol}), Heat of Solution (ΔH_{sol}), and Entropy of Solution (ΔS_{sol}) of Dissolution of Chalcones in DMF

	ΔG	Δ <i>H</i>	$-\Delta S$
compounds	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot mol^{-1} \cdot K^{-1}$
AKFC-1	2.7451	0.1847	8.3132
AKFC-2	3.6842	0.4007	10.6612
AKFC-3	3.1182	0.2689	9.2513
AKFC-4	3.6330	0.1734	11.7399
AKFC-5	3.6028	0.5698	9.8476
AKFC-6	3.0239	0.2810	8.9061
AKFC-7	2.8190	0.3133	8.1356
AKFC-8	3.0567	0.3517	8.7829
AKFC-9	2.8498	0.1664	8.7126
AKFC-10	3.0287	0.4342	8.4238

indicates that the dissolution process is not spontaneous.^{22,23} The negative value of entropy indicates increased order due to the solvation process.

Acknowledgment

Authors are thankful to the Head of the Chemistry Department, Saurashtra University, Rajkot, India, for providing necessary facilities.

Literature Cited

- Saziki, R.; Arai, I.; Isobe, Y.; Aihara, H. Effects of a Chalcone Derivative (SU-88) on the Gastric Blood Flow and the Cardiovascular System. *Nippon Yakurigaku Zasshi* 1982, 79, 193–202.
- (2) Banerjee, A.; Nayak, P. L.; Rout, M. K. Antispasmodics and Antihistaminics derived from Hydroxy- and Aminochalcones. J. Ind. Chem. Soc. 1966, 43, 578–82.
- (3) Laliberte, R.; Campbell, D. J.; Bruderlein, F. Anthelmintic Activities of Chalcones and Related Compounds. *Can J. Pharm. Sci.* 1967, 2, 37–43.
- (4) Suwa, T.; Fukushima, K.; Kyogoku, K. Effect of an Anti-Ulcer Agent, 2'-carboxymethoxy-4,4'-bis(3-methyl-2-butenyloxy) Chalcone (SU-88), on the Biosynthesis of Gastric Sulfated Mucosubstances in Restrained and water-immersed rats. *Jpn. J. Pharm.* **1984**, *34*, 89–94.
- (5) Ballesteros, J. F.; Sanz, M. J.; Ubeda, A.; Miranda, M. A.; Iborra, S.; Paya, M.; Alcaraz, M. J. Synthesis and Pharmacological Evaluation of 2'-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. J. Med. Chem. 1995, 38, 2794–2797.
- (6) Ninomiya, Y.; Shimma, N.; Ishitsuka, H. Comparative Studies on the Antirhinovirus Activity and the Mode of Action of the Rhinovirus Capsid-Binding Agents, Chalcone Amides. *Antiviral Res.* 1990, 13, 61–74.
- (7) Muraoka, O.; Sawada, T.; Morimoto, E.; Tanabe, G. Chalcones as Synthetic Intermediates. A Facile Route to (±)-Magnosalicin, an Antiallergy Neolignan. *Chem. Pharm. Bull.* **1993**, *41*, 772–774.

- (8) Gasha, M.; Tsuji, A.; Sakurai, Y.; Kurumi, M.; Endo, T.; Sato, S.; Yamaguchi, K. Antimicrobial Activity of Chalcones. *Yakugaku Zasshi* 1972, 92, 719–723.
- (9) Abdou, N. A.; Youssef, K. M.; Kandeel, M. M.; Soliman, L. N. Synthesis and Antimicrobial Activity of Certain Chalcone Derivatives. *Bull. Fac. Pharm.* **1993**, *31*, 361–367.
- (10) Regaila, H. A.; Hassan, A. A.; Latif, N.; El-Bayouki, K.; Ibrahim, I. H. Newer Heterocycles and Carbamates from Naphthyl Chalcones. *Egypt. J. Pharm. Sci.* **1988**, *29*, 71–87.
- (11) Anto, R. J.; Sukumaran, K.; Kuttan, G.; Rao, M. N.; Subbaraju, V.; Kuttan, R. Anticancer and Antioxidant Activity of Synthetic Chalcones and Related Compounds. *Cancer Lett.* **1995**, *97*, 33–37.
 (12) Gutteridge, C. E.; Vo, J. V.; Tillett, C. B.; Vigilante, J. A.; Dettmer,
- (12) Gutteridge, C. E.; Vo, J. V.; Tillett, C. B.; Vigilante, J. A.; Dettmer, J. R.; Patterson, S. L.; Werbovetz Bhattacharjee, A. K. Antileishmanial and Antimalarial Chalcones: Synthesis, Efficacy and Cytotoxicity of Pyridinyl and Naphthalenyl Analogs. *Med. Chem.* 2007, *3*, 115–119.
- (13) Kothari, S.; Vyas, R.; Verma, B. L. A Facile one pot Conversion of 3',5'-dibromo-4'-hydroxy Substituted Chalcones to Pyrimidine Derivatives and their Antibacterial and Herbicidal Activity. *Ind. J. Heteroat. Chem.* **1999**, 8, 285–288.
- (14) De, V. R.; Scambia, G.; Benedetti, P. P.; Ranelletti, F. O.; Bonanno, G.; Ercoli, A.; Delle, M. F.; Ferrari, F.; Piantelli, M.; Mancuso, S. Effect of Synthetic and Naturally Occurring Chalcones on Ovarian Cancer Cell Growth: Structure-Activity Relationships. *Anti-cancer Drug Des.* **1995**, *10*, 481–490.
- (15) Nagaraj, A.; Reddy, C. S. Synthesis and Biological Study of Novel Methylene-bis-Chalcones and Substituted Methylene-bis-Pyrimidines/ Pyrimidinones. J. Heteroat. Chem. 2007, 44, 1181–1185.
- (16) Nakagawa, G. K.; Lee, K. H. Anti-AIDS Agents 68. The First total Synthesis of a Unique Potent Anti-HIV Chalcone from Genus Desmos. *Tetrahedron Lett.* 2006, 47, 8263–8266.
- (17) Riddick, J. A.; Bunger, W. B. Sakano, T. Organic Solvents-Physical Properties and methods of purification, 4th ed.; Techniques of Chemistry, II, A Wiley-Interscience Publication, John Wiley: New York.
- (18) Zhu, M. Solubility and Density of the Disodium Salt Hemiheptahydrate of Ceftriaxone in Water + Ethanol Mixtures. J. Chem. Eng. Data 2001, 46, 175–176.
- (19) Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from *T* = (278 to 348) K. *J. Chem. Thermodyn.* **1999**, *31*, 85–91.
- (20) Gao, J.; Wang, Z. W.; Xu, D. M.; Zhang, R. K. Solubilities of Triphenylphosphine in Ethanol, 2-Propanol, Acetone, Benzene and Toluene. J. Chem. Eng. Data 2007, 52, 189–191.
- (21) Krug, R. R.; Hunter, W. G.; Grieger, R. A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effects. *J. Phys. Chem.* **1976**, *80*, 2341–2351.
- (22) Kalsi, P. S. Organic reactions and their mechanisms, 2nd ed.; New age international (P) limited: New Delhi, 2004; p 119.
- (23) El-Bindary, A. A.; El-Sonbati, A. Z.; El-Mosalamy, E. H.; Ahmed, R. M. Potentiometric and Thermodynamic Studies of Azosulfonamide Drugs. X. Chem. Pap. 2003, 57, 255–258.

Received for review April 21, 2009. Accepted June 26, 2009.

JE900370Q