Solution Equilibria of Ternary Systems Involving Transition Metal Ions, Hydroxamic Acids, and Bioligands

Mohamed M. Khalil* and Rehab K. Mahmoud

Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

The formation of ternary complexes of the Cu(II), Co(II), Ni(II), and Zn(II) metal ions with some hydroxamic acids (acetohydroxamic acid, Aha; benzohydroxamic acid, Bha; salicylhydroxamic acid, Sham; and *N*-phenylbenzohydroxamic acid, *N*-PhBha) and some bioligands (α -alanine, α -ala; L-valine, L-val; norvaline, norval; aspartic acid, aspart; glutamic acid, glut; asparagines, asperg; histamine, Him; and imidazole, imid) was investigated using the potentiometric technique at 25 °C and $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$. The stability constants of these ternary systems were calculated. The order of stability of the ternary complexes in terms of the nature of metal ions, hydroxamic acids, and bioligands was investigated and discussed as well as the values of $\Delta \log K$ and $\log X$ for the ternary systems. The concentration distribution curves of the various binary and ternary complex species in solution were evaluated. The effect of temperature of the medium on both the ionization process of Aha, Sham, aspart, and glut and the complex formation with Cu(II), Co(II), and Ni(II) for 1:1:1 ternary systems in the range of (15 to 45) °C and $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$ in an aqueous medium has been studied. The thermodynamic parameters are calculated and discussed. Evaluation of the effect of ionic strength was carried out in NaNO₃ as a supporting electrolyte $I[(0.10 \text{ to } 0.50) \text{ mol} \cdot \text{dm}^{-3}]$. The dependence on ionic strength of the stability constants of the binary and ternary complexes was analyzed. In addition, the chelation mode of the ternary complexes was ascertained by conductometric titrations. Also, confirmation of the formation of ternary complexes in aqueous solutions has been done using cyclic voltammetry measurements.

Introduction

Hydroxamic acids (RC(=O)N(OH)R') have been employed as chelating agents since long ago,¹ and their study still attracts much attention.^{2,3} These compounds possess diverse biochemical activities in antibiotics, growth factors, antibiotic antagonists, and tumor inhibitors,^{4–9} many of which are due to the properties of their complexes with transition metal ions.^{10–12}

In most metal complexes formed with hydroxamic acids, coordination occurs by deprotonation of the OH group and subsequent O,O coordination of the carbonyl oxygen and deprotonated OH. Much of their biological activity is related to their capability to form very stable chelates with various metal ions.^{13,14}

Amino acids are important low molecular weight ligands in humans^{15–18} and other biosystems.^{19,20} The reactivity of amino acids and other small organic molecules is often modified when they are coordinated to metal ions.^{21,22} Since most of the processes in biological systems include metal ion interaction to several different ligands, studying mixed-ligand complexation is of considerable importance.

Here we report results of a study on the solution equilibria involved in the formation of ternary complexes of divalent transition metal ions (Cu(II), Co(II), Ni(II), and Zn(II)) containing the aliphatic and aromatic hydroxamic acids (acetohydroxamic acid, Aha; benzohydroxamic acid, Bha; salicylhydroxamic acid, Sham; and *N*-phenylbenzohydroxamic acid, *N*-PhBha) and the bioligands (α -alanine, α -ala; L-valie, L-val; norvaline, norval; aspartic acid, aspart; glutamic acid, glut; asparagines, asperg; histamine, Him; and imidazole, imid). This study was performed to investigate the complexation behavior of these ternary systems and to determine the stability constants of the complexes formed in solution, using glass electrode potentiometric measurements. In addition, the chelation mode of ternary complexes was ascertained by conductometric titrations. Also, confirmation of the formation of ternary complexes in aqueous solution has been done using cyclic voltammetry measurements.

Experimental Section

Materials and Solutions. Aha and Bha were Sigma products. Sham was purchased in a pure form from Nasr Pharmaceutical Chemicals Co., Egypt. *N*-PhBha was a Fluka product. The purity of the hydroxamic acids and the concentrations of the stock solutions were determined using Gran's method. The bioligands used were analytical grade (BDH) products with high purity. Metal ion solutions were prepared from Analar metal salt samples (BDH) in bidistilled water and standardized with ethylenediaminetetraacetic acid (EDTA). Carbonate-free sodium hydroxide (titrant, prepared in 0.10 mol·dm⁻³ NaNO₃ solution) was standardized potentiometrically with KH phthalate (Merck AG). A nitric acid solution ($\approx 0.04 \text{ mol·dm}^{-3}$) was prepared and used after standardization. Sodium hydroxide, nitric acid, and sodium nitrate were from Merck p.a. Dioxane, of high purity, was from BDH.

Apparatus and Procedure. pH measurements were performed using a 702 titroprocessor equipped with a 665 dosimat (Switzerland) made by Metrohm. The electrode was calibrated in terms of the hydrogen ion concentration by titrating HCl with NaOH solution²³ using a computer program (GLEE, glass electrode evaluation).²⁴ This program provides an estimate of the carbonate concentration of the base, the pseudo-Nernstian

^{*} Corresponding author. E-mail: magdy_mmagdy@yahoo.com.

Scheme 1

СОЛНОН	CONHOH OH	CH ₃ CONHOH					
Benzohydroxamic acid	Salicylhydroxamic acid	Acetohydroxamic acid					
(Bha)	(Sham)	(Aha)					
	CON-OH						
	enylbenzohydroxamic acid (N-PhBha)						
H ₃ C-CH ₂ COOH NH ₂	^{NH} ₃ C _\ H C−C−СООН H ₃ C ^H	→ → → → OH NH₂ OH					
α-alanine	L-valine	Norvaline					
(a-ala)	(L-Val)	(Nor-val)					
HOOC CHCOOH	HOOC CHCOOH NH ₂	H ₂ N CHCOOH O NH ₂					
Aspartic acid	Glutamic acid	Asparagine					
(aspart)	(glut)	(asparg)					
N N H	N NH ₂						
Imidazole	Hi	stamine					
(imid)		(Him)					

standard potential and slope of the electrode, and optionally the concentration of the base and pK_w . For the determination of the binary systems (one ligand and M(II)), solutions containing ligand (hydroxamic acid or bioligand) and M(II) ion were titrated at a 1:1 or 1:6 metal/ligand ratio, and for ternary systems, the ratios used were 1:1:1 and 1:2:2. The concentration of the ligand solutions in the titrated samples were always the same and varied in the range $(1.10^{-3} \text{ to } 6.10^{-3}) \text{ mol} \cdot \text{dm}^{-3}$. To account for the differences in acidity, basicity, dielectric constant, and anion activities for partially aqueous solutions relative to pure aqueous ones, the pH values of the former solutions were corrected by making use of the procedure described by Douheret.²⁵ Measurements were conducted in a stream of nitrogen, at an ionic strength of 0.1 mol·dm⁻³ NaNO₃, using CO₂-free NaOH solution as a titrant. Titrations were performed up to pH \approx 10.50. Each set of titrations was performed at least four times to check the repeatability of the data.

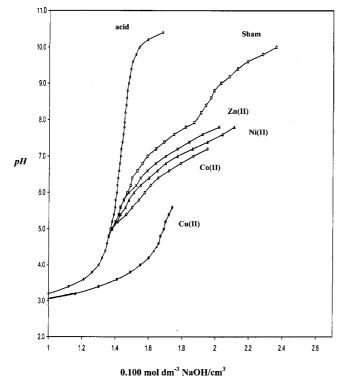
All calculations were made with the aid of a computer program based on an unweighted linear least-squares fit. The stoichiometries and stability constants of the complexes formed were determined by examining various possible composition models for the systems studied. The model selected was that which gave the best statistical fit. In addition, the calculations were not performed for pH regions where experimental findings showed the possibility of hydrolysis (a continuous decrease in the pH or the formation of a precipitate).

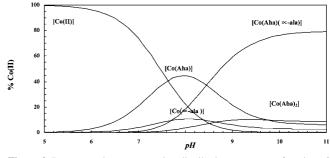
Each of the investigated solutions was thermostatted at the required temperature with a precision of \pm 0.10 °C, and the

solutions were left to stand at this temperature for about 15 min before titration. Magnetic stirring was used during all titrations. The calculations were performed using 100 to 120 experimental data points for each titration taking into account only the part of the titration curve when there was no precipitation in the solution.

Conductometric Measurements. Conductometric titrations were followed with a HANNA conductivity meter HI-98304. The following mixture was titrated conductometrically against $0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaOH}$ solution: $0.01 \text{ mol} \cdot \text{dm}^{-3} \text{ Cu(II)}$ (10 mL) + $0.01 \text{ mol} \cdot \text{dm}^{-3}$ hydroxamic acids (10 mL) + $0.01 \text{ mol} \cdot \text{dm}^{-3}$ aspart (10 mL).

Cyclic Voltammetry Measurements. Cyclic voltammetric measurements were collected using a potentiostat/galvanostate wenking PGS 95 with a single compartment voltammetric cell equipped with a platinum working electrode (area = 0.50 cm^2), a Pt-wire counter electrode, and a saturated calomel electrode as a reference electrode.²⁶ In a typical experiment, a sample volume of 25 cm³ containing the free metal ion $1 \cdot 10^{-3}$ $mol \cdot dm^{-3}$ Cu(II) (a), $1 \cdot 10^{-3} mol \cdot dm^{-3}$ Cu(II) + $1 \cdot 10^{-3}$ mol·dm⁻³ hydroxamic acid (b), $1 \cdot 10^{-3}$ mol·dm⁻³ Cu(II) + $1 \cdot 10^{-3}$ mol·dm⁻³ bioligand (c), and $1 \cdot 10^{-3}$ mol·dm⁻³ Cu(II) + $1 \cdot 10^{-3}$ mol·dm⁻³ hydroxamic acid + $1 \cdot 10^{-3}$ mol·dm⁻³ bioligand (d) was used. The ionic strength of the studied solutions was adjusted to 0.10 mol·dm⁻³ using a NaNO₃ solution. All solutions were investigated in water at 25 °C. The solutions were purged with nitrogen for 120 s, and then the potential was scanned at the scan rate 25 mV \cdot s⁻¹ from (+ 0.20 to -0.60) V.




Figure 1. Potentiometric pH titration curves for the Sham and its metal complexes system at 1:2 metal to ligand ratios; $C_{\text{Sham}} = 1.10^{-3} \text{ mol} \cdot \text{dm}^{-3}$, 25 °C, and $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$.

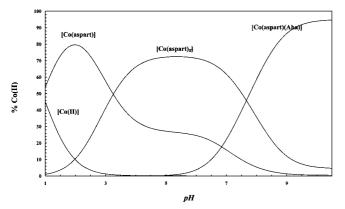
Results and Discussion

Dissociation Constants of the Free Ligands. The formulas of the investigated ligands are shown in Scheme 1. The values of the protonation constants for the hydroxamic acids (Aha, Bha, and Sham) together with a detailed discussion about the acid—base properties of these ligands can be found in our earlier published work.²⁷ Over the wide pH range of 2 to 10.5, the values of the protonation constants for the bioligands were determined and are in good agreement with the ones reported.²⁸

Because of the low solubility of *N*-PhBha in aqueous media,²⁹ the pH metric titrations were carried out in a 40 % dioxane–water medium. Its measured pK_a value of (8.56 ± 0.02) is also in good agreement with the related literature data.^{30,31}

The dissociation constants of the investigated hydroxamic acids in 0.10 mol·dm⁻³ NaNO₃ are compared to those in presence of 0.10 mol·dm⁻³ KCl, and the values are shown. It is obvious that replacement of 0.10 mol·dm⁻³ NO₃⁻ by 0.10 mol·dm⁻³ Cl⁻ does not cause any significant change in the acid—base properties of these molecules, and the trend remains the same.³⁵

Figure 2. Representative concentration distribution curves as a function of pH calculated for Co(II)–Aha– α -ala system in the ratio 1:2:2 at 25 °C, $I = 0.10 \text{ mol} \cdot \text{dm}^{-3}$ NaNO₃, and $C_{\text{ligand}} = 1.10^{-3} \text{ mol} \cdot \text{dm}^{-3}$.


Stability Constants of Binary Complexes. Representative pH metric titration curves of metal ion Sham with 1:2 stoichiometry are shown in Figure 1. In the metal complex curves, there are significant differences in the pH effects caused by complex formation with various metal ions which clearly reveals the differences in the stability of the complexes. The stability constants of the corresponding binary complexes are listed in Table 1. Although the stability constants of 1:1 and 1:2 binary complexes of the M(II) with bioligands or hydroxamic acids have been reported earlier by others, 32-34 we have redetermined these constants as it is preferable to determine the binary and ternary constants under the same experimental conditions.³⁵ However, the present results agree well with those from the literature.^{32–34} It is worth mentioning that the *N*-PhBha binary complexes were so insoluble³⁰ that they precipitated immediately on mixing; therefore, those binary complexes could not be detected under the experimental conditions, and the corresponding stability constant values could not be evaluated.

Stability Constants of Ternary Complexes. In our study, hydroxamic acids (A) are considered as primary ligands and the bioligands (L) as secondary ligands with all investigated metal ions, except in the case of the ternary systems involving the bioligands: aspart, glut, Him, or imidazole and the investigated hydroxamic acids in which the former ligands act as primary ligands and the latter as secondary ligands with the metal ions: Co(II), Ni(II), and Zn(II).

A better analysis of the results is provided by the speciation diagrams (formation percentage, calculated with respect to M(II), versus pH) plotted in Figures 2 and 3 (the speciation data was obtained using the SPECIES program, and predicts the percentage distribution of various forms of the metal at different pH values based upon input stability constants contained in a thermodynamic database³⁶). By analyzing the distribution diagram for the Co(II)–Aha– α -ala ternary complex system, it can be seen that the extent of complex formation is pH-dependent. The mixed-ligand species starts to form at pH \approx

Table 1. Stability Constants for 1:1 and 1:2 Binary Complexes of Hydroxamic Acids and Bioligands at 25 $^{\circ}$ C and $I = 0.10 \text{ mol}\cdot\text{dm}^{-3} \text{ NaNO}_3$

	Cu(II)		Co	(II)	Ni	(II)	Zn(II)		
ligand	$\log K_1$	$\log K_2$	$\log K_1$	$\log K_2$	$\log K_1$	$\log K_2$	$\log K_1$	$\log K_2$	
Aha	8.20 ± 0.03	5.89 ± 0.03	4.86 ± 0.03	3.47 ± 0.01	5.62 ± 0.05	4.57 ± 0.02	5.71 ± 0.02	4.72 ± 0.05	
Bha	7.60 ± 0.02	3.34 ± 0.01	4.81 ± 0.05	3.38 ± 0.03	5.10 ± 0.04	3.67 ± 0.01	5.07 ± 0.01	4.32 ± 0.02	
Sham	13.10 ± 0.01	3.42 ± 0.01	6.37 ± 0.05	4.55 ± 0.04	6.08 ± 0.02	3.92 ± 0.02	5.94 ± 0.03	3.99 ± 0.03	
α-ala	7.64 ± 0.01	6.94 ± 0.03	4.44 ± 0.02	3.35 ± 0.02	6.60 ± 0.02	4.44 ± 0.01	5.37 ± 0.02	5.16 ± 0.05	
L-val	7.88 ± 0.02	4.73 ± 0.01	5.22 ± 0.04	3.73 ± 0.01	6.68 ± 0.01	4.55 ± 0.02	5.91 ± 0.01	5.45 ± 0.03	
norval	7.80 ± 0.05	4.70 ± 0.02	4.80 ± 0.02	3.65 ± 0.01	5.70 ± 0.03	4.70 ± 0.02	5.30 ± 0.02	4.34 ± 0.01	
aspart	8.64 ± 0.02	7.06 ± 0.05	6.10 ± 0.01	4.31 ± 0.05	7.50 ± 0.03	4.26 ± 0.03	7.36 ± 0.02	4.04 ± 0.02	
glut	8.60 ± 0.02	6.59 ± 0.02	4.63 ± 0.02	3.62 ± 0.01	5.90 ± 0.01	5.37 ± 0.02	5.91 ± 0.05	4.04 ± 0.01	
asparag	6.91 ± 0.02	5.12 ± 0.03	4.03 ± 0.05	3.95 ± 0.02	5.36 ± 0.03	4.04 ± 0.04	4.47 ± 0.04	3.71 ± 0.06	
imid	4.15 ± 0.03	3.47 ± 0.04	2.40 ± 0.01		3.03 ± 0.02		2.51 ± 0.05		
Him	9.55 ± 0.05	6.55 ± 0.01	5.35 ± 0.03	4.45 ± 0.02	6.85 ± 0.02	6.56 ± 0.01	6.66 ± 0.02	5.82 ± 0.01	

Figure 3. Representative concentration distribution curves as a function of pH calculated for Co(II)–Aha–aspart system in the ratio 1:2:2 at 25 °C, $I = 0.10 \text{ mol} \cdot \text{dm}^{-3}$ NaNO₃, and $C_{\text{ligand}} = 1.10^{-3} \text{ mol} \cdot \text{dm}^{-3}$.

6.77 and is dominant above pH \approx 10. With increasing pH, its concentration increases reaching a maximum of 78.99 % at pH

10.82. The ternary complex formed with the aspart ligand in Co(II)–Aha–aspart (Figure 3) is more favored; the ternary species reaches a maximum of approximately 93.37 % at pH 9.79. This behavior is mainly based on the fact that the aspart is much more prone to complex formation than α -alanine.

Potentiometric pH titration curves were constructed within the pH range of 2 to 10.5. However, the stability constants of binary and ternary complex species were determined successfully at lower pH values. The formation of monohydroxo complexes could not be detected; the formation constants of the corresponding complex species were rejected by our computer program. All side reactions due to hydrolysis of the M(II) ion have not been included in our calculations. Also, in our investigations, measurements were carried out over a wide range of ligand/metal molar ratios to reach high pH values.³⁷

Examination of stability constant values of the same metal ion ternary complexes (Tables 2, 3, 4, and 5) reveals the following: (i) A comparison of the overall stability constants of M(II)-A-L ternary systems indicates the higher stabilities of the ternary complexes containing dicarboxylic amino acid

Table 2. Stability Constants for Cu(II) Ternary Complexes at 25 °C and $I = 0.1 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$

		$\log eta_{ ext{MAL}}^{ ext{M}}$			$\Delta \log K$			$\log X$				
ligand	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham
α-ala	7.56 ± 0.02	8.28 ± 0.01	8.98 ± 0.03	15.76	15.88	22.08	-0.08	0.64	1.34	2.29	6.28	7.60
L-val	7.50 ± 0.07	8.26 ± 0.02	8.96 ± 0.05	15.53	15.89	22.02	-0.38	0.38	1.08	4.47	8.28	14.97
norval	7.24 ± 0.05	8.12 ± 0.02	8.73 ± 0.06	15.44	15.72	21.83	-0.56	0.32	0.93	3.89	8.20	9.34
aspart	9.30 ± 0.02	9.38 ± 0.07	10.10 ± 0.02	17.50	16.98	23.20	0.46	0.54	1.26	5.65	8.36	9.72
glut	8.80 ± 0.01	8.96 ± 0.03	9.35 ± 0.01	17.40	16.56	22.45	0.20	0.36	0.75	5.12	7.99	8.69
asparag	6.02 ± 0.05	6.97 ± 0.08	7.05 ± 0.02	14.22	14.57	20.15	-0.89	0.06	0.14	1.03	5.48	5.48
imid	3.97 ± 0.03	4.04 ± 0.04	5.42 ± 0.03	12.17	11.64	18.52	-0.18	-0.11	1.27	-1.42	1.28	3.95
Him	9.59 ± 0.03	9.73 ± 0.03	10.11 ± 0.03	17.79	17.33	23.21	0.04	0.18	0.56	6.74	9.57	10.25

Table 3. Stability Constants for Co(II) Ternary Complexes at 25 °C and $I = 0.1 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$

$\log K_{ m MAL}^{ m MA}$				$\log eta_{ ext{MAL}}^{ ext{M}}$			$\Delta \log K$			$\log X$		
ligand	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham
α-ala	4.38 ± 0.03	4.81 ± 0.03	6.21 ± 0.05	9.24	9.62	12.58	-0.06	0.37	1.77	1.94	2.89	4.52
L-val	5.12 ± 0.01	5.24 ± 0.01	6.17 ± 0.07	10.05	9.99	12.76	-0.10	0.02	0.95	2.72	3.02	5.46
norval	5.08 ± 0.05	5.12 ± 0.04	6.11 ± 0.08	9.94	9.93	12.48	-0.28	0.32	1.31	3.04	3.21	4.02
aspart	5.68 ± 0.01	5.98 ± 0.06	6.38 ± 0.02	11.82	12.12	13.52	0.82	1.17	0.01	3.58	4.27	3.90
glut	5.14 ± 0.04	5.91 ± 0.02	5.98 ± 0.02	9.64	10.41	10.48	0.28	1.10	-0.39	3.19	4.82	3.79
asparag	4.44 ± 0.05	4.86 ± 0.03	5.55 ± 0.01	9.30	9.67	11.92	0.41	0.83	2.34	1.46	2.39	4.24
imid	3.45 ± 0.02	3.56 ± 0.06	3.80 ± 0.023	8.85	5.96	6.20	-1.41	-1.25	-2.57			
Him	6.05 ± 0.06	6.20 ± 0.01	7.32 ± 0.03	11.40	11.55	12.671	1.19	1.39	0.55	4.18	4.57	5.64

Table 4. Stability Constants for Ni(II) Ternary Complexes at 25 °C and $I = 0.1 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$

		$\log K_{ m MAL}^{ m MA}$			$\log eta_{ ext{MAL}}^{ ext{M}}$			$\Delta \log K$			log X		
ligand	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	
α-ala	6.02 ± 0.03	6.89 ± 0.04	7.50 ± 0.05	11.64	11.99	13.58	-0.58	0.29	0.90	3.03	5.67	6.61	
L-val	5.98 ± 0.02	6.40 ± 0.04	6.95 ± 0.03	11.68	11.45	12.97	-0.70	-0.28	0.27	1.70	3.02	4.74	
norval	5.82 ± 0.04	6.25 ± 0.02	6.98 ± 0.06	11.44	11.35	13.06	0.12	0.55	1.28	2.37	4.13	5.34	
aspart	6.20 ± 0.03	7.3 ± 0.02	7.79 ± 0.02	12.34	13.44	13.93	0.58	2.20	1.71	3.57	6.67	6.88	
glut	5.98 ± 0.01	6.08 ± 0.01	6.18 ± 0.02	12.18	12.28	12.38	0.36	0.29	0.10	2.02	3.12	2.55	
asparag	5.59 ± 0.03	5.65 ± 0.02	5.98 ± 0.03	11.21	10.75	12.06	0.23	0.20	0.62	2.57	3.59	3.48	
imid	3.53 ± 0.05	3.87 ± 0.06	4.20 ± 0.01	6.56	6.90	7.23	-2.09	-1.23	-1.88				
Him	6.80 ± 0.01	7.32 ± 0.02	7.78 ± 0.02	13.15	14.17	14.43	1.18	2.22	1.70	2.47	4.41	4.56	

Table 5. Stability Constants for Zn(II) Ternary Complexes at 25 °C and $I = 0.1 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$

		$\log K_{\mathrm{MAL}}^{\mathrm{MA}}$			$\log eta_{ ext{MAL}}^{ ext{M}}$			$\Delta \log K$			log X		
ligand	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	Aha	Bha	Sham	
α-ala	5.75 ± 0.01	5.82 ± 0.03	6.18 ± 0.02	11.50	10.89	12.12	0.38	0.45	0.81	1.62	2.16	3.21	
L-val	5.74 ± 0.04	5.80 ± 0.01	5.98 ± 0.05	11.49	10.75	11.86	-0.17	-0.11	0.07	1.17	0.93	2.50	
norval	5.25 ± 0.02	5.44 ± 0.02	5.84 ± 0.02	10.96	10.51	11.78	-0.05	0.14	0.54	1.44	2.22	3.35	
aspart	6.02 ± 0.02	6.09 ± 0.04	7.32 ± 0.03	11.38	11.45	12.68	0.31	1.02	1.38	3.28	3.82	6.61	
glut	5.92 ± 0.01	5.98 ± 0.02	7.28 ± 0.03	11.83	11.89	13.19	0.21	0.91	1.34	3.08	3.60	6.53	
asparag	5.42 ± 0.03	5.63 ± 0.01	5.80 ± 0.02	11.13	10.70	11.74	0.95	1.16	1.33	2.41	3.23	3.90	
imid	3.50 ± 0.02	3.72 ± 0.03	5.09 ± 0.01	6.01	6.23	6.60	-2.21	-1.35	-1.85				
Him	6.06 ± 0.02	6.52 ± 0.01	7.19 ± 0.02	12.72	13.18	13.85	0.35	1.45	1.25	1.58	2.90	4.57	

Table 6. Thermodynamic Quantities Associated with the Dissociation of Some Hydroxamic Acid or Bioligand and the Interaction of Metal Ions with the Ligands at 1:1 and 1:1:1 Molar Ratios and $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$

			pK's or log K					
ligand or complex	cation	$t/^{\circ}C = 15$	25	35	45			
Aha	Н	9.57 ± 0.03	9.40 ± 0.01	9.21 ± 0.04	9.13 ± 0.01			
(1:1) binary complex of Aha	Cu(II)	8.51 ± 0.01	8.20 ± 0.02	8.08 ± 0.01	7.94 ± 0.03			
	Ni(II)	5.66 ± 0.04	5.62 ± 0.01	5.58 ± 0.03	5.48 ± 0.01			
	Co(II)	4.89 ± 0.03	4.86 ± 0.01	4.78 ± 0.01	4.75 ± 0.02			
Sham	Н	8.18 ± 0.01	7.40 ± 0.02	6.85 ± 0.01	6.53 ± 0.02			
	Н	9.85 ± 0.02	9.78 ± 0.01	9.69 ± 0.02	9.63 ± 0.03			
1:1) binary complex of Sham	Cu(II)	14.09 ± 0.02	13.10 ± 0.01	12.98 ± 0.01	12.75 ± 0.02			
	Ni(II)	6.36 ± 0.01	6.08 ± 0.02	5.94 ± 0.03	5.82 ± 0.01			
	Co(II)	6.68 ± 0.03	6.37 ± 0.05	6.30 ± 0.01	6.06 ± 0.03			
spart	Н	3.87 ± 0.01	3.80 ± 0.01	3.72 ± 0.02	3.60 ± 0.02			
1	Н	9.85 ± 0.02	9.77 ± 0.02	9.62 ± 0.03	9.48 ± 0.01			
1:1) binary complex of aspart	Cu(II)	8.87 ± 0.02	8.64 ± 0.02	8.46 ± 0.02	8.27 ± 0.0			
	Ni(II)	7.69 ± 0.01	7.50 ± 0.03	7.33 ± 0.01	7.17 ± 0.04			
	Co(II)	6.27 ± 0.01	6.10 ± 0.01	6.01 ± 0.02	5.90 ± 0.02			
lut	H H	4.15 ± 0.02	4.02 ± 0.02	3.96 ± 0.02	3.89 ± 0.01			
iut	Н	9.87 ± 0.01	9.79 ± 0.02	9.66 ± 0.02	9.60 ± 0.04			
1.1) hinary complex of dut								
1:1) binary complex of glut	Cu(II)	8.75 ± 0.01	8.60 ± 0.02 5.00 ± 0.01	8.38 ± 0.01 5.81 ± 0.02	8.17 ± 0.0 5.72 ± 0.0			
	Ni(II)	6.01 ± 0.02	5.90 ± 0.01	5.81 ± 0.02	5.73 ± 0.03			
	Co(II)	4.72 ± 0.02	4.63 ± 0.02	4.57 ± 0.02	4.52 ± 0.02			
1:1:1) ternary complex of Sham and aspart	Cu(II)	10.43 ± 0.03	10.10 ± 0.02	9.75 ± 0.01	9.39 ± 0.00			
	Ni(II)	8.02 ± 0.02	7.79 ± 0.02	7.52 ± 0.02	7.28 ± 0.04			
	Co(II)	6.55 ± 0.01	6.38 ± 0.02	6.16 ± 0.01	6.00 ± 0.0			
1:1:1) ternary complex of Aha and aspart	Cu(II)	9.57 ± 0.04	9.30 ± 0.02	9.16 ± 0.02	8.84 ± 0.02			
	Ni(II)	6.33 ± 0.01	6.20 ± 0.03	6.03 ± 0.03	5.88 ± 0.0			
	Co(II)	5.82 ± 0.01	5.68 ± 0.01	5.62 ± 0.01	5.52 ± 0.02			
1:1:1) ternary complex of Sham and glut	Cu(II)	9.76 ± 0.01	9.35 ± 0.01	9.18 ± 0.02	8.90 ± 0.01			
, , , ,	Ni(II)	6.37 ± 0.03	6.18 ± 0.02	6.06 ± 0.03	5.95 ± 0.02			
	Co(II)	5.91 ± 0.04	5.98 ± 0.02	5.66 ± 0.01	5.56 ± 0.02			
1:1:1) ternary complex of Aha and glut	Cu(II)	9.08 ± 0.02	8.80 ± 0.01	8.53 ± 0.02	8.32 ± 0.02			
1.1.1) ternary complex of 7 that and grat	Ni(II)	6.07 ± 0.02	5.98 ± 0.01	5.87 ± 0.02	5.78 ± 0.02			
	Co(II)	5.22 ± 0.03	5.14 ± 0.04	5.10 ± 0.02	5.02 ± 0.03			
	C0(II)	5.22 ± 0.05						
ligand or complex		cation	$\frac{\Delta H^{\rm o}}{\rm kJ\cdot mol^{-1}}$	$\frac{\Delta G^{\circ}}{\mathrm{kJ}\boldsymbol{\cdot}\mathrm{mol}^{-1}}$	$\frac{\Delta S^{\mathrm{o}}}{\mathrm{J}\boldsymbol{\cdot}\mathrm{mol}^{-1}\boldsymbol{\cdot}\mathrm{K}^{-1}}$			
Aha		Н	26.83	53.65	-89.97			
(1:1) binary complex of Aha		Cu(II)	-34.65	-46.80	42.12			
(1.1) binary complex of Ana				-40.80				
				22.00	77 16			
		Ni(II)	-8.96	-32.08	77.16			
		Ni(II) Co(II)	-8.96 -7.89	-27.74	67.01			
Sham		Ni(II) Co(II) H	-8.96 -7.89 97.44	-27.74 42.24	67.01 -183.22			
		Ni(II) Co(II) H H	-8.96 -7.89 97.44 13.24	-27.74 42.24 55.82	67.01 -183.22 -142.71			
Sham (1:1) binary complex of Sham		Ni(II) Co(II) H H Cu(II)	-8.96 -7.89 97.44 13.24 -43.10	-27.74 42.24 55.82 -43.71	67.01 -183.22 -142.71 8.60			
		Ni(II) Co(II) H H Cu(II) Ni(II)	-8.96 -7.89 97.44 13.24 -43.10 -20.42	-27.74 42.24 55.82 -43.71 -42.35	67.01 -183.22 -142.71 8.60 73.80			
		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II)	-8.96 -7.89 97.44 13.24 -43.10 -20.42 -18.79	-27.74 42.24 55.82 -43.71 -42.35 -21.25	$ \begin{array}{r} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ \end{array} $			
		Ni(II) Co(II) H H Cu(II) Ni(II)	$ \begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ \end{array} $	-27.74 42.24 55.82 -43.71 -42.35 -21.25 20.69	$\begin{array}{r} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \end{array}$			
(1:1) binary complex of Sham aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H	-8.96 -7.89 97.44 13.24 -43.10 -20.42 -18.79	-27.74 42.24 55.82 -43.71 -42.35 -21.25	$ \begin{array}{r} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ \end{array} $			
(1:1) binary complex of Sham		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H	$ \begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ \end{array} $	-27.74 42.24 55.82 -43.71 -42.35 -21.25 20.69	$\begin{array}{r} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \end{array}$			
(1:1) binary complex of Sham aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H	-8.96 -7.89 97.44 13.24 -43.10 -20.42 -18.79 15.62 22.54	-27.74 42.24 55.82 -43.71 -42.35 -21.25 20.69 56.28	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \end{array}$			
(1:1) binary complex of Sham aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II)	$ \begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ \end{array} $	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \end{array}$			
(1:1) binary complex of Shamaspart(1:1) binary complex of aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \end{array}$			
(1:1) binary complex of Sham aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \end{array}$			
(1:1) binary complex of Shamaspart(1:1) binary complex of aspartglut		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \end{array}$			
(1:1) binary complex of Shamaspart(1:1) binary complex of aspart		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \end{array}$			
(1:1) binary complex of Shamaspart(1:1) binary complex of aspartglut		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Cu(II) Ni(II) Cu(II) Ni(II) Cu(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \end{array}$			
(1:1) binary complex of Shamaspart(1:1) binary complex of aspartglut		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Co(II) Cu(II) Cu(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Cu(II) Ni(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(I	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart (1:1:1) ternary complex of Aha and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(I	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \\ -18.95 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \\ 34.36 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) C	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \\ -24.80 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart (1:1:1) ternary complex of Aha and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \\ -18.95 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \\ 34.36 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart (1:1:1) ternary complex of Aha and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) C	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \\ -24.80 \end{array}$	$\begin{array}{r} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \\ -18.95 \\ -31.20 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \\ 34.36 \\ 22.00 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart (1:1:1) ternary complex of Aha and aspart (1:1:1) ternary complex of Sham and glut 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Cu(II) Cu(II) Ni(II) Cu(II) Cu(II) Ni(II) Cu(I	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \\ -24.80 \\ -24.61 \end{array}$	$\begin{array}{c} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \\ -18.95 \\ -31.20 \\ -20.69 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \\ 34.36 \\ 22.00 \\ 35.04 \end{array}$			
 (1:1) binary complex of Sham aspart (1:1) binary complex of aspart glut (1:1) binary complex of glut (1:1:1) ternary complex of Sham and aspart (1:1:1) ternary complex of Aha and aspart 		Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) H H Cu(II) Ni(II) Co(II) Cu(II) Ni(II) Cu(II) Ni(II) Cu(II) Ni(II) Cu(II) Ni(II) Cu(II) Ni(II) Cu(II) Ni(II)	$\begin{array}{r} -8.96 \\ -7.89 \\ 97.44 \\ 13.24 \\ -43.10 \\ -20.42 \\ -18.79 \\ 15.62 \\ 22.54 \\ -20.56 \\ -16.55 \\ -11.40 \\ 14.68 \\ 16.60 \\ -20.32 \\ -16.28 \\ -5.31 \\ -30.86 \\ -21.98 \\ -16.71 \\ -25.30 \\ -9.41 \\ -8.76 \\ -24.80 \\ -24.61 \\ -10.23 \end{array}$	$\begin{array}{c} -27.74 \\ 42.24 \\ 55.82 \\ -43.71 \\ -42.35 \\ -21.25 \\ 20.69 \\ 56.28 \\ -28.83 \\ -25.02 \\ -20.35 \\ 22.95 \\ 55.88 \\ -28.69 \\ -19.69 \\ -15.45 \\ -33.70 \\ -25.99 \\ -21.29 \\ -31.03 \\ -20.41 \\ -18.95 \\ -31.20 \\ -20.69 \\ -19.30 \end{array}$	$\begin{array}{c} 67.01 \\ -183.22 \\ -142.71 \\ 8.60 \\ 73.80 \\ 9.07 \\ -20.13 \\ -110.90 \\ 27.87 \\ 28.09 \\ 30.22 \\ -27.56 \\ -131.46 \\ 27.98 \\ 58.02 \\ 34.36 \\ 8.86 \\ 12.93 \\ 14.94 \\ 19.70 \\ 36.70 \\ 34.36 \\ 22.00 \\ 35.04 \\ 30.22 \end{array}$			

(aspart and glut). This behavior can be mainly ascribed to the fact that the dicarboxylic acids are much more prone to complex formation than (α -ala, norval, and asparag) as a result of the large difference in their basic strengths as well as their tendency to act as ONO tridentate ligands. Furthermore, with respect to

the dicarboxylic amino acids, it is evident that the stability of binary or mixed ligand complexes containing aspart is higher than that of the corresponding one containing glut. This behavior can be interpreted in terms of the effective basicity of the free conjugate base of the aspart.³⁸ (ii) The stability of

ternary complexes involving α -ala are found to be lower than those containing glycine.²⁷ This behavior does not follow their basicities as expected, probably because the pK_{a2} values of the amino acids are so similar. It is suggested that steric hindrance, caused by the presence of a methyl group on the carbon bearing the amino group (α -ala), is responsible for the lower stability of its ternary complexes.³⁹ (iii) The observed low stabilities of the ternary complexes containing asparag has been described elsewhere.⁴⁰ (iv) Analysis of the titration results for the mixedligand complexes containing α -amino acids showed the formation of 1:1:1 ternary complexes with stability constants higher than those of the corresponding monodentate imidazole complexes. This indicates that amino acids bind through the amino and carboxylate groups.³⁹ (v) The order of stability of the ternary systems with respect to the metal ions studied follows the Irving–Williams series.⁴⁰ (vi) The higher stability of ternary complexes involving His²⁷ or Him than those of α -amino acids reveals that His or Him interacts with the metal ion by the amino and imidazole nitrogen atoms.

The β_{MAL}^{M} constant expresses the stability of the mixed-ligand species, and it does not represent the binding strength between L and M(II) ions directly in the presence of A. This effect is much better reflected by the equilibrium constant, K_{MAL}^{MA} calculated according to eq 1.

$$\log K_{\rm MAL}^{\rm MA} = \log \beta_{\rm MAL}^{\rm M} - \log K_{\rm MA}^{\rm M} \tag{1}$$

Different methods^{35,41} are known to estimate the formation of mixed ligand complexes. The $\Delta \log K$ value is defined as the constant due to the equilibrium MA + ML \Rightarrow MAL + M⁴¹ and provides an insight into the various factors responsible for the formation and stabilization of ternary complexes in the solution, as defined by eq 2

$$\Delta \log K = \log K_{\rm MAL}^{\rm MA} - \log K_{\rm ML}^{\rm M}$$
(2)

In the case of ternary complex formation, negative $\Delta \log K$ values can be explained on the basis of the presence of a fewer number of coordination sites on the MA monocomplexes than on the aquated metal ion. Thus, the secondary ligand (L) is expected to bind the MA complex with a smaller stability constant than that with an aquated metal ion, generally between -0.50 and $-2.0^{.42-44}$ In general, positive $\Delta \log K$ values were obtained, indicating a significant stabilization of the ternary systems (Tables 2 to 5). The higher values of $\Delta \log K$, for the ternary systems involving the aromatic hydroxamic acids (Sham or Bha) than for the aliphatic hydroxamic acid, Aha, may be attributed to the presence of an aromatic ring.^{43,44} $\Delta \log K$ values in general for the ternary systems involving Cu(II) were less positive than for the corresponding other metal ion systems; this observation is in agreement with the different coordination geometries of these metal ions. Contrary to $\Delta \log K$, the values of log X (the constant due to the equilibrium $[MA_2] + [ML_2]$ \Rightarrow 2[MAL],³⁵ the appropriate constants are given in Tables 2 to 5) are much higher for the Cu(II) ion than other M(II) ions; this is due to the relatively small value of $\log K_2$ (Table 1). The values of $\log X$ are higher than that expected on a statistical basis (0.60).^{45,46} This means that the formation of mixed complexes is favored in these systems.

The extra stability in the ternary complexes can be measured by other parameters such as ΔH° , ΔS° , and ΔG° , the thermodynamic parameters associated with the dissociation of ligands as well as metal ligand complexes as evaluated by studying the stability constants of binary and ternary systems of the Aha, Sham, aspart, and glut acid ligands with the Cu(II), Co(II), and Ni(II) metal ions at (15 to 45) °C and $I = 0.10 \text{ mol} \cdot \text{dm}^{-3}$

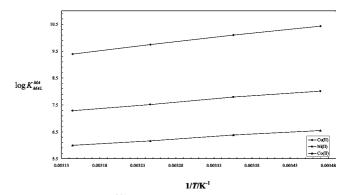
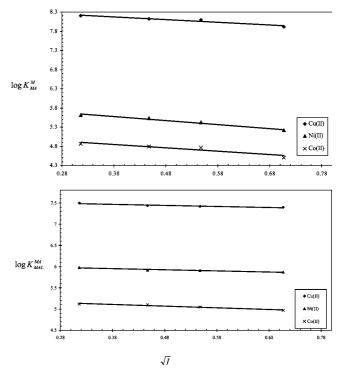



Figure 4. Plot of log K_{MAL}^{MA} for the M(II)–Sham–aspart ternary system vs 1/T at $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$.

Figure 5. Plot of $\log K_{MA}^{MA}$ and $\log K_{MAL}^{MA}$ values for the M(II)–Aha binary and M(II)–Aha–L-val ternary systems vs $I^{1/2}$ at 25 °C.

NaNO₃. In both binary and ternary complexes, stability constants decrease with an increase in temperature (Table 6). The slope of the plot (pK_a or log K vs 1/T) was applied to evaluate the enthalpy change (ΔH°) for the dissociation or complexation process, respectively. The thermodynamic parameters of the dissociation process are recorded in Table 6. The enthalpy changes for the formation of binary systems are exothermic, and the entropy values are positive (Table 6), which confirm that complex formation is entropically favored.⁴⁷ Also, the higher entropy value in all binary systems further supports the bidentate nature of the ligands in the binary complexes.

Figure 4 shows a plot of log K_{MAL}^{MA} for the M(II)–Sham–aspart ternary system versus 1/*T* at $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$. The enthalpy changes for the 1:1:1 mixed ligand complex formation are more negative (more exothermic) than those of the corresponding 1:1 M(II)–A, indicating that the higher negative enthalpy changes favor 1:1:1 mixed ligand complex formation and are responsible for higher stabilities. However, an inverse behavior was observed in case of the Cu(II)–Sham (Table 1) binary system compared to its corresponding ternary ones (Table 6). This may be due to the fact that some more water molecules may still be attached to the metal ion in 1:1 binary systems

Table 7. Dissociation Constants of Aha and L-val and Stability Constants of Their 1:1 Binary and 1:1:1 Ternary Complexes at 25 °C and Different Ionic Strengths

ionic strength,	pKa			$\log K_1^a$		$\log K_1^b$			$\log K_{MAL}^{MA}$		
I NaNO ₃	Aha	L-val	Cu(II)	Ni(II)	Co(II)	Cu(II)	Ni(II)	Co(II)	Cu(II)	Ni(II)	Co(II)
0.00	9.43 ± 0.02	9.76 ± 0.01	8.43 ± 0.01	5.97 ± 0.02	5.18 ± 0.04	8.26 ± 0.02	7.08 ± 0.04	5.39 ± 0.01	7.57 ± 0.01	6.08 ± 0.03	5.26 ± 0.01
0.10	9.35 ± 0.01	9.65 ± 0.04	8.20 ± 0.03	5.62 ± 0.05	4.86 ± 0.03	7.88 ± 0.05	6.68 ± 0.05	5.22 ± 0.05	7.50 ± 0.07	5.98 ± 0.07	5.12 ± 0.07
0.20	9.31 ± 0.03	9.59 ± 0.01	8.12 ± 0.02	5.53 ± 0.03	4.80 ± 0.05	7.75 ± 0.02	6.51 ± 0.02	5.15 ± 0.03	7.44 ± 0.01	5.92 ± 0.01	5.10 ± 0.03
0.30	9.29 ± 0.02	9.56 ± 0.03	8.09 ± 0.04	5.42 ± 0.05	4.77 ± 0.03	7.62 ± 0.03	6.33 ± 0.03	5.10 ± 0.04	7.42 ± 0.02	5.91 ± 0.05	5.05 ± 0.03
0.50	9.25 ± 0.05	9.51 ± 0.03	7.92 ± 0.03	5.22 ± 0.02	4.51 ± 0.07	7.43 ± 0.05	6.18 ± 0.06	5.01 ± 0.04	7.40 ± 0.04	5.87 ± 0.03	4.97 ± 0.05

^{*a*} log $K_1 = \log K_{M(II)-Aha}^{M(II)}$, ^{*b*} log $K_1 = \log K_{M(II)-L-val}^{M(II)}$

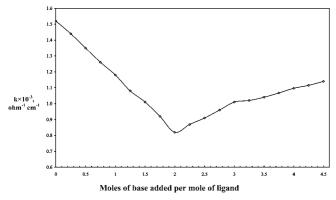


Figure 6. Conductometric titration curve for the Cu(II)-Aha-aspart system.

and, when a 1:1:1 complex is formed, more energy is needed in the bond breaking process.⁴⁸ The values of ΔS° substantiate the suggestion that the different binary and ternary complexes are formed due to coordination of the ligand anion to the metal cation. Furthermore, the positive values of ΔS° suggest also a desolvation of the ligands, resulting in weak solvent–ligand interactions, to the advantage of the metal ion–ligand interaction.⁴⁹

The ternary systems M(II)–valine–Aha (M(II) = Co(II), Ni(II), and Cu(II)) were chosen for studying the effect of ionic strength on the dissociation of the ligands as well as the stability of the 1:1 binary and 1:1:1 ternary complexes. Linear plots were obtained when log K_{MA}^{MA} and log K_{MAL}^{MA} values were plotted against $I^{1/2}$ (Figure 5) in accordance with the Debye–Hückel equation. The thermodynamic equilibrium constants (at I = 0.0) were determined by applying linear regression analysis. The results obtained are reported in Table 7.

The conductometric titration curve for the Cu(II)–Aha–aspart ternary system, taken as a representative curve (Figure 6), shows an inflection at a = 2 (a = moles of base added per mole of ligand). This probably corresponds to the neutralization of 2H⁺ ions resulting from the formation of the Cu(II)–aspart complex. Between 2 < a < 3, the conductance increases slightly, supposedly because of the formation of the ternary complex, and is associated with the release of one proton from Aha. Beyond a = 3, the conductance rapidly rises with further addition of NaOH because of the large conductivity of the hydroxyl ion. According to the above findings, the mode of chelation is in accordance with the results obtained by potentiometric pH titrations.

The addition of ligands caused a slight shift of the cathodic peak to a more negative potential, indicating the formation of binary and ternary complexes in solution. Figure 7 shows the cyclic voltammograms recorded at a platinum electrode for the systems Cu(II)–Sham–aspart, Cu(II)–Sham–glut, Cu(II)–Aha–aspart, and Cu(II)–Aha–glut at scan rate of 25 mV·s⁻¹, pH = 3.50, 25 °C, and I = 0.10 mol·dm⁻³ NaNO₃. The voltamograms show that the half-wave potentials

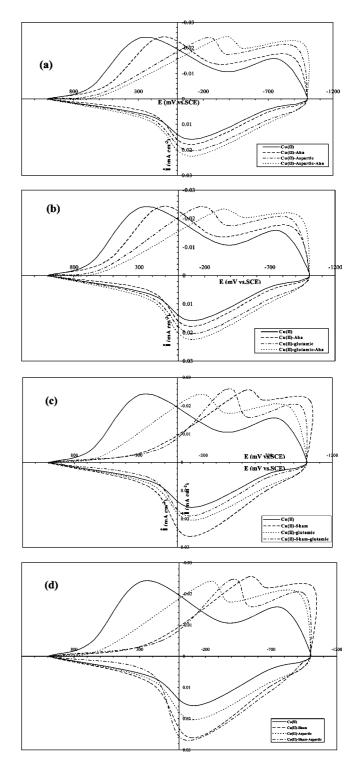


Figure 7. Cyclic voltammograms for the ternary systems (a–d) at 25 °C, $I = 0.10 \text{ mol} \cdot \text{dm}^{-3} \text{ NaNO}_3$, and pH 3.5 with a scan rate of 25 mV·s⁻¹.

depend on the stability constants of the complex species,⁵⁰ as defined by eq 3

$$(E_{1/2})_{\rm C} = E_{1/2} - \frac{RT}{nF} \ln K_{\rm f} - \frac{RT}{nF} \ln a_{\rm L}$$
(3)

where $(E_{1/2})_{\rm C}$ and $E_{1/2}$ are the half-wave potentials for the complexed and uncomplexed cation, respectively, and $K_{\rm f}$ is the stability constant of the complex. It is quite clear that the cyclic voltammograms of the binary and ternary complexes are quite different, and the cathodic peaks are slightly shifted to more negative potentials as well, indicating the formation of the ternary complexes in solution. The main features of the voltammograms are a two-electron oxidation step at positive potentials for the Cu(II) binary and ternary complexes of the above-mentioned systems.

The irreversibility phonomenon increases according to the following sequence:

$$\begin{array}{c} Cu(II)-Aha-glut \rightarrow Cu(II)-Sham-glut \rightarrow \\ Cu(II)-Aha-aspart \rightarrow Cu(II)-Sham-aspart \end{array}$$

Conclusions

The values of the stability constants of the mixed-ligand complexes investigated were discussed. The relative stability of the mixed-ligand complex was compared with that of the binary complex. The mode of chelation was ascertained by conductometric measurements. In addition, the formation of ternary complexes was confirmed by using cyclic voltammetric measurements.

Finally, we concluded that the high stability of mixed-ligand complexes occurs in the ternary systems: transition metal ion/ hydroxamic acid/bioligand, which must be taken into account when modeling the process proceeding in biological systems with the participation of the metal ion and the investigated ligands.

Literature Cited

- Chatterjee, B. Donor Properties of Hydroxamic Acids. Coord. Chem. Rev. 1978, 26 (3), 281–303.
- (2) Stewart, A. O.; Martin, G. J. Synthesis of (1-aryl-1-alkylethyl)alkoxyamines. J. Org. Chem. 1989, 54 (5), 1221–1223.
- (3) Sobolewski, A. L. Study of the Potential Energy Functions Relevant for Hydrogen Transfer in Formamide, its Dimer and its Complex with Water. J. Photochem. Photobiol. Chem. 1995, 89 (2), 89–97.
- (4) Neilands, J. B., Ed. *Microbial Iron Metabolism*; Academic Press: New York, 1974.
- (5) Neilands, J. B. Methodology of Siderophores. Struct. Bonding (Berlin, Ger.) 1984, 58, 1–24.
- (6) Raymond, K. N.; Muller, G.; Matzanke, B. F. Complexation of Iron by Siderophores: A review of their Solution and Structural Chemistry and Biological Function. *Top. Curr. Chem.* **1984**, *123*, 49–102.
- (7) Brown, D. A.; Chidambaram, M. V.; Glennon, J. D. Design of Metal Chelates with Biological Activity. 2. Solution Properties of Iron(III) Glycinehydroxamate. *Inorg. Chem.* **1980**, *19* (11), 3260–3264.
- (8) Brown, D. A.; Roche, A. L. Design of Metal Chelates with Biological Activity. 3. Nickel(II) Complexes of Alkyl and Amino Hydroxamic Acids. *Inorg. Chem.* **1983**, 22 (15), 2199–2202.
- (9) Brown, D. A.; Seckhon., B. S. Metal Chelates with Biological Activity. Part 4. Solution Properties of Iron(III)-Histidinehydroxamic Acid. *Inorg. Chim. Acta* **1984**, *91* (2), 103–108.
- (10) Hase, J.; Kobashi, K. Inhibition of Proteus Vulgaris Urease by Hydroxamic Acids. J. Biochem. (Tokyo, Jpn.) 1967, 62, 293–299.
- (11) Dixon, N. E.; Hinds, J. A.; Fihelly, A. K.; Gazzola, C.; Winzor, D. J.; Blakeley, R. L.; Zerner, B.; Blakely, R. L.; Zerner, B. Jack Bean Urease (EC 3.5.1.5). IV. The Molecular Size and the Mechanism of Inhibition by Hydroxamic Acids. Spectrophotometric Titration of Enzymes with Reversible Inhibitors. *Can. J. Biochem.* **1980**, *58*, 1323–1334.
- (12) Leong., J.; Neilands, J. B. Mechanisms of Siderophore Iron Transport in Enteric Bacteria. J. Bacteriol. 1976, 126, 823–830.
- (13) Raymond, K. N. Biomimetic Metal Encapsulation. *Coord. Chem. Rev.* 1990, 105, 135–153.

- (14) Crumbliss, A. L. In CRC Handbook of Microbial Iron Chelates; Winkelmann, G., Ed.; CRC Press: New York, 1991.
- (15) Harris, W. R.; Chen, Y.; Wein, K. Equilibrium Constants of the Binding of Indium(III) to Human Serum Transferrin. *Inorg. Chem.* **1994**, *33*, 4991–4998.
- (16) Fujii, N.; Saito, T. Hochirality and Life. Chem. Res. 2004, 4, 267–278.
- (17) Karlsson, H. K. R.; Nilsson, P.; Nilsson, J.; Chibalin, A. V.; Zierath, J. R.; Blomstand, E. Branched-Chain Amino Acids Increase p70^{56K} Phosphorylation in Human Skeletal Muscle After Resistance Exercise. Am. J. Physiol.: Endocrinol. Metab. 2004, 287 (1), E1– E7.
- (18) Korotchkina, L. G.; Ciszak, E. M.; Patel, M. S. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by its Structure. *Arch. Biochem. Biophys.* 2004, 429, 171–179.
- (19) Apines-Amar, M. J. S.; Sath, S.; Caipang, C. M. A.; Kiron, V.; Watanabe, T.; Aoki, T. Amino Acid-Chelate Source of Zn, Mn and Cu for Rainbow Trout, Oncorhynchus Mykiss. *Aquaculture* 2004, 240, 345–358.
- (20) Graff, J.; Emerson, S. U. Importance of Amino Acid in Nonstructural Protin 2b for Replication of Hepatitis. A Virus in Cell Culture and in Vivo. J. Med. Virol. 2003, 71, 7–17.
- (21) Mandal, A. K.; Yang, Y.; Kertesz, T. M.; Argello, J. M. Identification of the Transmembrane Metal Binding Site in Cu⁺-Transporting P_{IB}-Type ATP_{ases}. J. Biol. Chem. 2004, 279 (52), 54802–54807.
- (22) Oxford, C.; Taylor, A.; Beitle, R. R.; Coleman, M. R. Effect of Chelated Metal on Amino Acid Transport in Facilitated Transport Membranes Incorporating Metal Affinity. *Polym. Mater. Sci. Eng.* **1997**, 77, 273–274.
- (23) Irving, M. H.; Miles, M. G.; Pettit, L. D. A Study of some Problems in Determining the Stoichiometric Proton Dissociation Constants of Complexes by Potentiometric Titrations Using a Glass Electrode. *Anal. Chem. Acta* **1967**, *38*, 475–488.
- (24) Gans, P.; O'Sullivan, B. Glee, A New Computer Program for Glass Electrode Calibration. *Talanta* **2000**, *51*, 33–37.
- (25) Douheret, G. Liquid Junction Potentials and Effects of the Medium Gluss-Calomal Electrode in such Mixtures. *Bull. Soc. Chim. Fr.* 1968, 3122–3133.
- (26) Kissinger, P. T. Lab Techniques in Electroanalytical Chemistry; CRC Press: Boca Raton, FL, 1982.
- (27) Khalil, M. M.; Fazary, A. E. Potentiometric Studies on Binary and Ternary Complexes of Di- and Trivalent Metal Ions Involving some Hydroxamic Acids, Amino Acids, and Nucleic Acid Components. *Monatsh. Chem.* 2004, 135, 1455–1474.
- (28) Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: New York, 1982; Vol. 5.
- (29) Garcí, B.; Ibeas, S.; Muńoz, A.; Leal, J. M. NMR Studies of Phenylbenzohydroxamic Acid and Kinetics of Complex Formation with Nickel(II). *Inorg. Chem.* 2003, 42, 5434–5441.
- (30) Agrawal, Y. K.; Kapoor, H. L. Stability Constants of Rare Earths with Hydroxamic Acids. J. Inorg. Nucl. Chem. 1977, 39, 479–482.
- (31) Farkas, E.; Bátka, D.; Kremper, G.; Pócsi, I. Structure-Based Differences Detween the Metal Ion Selectivity of two Siderophores Desferrioxamine B (DFB) and Desferricoprogen (DFC): Why DFC is Much Better Pb(II) Sequestering Agent than DFB? J. Inorg. Biochem. 2008, 102 (8), 1654–1659.
- (32) Perrin, D. D. Stability Constants of Metal Ion Complexes: Part B, Organic Ligands; Pergamon press: Oxford, 1979.
- (33) Sigel, H. In Metal Ions in Biological Systems; Marcel Dekker, Inc.: New York, 1973.
- (34) Farkas, E.; Enyedy, È. A.; Micera, G.; Garribba, E. Coordination Modes of Hydroxamic Acids in Copper(II), Nickel(II) and Zinc(II) Mixed-Ligand Complexes in an Aqueous Solution. *Polyhedron* 2000, 19, 1727–1736.
- (35) Sigel, H. Ternary Cu²⁺ Complexes: Stability, Structure, and Reactivity. Angew. Chem., Int. Ed. 1975, 14, 394–402.
- (36) Gans, P.; Vacca, A.; Miniquad, A. General Computer Programme for the Computation of Formation Constants from Potentiometric Data. *Talanta* 1974, 21, 54–57.
- (37) Crea, F.; De Roberties, A.; De Stefano, C.; Sammartano, S. Dioxouranium (VI)-Carboxylates Complexes a Calorimetric and Potentiometric Investigation of Interaction with Oxalate at Infinite Dilution and in NaCl Aqueous Solution at $I = 1.0 \text{ mol L}^{-1}$ and T = 25 °C. *Talanta* **2007**, *71*, 948–963.
- (38) Albert, A.; Serjeant, E. P. *The determination of ionization constants*, 3rd ed.; Chapman and Hall: New York, 1984; pp 167–173.
- (39) Martell, A. E.; Sillen, L. G. Stability Constants of Metal Ion Complexes; The Chemical Society: London, 1971.
- (40) Irving, H. M.; Williams, R. J. P. Stability of Transition Metal Complexes. J. Chem. Soc. 1953, 3192–3210.

Inorg. Chem. 1983, 22 (6), 925–934.
(42) Fischer, B. E.; Sigel, H. Ternary Complexes in Solution: Effect of the Varying. π-Accepting Properties of Several Bipyridyl-Like Ligands on the Stability of Mixed-Ligand Complexes Also Containing Pyrocatecholate and Cobalt(II), Nickel(II), Copper(II), or Zinc(II). Inorg. Chem. 1979, 18 (2), 425–428.

Metal Ion(II)/L-Leucinate Systems and Related Ternary Complexes.

- (43) Clayton, J.; McClure, S. The Ultraviolet Transitions of Benzoic Acid.
 1. Interpretation of the Singlet Absorption Spectrum. J. Am. Chem. Soc. 1979, 101, 2335–2339.
- (44) Clayton, J.; McClure, S. The Ultraviolet Transitions of Benzoic Acid. 2. Hydrogen Bonding in the Ground and Excited States. J. Am. Chem. Soc. 1979, 101, 2340–2343.
- (45) Dewitt, R.; Watters, J. L. Spectrophotometric Investigation of a Mixed Complex of Copper(II) Ion with Oxalate Ion and Ethylenediamine. *J. Am. Chem. Soc.* **1954**, *76*, 3810–3814.

- (46) Kida, S. Investigation on Mixed Complex. I. Spectrophotometric Study of Mixed Complexes Formed by Cupric Ion and Bidentate Ligands. *Bull. Chem. Soc. Jpn.* **1956**, *29*, 805–811.
- (47) El-Bindary, A. A. Thermodynamics of Substituted Coumarin VII: Potentiometric and Spectrophotometric Studies of 1-Acetyl-2-(coumarin-iminecarboxamide-3-yl) hydrazine Transition Metal Complexes. *Spectrosc. Lett.* **1999**, *32* (3), 383–395.
- (48) Tyagi, S.; Gencaslan, S.; Singh, U. P. Nucleic Acid Base Pair and Mispair Interactions with Metal Ions-A thermodynamic Aspect. *J. Chem. Eng. Data* **2003**, *48*, 925–932.
- (49) Offiong, O. E. Formation Constants and Thermodynamic Parameters of α-Pyridoin Thiosemicarbazones with Divalent Metal Ions. *Transition Met. Chem. (Dordrecht, Neth.)* **1998**, 23, 553–556.
- (50) Lingane, J. J. Interpretation of the Polarographic Waves of Complex Metal Ions. *Chem. Rev.* **1941**, 29 (1), 1–35.

Received for review June 2, 2009. Accepted October 2, 2009.

JE900469S