# Thermodynamic Studies of Rod- and Spindle-Shaped $\beta$ -FeOOH Crystals

Chengzhen Wei,<sup>†</sup> Xiaoming Wang,<sup>†</sup> Zhaodong Nan,<sup>\*,†</sup> and Zhicheng Tan<sup>‡</sup>

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China, and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Different morphologies of  $\beta$ -FeOOH including rod- and spindle-shaped crystals were synthesized via a hydrothermal reaction at low temperature. The molar heat capacities of the obtained samples were determined by a precision automated adiabatic calorimeter over the temperature range of (78 to 390) K. The observed results demonstrated that the change of the molar heat capacity with thermodynamic temperature was different for the rod and spindle-shaped  $\beta$ -FeOOH crystals. Polynomial equations of the molar heat capacities as a function of temperature were fitted by a least-squares method for the rod- and spindle-shaped  $\beta$ -FeOOH crystals. Smoothed heat capacities and thermodynamic functions of the obtained samples, such as H(T/K)- H(298.15) and S(T/K) - S(298.15), were calculated on the basis of the fitted polynomials and the relationships of the thermodynamic functions. In addition, the as-prepared samples were also characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA).

## Introduction

In recent years, iron oxyhydroxides and iron oxides have attracted much attention owing to their excellent physical and chemical properties and potential applications in various fields, such as for use as pigments, catalysts, gas sensors, and magnetic recording media.<sup>1-6</sup> The polymorphs of iron oxyhydroxide consist of  $\alpha$ -FeOOH (goethite),  $\beta$ -FeOOH (akaganeite), and  $\gamma$ -FeOOH (lepidocrocite).<sup>7</sup> Among the iron oxyhydroxides,  $\beta$ -FeOOH, as a stable iron oxide, which has a large tunneltype structure, has received wide attention because of its unique properties. As a promising candidate for an electrode material,  $\beta$ -FeOOH exhibits good electrochemical properties with a high theoretical discharge capacity (302 mA  $\cdot$  h  $\cdot$  g<sup>-1</sup>).<sup>2</sup>  $\beta$ -FeOOH has been used as a precursor for the preparation of ferromagnetic  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>8,9</sup> However, to the best of our knowledge, the molar heat capacities of  $\beta$ -FeOOH have not been reported so far. It is of great significance to obtain the molar heat capacities of  $\beta$ -FeOOH and furthermore to fully understand this material.

In the present paper, rod- and spindle-shaped  $\beta$ -FeOOH crystals were synthesized, and their molar heat capacities were measured over the temperature range of (78 to 390) K.

## **Experimental Section**

All the reagents used in this work were of analytical grade and used without further purification.

 $\beta$ -FeOOH nanorod particles were prepared following the procedure reported in a previous paper.<sup>10</sup> In a typical synthesis procedure of the  $\beta$ -FeOOH nanorods, FeCl<sub>3</sub>·6H<sub>2</sub>O (1.0134 g) and (NH<sub>2</sub>)<sub>2</sub>CO (0.6000 g) were dissolved in distilled water (10 mL) with constant stirring over 10 min. The solution was then transferred to a flask and maintained at (90 to 95) °C under reflux for a period of 12 h, resulting in the formation of a yellow precipitate. This precipitate was collected and rinsed repeatedly

<sup>&</sup>lt;sup>‡</sup> Chinese Academy of Sciences.





by a Rigaku D/MAX-XA powder X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda = 1.5405$  Å). A scanning rate of 0.1 deg s<sup>-1</sup> was used to record the pattern in the  $2\theta$  range of (10 to 70) deg.



Figure 1. XRD patterns of the as-prepared  $\beta$ -FeOOH products, (a) rodand (b) spindle-shaped particles.

with distilled water. Spindle-shaped  $\beta$ -FeOOH was synthesized

through a facile hydrothermal route. In a typical experiment,

FeCl<sub>3</sub>•6H<sub>2</sub>O (1.6218 g) was dissolved in 50 mL of distilled

water with stirred vigorously for 10 min to form a homogeneous

solution. The solution was then transferred into a flask and

maintained at 90 °C under reflux for 12 h. After the reaction

was completed, the resulting yellow solid precipitate was

<sup>\*</sup> Corresponding author. Tel.: +86-514-87959896. Fax: +86-514-87959896.

E-mail: zdnan@yzu.edu.cn. Yangzhou University.



Figure 2. TEM images of the as-prepared  $\beta$ -FeOOH particles, (a) rod-like and (b) spindle-like (the bar = 200 nm).



Figure 3. TGA curves of the as-prepared  $\beta$ -FeOOH particles, (a) spindle shape and (b) rod shape.

The morphologies and mean sizes of the obtained particles were examined by a transmission electron microscope (TEM, Hitachi, model H-800) using an accelerating voltage of 200 kV.

Thermal gravimetric analysis (TGA) of the as-obtained  $\beta$ -FeOOH was carried out by a thermogravimetric analysis system (model: TG 209 F1, NETZSCH, Germany). The asprepared samples were heated from room temperature to 700 °C under nitrogen at a heating rate of 10 °C·min<sup>-1</sup>. The flow rate of nitrogen for each of the TGA experiments was controlled at 70 mL·min<sup>-1</sup>. The amounts of the samples used for TGA analysis were (18.2 and 18.8) mg for the rod- and spindle-shaped  $\beta$ -FeOOH crystals, respectively.

A high precision automatic adiabatic calorimeter was used to determine the heat capacities of the as-prepared products over the temperature range of (78 to 390) K. The calorimeter was established in the Thermochemistry Laboratory of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. The principle and structure of the adiabatic calorimeter have been described in detail elsewhere.<sup>11–13</sup> The temperature increment was controlled at (2 to 4) K during the whole experimental process.

Before determination of the heat capacity of the as-obtained samples, the reliability of the automatic adiabatic calorimeter was verified via measurements on a  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> reference standard material. On the basis of our experimental results, the deviations were within  $\pm$  0.2 % compared with the values recommended by the National Bureau of Standards<sup>14</sup> in the temperature range of (80 to 400) K.

The mass of the rod and spindle-shaped  $\beta$ -FeOOH crystals used for the heat capacity determination were (1.07576 and 1.03306) g, respectively, which is equivalent to (0.0121074 and 0.0116268) mol, on the basis of the molar mass of  $\beta$ -FeOOH,  $M = 88.8517 \text{ g} \cdot \text{mol}^{-1}$ .

## **Results and Discussion**

The composition and crystalline phase purity of the asprepared products were examined by a powder X-ray diffraction (XRD) technique. As shown in Figure 1, all of the diffraction peaks can be indexed to a tetragonal  $\beta$ -FeOOH phase, which agrees well with the reported data ( $\beta$ -FeOOH, JCPDS no. 34-1266). No obvious XRD peaks due to impurities were found in the XRD patterns. The strong and sharp diffraction peaks can also demonstrate good crystallization of the as-prepared rodand spindle-shaped  $\beta$ -FeOOH crystals.

The morphologies and mean sizes of the as-prepared  $\beta$ -FeOOH particles were investigated by TEM. Figure 2a,b shows the

Table 1. Experimental Molar Heat Capacity Data of the As-Prepared  $\beta$ -FeOOH

| Т      | $C_{p,m}^{a}$                     | Т      | $C_{p,m}^{a}$                     | Т      | $C_{p,m}^{\ b}$                   | Т      | $C_{p,m}^{b}$                     |
|--------|-----------------------------------|--------|-----------------------------------|--------|-----------------------------------|--------|-----------------------------------|
|        | $\overline{J \cdot K^{-1} \cdot}$ |
| Κ      | $mol^{-1}$                        | Κ      | $mol^{-1}$                        | Κ      | $mol^{-1}$                        | Κ      | $mol^{-1}$                        |
| 78.47  | 7.071                             | 247.38 | 65.152                            | 78.23  | 8.502                             | 241.26 | 63.047                            |
| 81.05  | 8.485                             | 250.44 | 65.556                            | 81.05  | 9.680                             | 245.03 | 63.973                            |
| 84.58  | 9.697                             | 253.50 | 66.481                            | 84.58  | 11.111                            | 248.56 | 64.815                            |
| 87.41  | 11.313                            | 256.32 | 67.130                            | 87.41  | 12.542                            | 251.38 | 65.488                            |
| 90.46  | 12.626                            | 259.38 | 68.333                            | 90.23  | 13.805                            | 254.44 | 66.330                            |
| 93.52  | 13.737                            | 262.20 | 69.074                            | 93.05  | 15.152                            | 257.26 | 66.835                            |
| 96.35  | 14.949                            | 265.26 | 69.722                            | 95.88  | 16.246                            | 260.32 | 67.677                            |
| 99.40  | 16.364                            | 268.08 | 70.648                            | 98.70  | 17.593                            | 263.14 | 68.182                            |
| 103.40 | 17.778                            | 271.14 | 71.296                            | 102.70 | 18.855                            | 266.20 | 68.687                            |
| 107.47 | 18.939                            | 273.96 | 72.315                            | 106.70 | 20.455                            | 269.02 | 69.360                            |
| 110.48 | 19.949                            | 276.79 | 73.056                            | 109.52 | 21.717                            | 272.08 | 70.202                            |
| 113.24 | 21.044                            | 279.85 | 73.611                            | 112.48 | 22.869                            | 274.91 | 70.875                            |
| 116.25 | 22.391                            | 282.67 | 74.537                            | 115.37 | 24.014                            | 277.73 | 71.633                            |
| 119.51 | 23.569                            | 285.73 | 75.314                            | 118.29 | 25.068                            | 280.79 | 72.222                            |
| 122.52 | 24.495                            | 288.79 | 75.751                            | 121.22 | 26.085                            | 283.61 | 72.811                            |
| 125.28 | 25.926                            | 291.84 | 76.570                            | 124.11 | 27.441                            | 286.43 | 73.401                            |
| 128.29 | 26.852                            | 294.90 | 77.171                            | 127.16 | 28.788                            | 289.49 | 73.990                            |
| 131.30 | 27.862                            | 297.96 | 78.384                            | 129.99 | 29.545                            | 292.55 | 74.663                            |
| 134.57 | 29.209                            | 301.02 | 79.091                            | 133.05 | 30.556                            | 295.61 | 75.084                            |
| 137.58 | 30.471                            | 304.08 | 79.697                            | 135.87 | 31.481                            | 298.90 | 75.926                            |
| 140.59 | 31.566                            | 307.14 | 80.606                            | 138.69 | 32.239                            | 301.96 | 76.515                            |
| 143.60 | 32.323                            | 310.19 | 81.414                            | 141.52 | 33.502                            | 305.02 | 76.852                            |
| 146.69 | 33.535                            | 313.25 | 82.020                            | 144.57 | 34.596                            | 308.08 | 77.441                            |
| 149.62 | 34.848                            | 316.31 | 82.424                            | 147.40 | 35.859                            | 311.37 | 78.283                            |
| 153.64 | 35.943                            | 319.37 | 83.131                            | 150.22 | 36.785                            | 314.43 | 78.704                            |
| 157.40 | 36.953                            | 322.43 | 84.141                            | 153.98 | 37.963                            | 317.49 | 79.040                            |
| 160.41 | 38.468                            | 325.49 | 85.051                            | 157.75 | 38.973                            | 320.55 | 79.798                            |
| 163.43 | 39.646                            | 328.54 | 85.455                            | 160.57 | 39.731                            | 323.84 | 80.303                            |
| 166.44 | 40.741                            | 331.60 | 86.566                            | 163.63 | 41.077                            | 326.66 | 80.640                            |
| 169.45 | 41.582                            | 334.66 | 87.273                            | 166.45 | 41.835                            | 328.07 | 80.892                            |
| 172.46 | 42.508                            | 337.72 | 87.980                            | 169.28 | 42.761                            | 330.19 | 81.061                            |
| 179.72 | 43.771                            | 340.54 | 88.485                            | 172.33 | 43.603                            | 332.31 | 81.650                            |
| 1/8./3 | 44.781                            | 343.60 | 88.990                            | 170.00 | 44.013                            | 334.90 | 82.155                            |
| 181.74 | 45.707                            | 340.00 | 89.697                            | 1/8.22 | 45.202                            | 337.48 | 82.576                            |
| 184.70 | 40.403                            | 250.42 | 89.798                            | 181.27 | 40.128                            | 242.66 | 82.912                            |
| 101.02 | 41.121                            | 252.78 | 90.202                            | 104.10 | 40.970                            | 245.00 | 83.302<br>84.001                  |
| 104.04 | 40.757                            | 255 26 | 01 616                            | 107.15 | 47.900                            | 249.23 | 04.091                            |
| 194.04 | 49.495                            | 257.05 | 91.010                            | 109.90 | 40.757                            | 340.07 | 04.420<br>85 185                  |
| 100.81 | 51 347                            | 360 77 | 92.020                            | 192.00 | 50 505                            | 353.00 | 85.606                            |
| 203.58 | 52 600                            | 363.13 | 03 333                            | 108.68 | 51 /31                            | 356.07 | 86 111                            |
| 203.38 | 53 620                            | 365.05 | 03.838                            | 202.21 | 52 600                            | 358.66 | 86 364                            |
| 210.35 | 54 630                            | 368 54 | 94 646                            | 202.21 | 53 620                            | 361.25 | 86 053                            |
| 213.61 | 55 219                            | 371.13 | 94 949                            | 203.20 | 54 545                            | 364.07 | 87 205                            |
| 216.37 | 56 229                            | 373.95 | 95 354                            | 211.86 | 55 303                            | 366.66 | 87.626                            |
| 219.39 | 57 323                            | 376 77 | 96 263                            | 211.00 | 56.061                            | 369.24 | 88 300                            |
| 222.40 | 57,997                            | 379.60 | 96.869                            | 217.74 | 57,155                            | 371.83 | 88.721                            |
| 225 16 | 58,838                            | 382.18 | 97.778                            | 220 56 | 58.081                            | 374 65 | 89.057                            |
| 228.17 | 59,764                            | 384.77 | 97,980                            | 223.38 | 58,754                            | 377.24 | 89,310                            |
| 231.18 | 60,606                            | 387.36 | 98,485                            | 226.44 | 59,343                            | 379.83 | 89,731                            |
| 234.19 | 61.448                            | 389.95 | 98,990                            | 229.27 | 60,438                            | 382.42 | 90.404                            |
| 237.20 | 62.374                            |        |                                   | 232.32 | 61.027                            | 385.24 | 90.657                            |
| 240.21 | 63.384                            |        |                                   | 235.38 | 61.869                            | 387.83 | 91.162                            |
| 243.85 | 64.343                            |        |                                   | 238.44 | 62.710                            | 390.42 | 91.498                            |

<sup>*a*</sup> Rod-like  $\beta$ -FeOOH. <sup>*b*</sup> Spindle-like  $\beta$ -FeOOH.

representative TEM micrographs of the as-prepared rod and spindle-shaped  $\beta$ -FeOOH, respectively. A typical TEM image (Figure 2a) clearly shows that the rod-like  $\beta$ -FeOOH has a smooth surface with an average diameter of 71 nm and an average length of 909 nm. From the TEM image of the spindleshaped  $\beta$ -FeOOH (Figure 2b), a spindle shape with an average width of 94 nm and a length of 428 nm was observed.

The TGA curves of the as-prepared samples are shown in Figure 3. It is obvious that there are two mass loss steps in the temperature ranges (25 to 200 and 200 to 520) °C in Figure 3a,b, respectively. At 520 °C, the mass of the as-prepared samples no longer changes, even though heating was continued to 700 °C, which indicates that the stable residue can reasonably be ascribed to  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>2</sup>

The experimental molar heat capacities of the as-prepared rod- and spindle-like  $\beta$ -FeOOH were determined by a high precision automatic adiabatic calorimeter over the temperature



Figure 4. Experimental molar heat capacities of the as-prepared  $\beta$ -FeOOH against experimental temperature.  $\Delta$ , rod-like; O, spindle-shaped  $\beta$ -FeOOH.

range of (78 to 390) K. All of the experimental results are listed in Table 1 and shown in Figure 4. The molar heat capacities of the obtained samples are fitted to the following polynomial equations in reduced temperature (X) via least-squares fitting. For the rod-like  $\beta$ -FeOOH:

$$C_{p,m}/\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1} = 61.46 + 44.19X - 8.56X^2 + 1.66X^3 + 0.34X^4$$
 (1)

where X is the reduced temperature,  $X = [T - (T_1 + T_2)/2]/[T_2]$  $-T_1$ ]/2], where T is the experimental temperature. In the temperature range of (78 to 390) K, X = [(T/K) - 234.21]/155.74, where  $T_1 = 78.47$  K and  $T_2 = 389.95$  K. The coefficient of determination of the fitting is  $R^2 = 0.9999$ , and the fitness standard error is  $\delta = 0.201 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ . The standard  $\delta$  of the fitness was calculated by the following equation:

$$\delta = \sqrt{\frac{\sum \left(C_{p,m}^{\text{fit}} - C_{p,m}^{\exp}\right)^2}{n-1}}$$
(2)

In the equation, n is the number of the experimental points, and  $C_{p,m}^{exp}$  and  $C_{p,m}^{fit}$  represent the molar heat capacities of the asprepared samples measured by the automatic adiabatic calorimeter and the corresponding result calculated from the eq 1, respectively.

For the spindle-shaped  $\beta$ -FeOOH:

$$C_{p,m}/\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1} = 61.32 + 39.19X - 11.78X^2 + 2.16X^3 + 0.57386X^4$$
 (3)

where  $T_1 = 78.23$  K and  $T_2 = 390.42$  K. The coefficient of determination of the fitting is  $R^2 = 0.9999$ , and the fitness standard error is  $\delta = 0.211 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ .

The experimental molar heat capacities of the as-prepared rod- and spindle-shaped  $\beta$ -FeOOH are shown in Figure 4. It can be clearly seen that the molar heat capacities of the rodand spindle-shaped particles are different over the temperature range of (78 to 390) K. The molar heat capacities of rod-like  $\beta$ -FeOOH is less than the spindle shape when the experimental temperature is less than about 175 K, but when the temperature is greater than 175 K, the molar heat capacities of the spindleshaped  $\beta$ -FeOOH is less than that of the rod-like  $\beta$ -FeOOH.

The smoothed molar heat capacities of the  $\beta$ -FeOOH particles were calculated on the basis of the fitted eqs 1 and 3, and the results are listed in Table 2. The changes in the thermodynamic

Table 2. Smoothed Heat Capacities and Thermodynamic Functions of the As-Prepared  $\beta$ -FeOOH Particles<sup>*a*</sup>

| Т          | $C_{p,m}^{b}$          | $\Delta H^b$     | $\Delta S^{b}$         | $C_{p,m}{}^{c}$        | $\Delta H^c$     | $\Delta S^{c}$         |
|------------|------------------------|------------------|------------------------|------------------------|------------------|------------------------|
|            | $J \cdot K^{-1} \cdot$ | J٠               | $J \cdot K^{-1} \cdot$ | $J \cdot K^{-1} \cdot$ | J٠               | $J \cdot K^{-1} \cdot$ |
| Κ          | $mol^{-1}$             | $mol^{-1}$       | mol <sup>-</sup>       | $mol^{-1}$             | $mol^{-1}$       | $mol^{-1}$             |
| 80         | 8.027                  | -10.101          | -50.395                | 9.517                  | -10.203          | -51.692                |
| 85         | 10.092                 | -10.056          | -49.837                | 11.636                 | -10.150          | -51.039                |
| 90         | 12.134                 | -10.001          | -49.208                | 13.724                 | -10.087          | -50.319                |
| 95         | 14.152                 | -9.935           | -48.515                | 15.782                 | -10.013          | -49.536                |
| 100        | 16.147                 | -9.859           | -47.760                | 1/.809                 | -9.929           | -48.694<br>-47.700     |
| 105        | 20.067                 | -9.773           | -40.930<br>-46.080     | 21 772                 | -9.855           | -47.799                |
| 115        | 21.992                 | -9 573           | -45180                 | 23 708                 | -9.618           | -45.850                |
| 120        | 23.894                 | -9.458           | -44.227                | 25.614                 | -9.494           | -44.838                |
| 125        | 25.773                 | -9.334           | -43.235                | 27.490                 | -9.361           | -43.772                |
| 130        | 27.629                 | -9.200           | -42.206                | 29.335                 | -9.219           | -42.672                |
| 135        | 29.463                 | -9.058           | -41.145                | 31.151                 | -9.068           | -41.543                |
| 140        | 31.274                 | -8.906           | -40.053                | 32.937                 | -8.908           | -40.386                |
| 145        | 33.063                 | -8.745           | -38.934                | 34.693                 | -8.739           | -39.206                |
| 150        | 34.830                 | -8.575           | -37.791                | 36.420                 | -8.561           | -38.004                |
| 155        | 30.5/5                 | -8.397           | -30.020                | 38.117                 | -8.3/5           | -36.783                |
| 165        | 39,999                 | -8 014           | -34239                 | 41 425                 | -7 977           | -34.294                |
| 170        | 41 679                 | -7.810           | -33.021                | 43 036                 | -7.766           | -33.031                |
| 175        | 43.338                 | -7.597           | -31.789                | 44.618                 | -7.546           | -31.757                |
| 180        | 44.976                 | -7.376           | -30.546                | 46.172                 | -7.320           | -30.474                |
| 185        | 46.593                 | -7.147           | -29.292                | 47.699                 | -7.085           | -29.185                |
| 190        | 48.190                 | -6.910           | -28.029                | 49.197                 | -6.843           | -27.890                |
| 195        | 49.767                 | -6.665           | -26.759                | 50.668                 | -6.593           | -26.591                |
| 200        | 51.323                 | -6.413           | -25.481                | 52.112                 | -6.336           | -25.288                |
| 205        | 52.860                 | -6.152           | -24.199                | 53.529                 | -6.072           | -23.984                |
| 210        | 55 876                 | -5.884           | -22.912<br>-21.621     | 56.285                 | -5.801           | -22.678<br>-21.372     |
| 215        | 57 356                 | -5325            | -20.327                | 57 624                 | -5.323           | -20.066                |
| 225        | 58 816                 | -5.035           | -19.030                | 58 938                 | -4946            | -18762                 |
| 230        | 60.259                 | -4.737           | -17.732                | 60.226                 | -4.649           | -17.459                |
| 235        | 61.684                 | -4.432           | -16.433                | 61.491                 | -4.344           | -16.158                |
| 240        | 63.091                 | -4.120           | -15.132                | 62.731                 | -4.034           | -14.860                |
| 245        | 64.481                 | -3.801           | -13.831                | 63.947                 | -3.717           | -13.564                |
| 250        | 65.854                 | -3.476           | -12.529                | 65.140                 | -3.394           | -12.272                |
| 255        | 67.211                 | -3.143           | -11.227                | 66.311                 | -3.066           | -10.982                |
| 200        | 60.331                 | -2.804           | -9.923                 | 67.439                 | -2.731<br>-2.201 | -9.696                 |
| 203        | 09.873<br>71.184       | -2.437<br>-2.105 | -7.322                 | 69 690                 | -2.391<br>-2.045 | -7.135                 |
| 275        | 72.478                 | -1.746           | -6.021                 | 70.774                 | -1.694           | -5.859                 |
| 280        | 73.757                 | -1.380           | -4.720                 | 71.838                 | -1.338           | -4.587                 |
| 285        | 75.022                 | -1.008           | -3.419                 | 72.883                 | -0.976           | -3.319                 |
| 290        | 76.273                 | -0.630           | -2.119                 | 73.908                 | -0.609           | -2.054                 |
| 295        | 77.511                 | -0.245           | -0.819                 | 74.915                 | -0.237           | -0.793                 |
| 300        | 78.736                 | 0.145            | 0.481                  | 75.904                 | 0.140            | 0.465                  |
| 305        | 79.948                 | 0.542            | 1.781                  | 76.875                 | 0.522            | 1.719                  |
| 310        | 82 336                 | 0.945            | 5.080<br>4.378         | 78 768                 | 1 300            | 2.909                  |
| 320        | 82.550                 | 1.555            | 5 676                  | 79.692                 | 1.500            | 5 460                  |
| 325        | 84.680                 | 2.189            | 6.974                  | 80.600                 | 2.097            | 6.700                  |
| 330        | 85.836                 | 2.615            | 8.270                  | 81.494                 | 2.503            | 7.936                  |
| 335        | 86.983                 | 3.047            | 9.566                  | 82.375                 | 2.912            | 9.168                  |
| 340        | 88.120                 | 3.485            | 10.860                 | 83.244                 | 3.326            | 10.396                 |
| 345        | 89.249                 | 3.928            | 12.153                 | 84.100                 | 3.745            | 11.619                 |
| 350        | 90.369                 | 4.377            | 13.444                 | 84.945                 | 4.167            | 12.837                 |
| 333        | 91.482                 | 4.832            | 14.732                 | 85.780                 | 4.594            | 14.051                 |
| 360<br>365 | 92.387                 | 5.292            | 10.018                 | 80.605                 | 5.025            | 15.258                 |
| 370        | 94 779                 | 6 220            | 18 577                 | 88 220                 | 5 800            | 10.459                 |
| 375        | 95.866                 | 6.705            | 19.850                 | 89.030                 | 6.343            | 18.839                 |
| 380        | 96.948                 | 7.187            | 21.116                 | 89.824                 | 6.790            | 20.016                 |
| 385        | 98.026                 | 7.675            | 22.376                 | 90.612                 | 7.241            | 21.184                 |
| 390        | 99.101                 | 8.168            | 23.627                 | 91.396                 | 7.696            | 22.341                 |
| 298.15     | 78.284                 | 0                | 0                      | 75.540                 | 0                | 0                      |

<sup>*a*</sup>  $\Delta H = H(T/K) - H(298.15)$ .  $\Delta S = S(T/K) - S(298.15)$ . <sup>*b*</sup> Rod-like  $\beta$ -FeOOH. <sup>*c*</sup> Spindle-shaped  $\beta$ -FeOOH.

functions of  $\beta$ -FeOOH, such as  $\Delta H$  and  $\Delta S$ , were also calculated by the following thermodynamic equations.

$$\Delta H = H(T/K) - H(298.15) = \int_{298.15}^{T} C_{p,m} dT \qquad (4)$$

$$\Delta S = S(T/K) - S(298.15) = \int_{298.15}^{T} \frac{C_{p,m}}{T} dT \qquad (5)$$

The calculated changes in the thermodynamic functions of  $\beta$ -FeOOH, such as  $\Delta H$  and  $\Delta S$ , relative to standard to the

reference temperature 298.15 K, are given in Table 2 at 5 K intervals.

#### Conclusions

In summary, rod- and spindle-shaped  $\beta$ -FeOOH crystals were synthesized via a hydrothermal reaction. There are two mass loss steps over the temperature ranges, (25 to 200 and 200 to 520) °C. The molar heat capacities of the as-prepared  $\beta$ -FeOOH crystals were determined for the first time by a high-precision automatic adiabatic calorimeter over the temperature range of (78 to 390) K. The molar heat capacities of rod-like  $\beta$ -FeOOH are less than those of spindle-shaped  $\beta$ -FeOOH when the experimental temperature is less than about 175 K, but when the temperature is greater than 175 K, the molar heat capacities of spindle-shaped  $\beta$ -FeOOH are less than those of rod-like  $\beta$ -FeOOH. The function of the molar heat capacity with respect to thermodynamic temperature was established for the rod- and spindle-shaped  $\beta$ -FeOOH. The thermodynamic functions were derived on the basis of an established function and the relationships of thermodynamic functions.

#### **Literature Cited**

- Xiong, Y. J.; Xie, Y.; Chen, S. W.; Li, Z. Q. Fabrication of Self-Supported Patterns of Aligned β-FeOOH Nanowires by a Low-Temperature Solution Reaction. *Chem.*—*Eur. J.* 2003, *9*, 4991–4996.
- (2) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Ji, M. R.; Tang, C. M.; Shen, T.; Zhang, Z. D. Synthesis of β-FeOOH and α-Fe<sub>2</sub>O<sub>3</sub> nanorods and electrochemical properties of β-FeOOH. J. Mater. Chem. 2004, 14, 905–907.
- (3) Shao, H. F.; Qian, X. F.; Yin, J.; Zhu, Z. K. Controlled morphology synthesis of β-FeOOH and the phase transition to Fe<sub>2</sub>O<sub>3</sub>. J. Solid State Chem. 2005, 178, 3130–3136.
- (4) Wu, P. C.; Wang, W. S.; Huang, Y. T.; Sheu, H. S.; Lo, Y. W.; Tsai, T. L.; Shieh, D. B.; Yeh, C. S. Porous Iron Oxide Based Nanorods Developed as Delivery Nanocapsules. *Chem.-Eur. J.* 2007, 13, 3878– 3885.
- (5) Wang, Y.; Cao, J. L.; Wang, S. R.; Guo, X. Z.; Zhang, J.; Xia, H. J.; Zhang, S. M.; Wu, S. H. Facile Synthesis of Porous α-Fe<sub>2</sub>O<sub>3</sub> Nanorods and Their Application in Ethanol Sensors. *J. Phys. Chem. C* 2008, *112*, 17804–17808.
- (6) Nitin, K.; Chaudhari., Y. J. S. Size Control Synthesis of Uniform β-FeOOH to High Coercive Field Porous Magnetic α-Fe<sub>2</sub>O<sub>3</sub> Nanorods. J. Phys. Chem. C 2008, 112, 19957–19962.
- (7) Flynn, C. M., Jr. Hydrolysis of Inorganic Iron (III) Salts. *Chem. Rev.* 1984, 84, 31–41.
- (8) Sugimoto, T.; Muramatsu, A. Formation Mechanism of Monodispersed α-Fe<sub>2</sub>O<sub>3</sub> Particles in Dilute FeCl<sub>3</sub> Solutions. J. Colloid Interface Sci. 1996, 184, 626–638.
- (9) Mazeina, L.; Deore, S.; Navrotsky, A. Energetics of Bulk and Nano-Akaganeite, β-FeOOH: Enthalpy of Formation, Surface Enthalpy, and Enthalpy of Water Adsorption. *Chem. Mater.* 2006, *18*, 1830–1838.
- (10) Wu, P. C.; Wang, W. S.; Huang, Y. T.; Sheu, H. S.; Lo, Y. W.; Tsai, T. L.; Shieh, D. B.; Yeh, C. S. Porous Iron Oxide Based Nanorods Developed as Delivery Nanocapsules. *Chem. -Eur. J.* 2007, *13*, 3878– 3885
- (11) Tan, Z. C.; Sun, L. X.; Meng, S. H.; Li, L.; Zhang, J. B. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. J. Chem. Thermodyn. 2002, 34, 1417–1429.
- (12) Nan, Z.; Wei, C.; Yang, Q.; Tan, Z. C. Thermodynamic Properties of Carbon Nanotubes. J. Chem. Eng. Data 2009, 54, 1367–1370.
- (13) Tan, Z. C.; Sun, G. Y.; Sun, Y.; Yin, A. X.; Wang, W. B.; Ye, J. C.; Zhou, L. X. An adiabatic low-temperature calorimeter for heat capacity measurement of small samples. *J. Therm. Anal.* **1995**, *45*, 59–67.
- (14) Ditmars, D. A.; Ishihara, S.; Chang, S. S.; Bernstein, G.; West, E. D. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J. Res. Natl. Bur. Stand. 1982, 87, 159–163.

Received for review April 22, 2009. Accepted August 30, 2009. The financial support from the National Science Foundation of China (20753002) and the Natural & Scientific Grant of Jiangsu Province (BK2009181), China, is gratefully acknowledged.

JE900373Z