Heat Capacity and Standard Thermodynamic Functions of $NaTi_2(PO_4)_3$ and $NaHf_2(PO_4)_3$

Vladimir I. Pet'kov, Elena A. Asabina, Alexey V. Markin, and Natalia N. Smirnova

Lobachevsky State University of Nizhni Novgorod, Gagarina Pr. 23, Nizhni Novgorod 603950, Russia

Heat capacity measurements of the crystalline phosphates $\operatorname{NaTi}_2(\operatorname{PO}_4)_3$ and $\operatorname{NaHf}_2(\operatorname{PO}_4)_3$ were performed between (6 and 650) K. Their thermodynamic functions, molar heat capacities $C_{p,m}^0$, enthalpy $[H^{\circ}(T) - H^{\circ}(0)]$, entropy $S^{\circ}(T)$, and Gibbs free energy $G^{\circ}(T) - H^{\circ}(0)$, over the range from $T \to 0$ to 650 K, were calculated, and the fractal dimension $D_{\rm fr}$ was evaluated. Standard entropies of formation at T = 298.15 K were estimated to be $[(1174 \pm 2) \text{ and } (1207 \pm 2)] \ J \cdot K^{-1} \cdot \mathrm{mol}^{-1}$ for $\operatorname{NaTi}_2(\operatorname{PO}_4)_3$ and $\operatorname{NaHf}_2(\operatorname{PO}_4)_3$, respectively.

Introduction

Crystalline phosphates of the kosnarite structure type are of interest because of their considerable thermal and chemical stability, resistance to radiation damage, and other valuable physical and chemical properties that lead to industrial application possibilities as constructional and functional ceramics.^{1,2} The mineral kosnarite, $KZr_2(PO_4)_3$, is isostructural with the large class of solid ionic conductors typified by the material NASI-CON, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$,³ and by NZP, $NaZr_2(PO_4)_3$.⁴

The NZP structure is characterized by the high isomorphic capacity of cations of various sizes and oxidation states. The basis of their structure is a three-dimensional framework $\{[L_2(PO_4)_3]^{p-}\}_{3\infty}$ (L is an octahedrally coordinated cation) built up of corner-shared LO₆ octahedra and PO₄ tetrahedra.^{2,4} Two kinds of cavities (1:3 multiplicity) with different oxygen environments, referred to as M1 and M2, are situated within this framework, which is why cations from 0 to 4 per formula unit of the NZP may be included in the structural cavities. In the complex phosphates of sodium and IVB group metals of the general composition NaL₂(PO₄)₃ (L = Ti, Zr, Hf), the crystallographic site M1 is occupied by Na⁺ ions, and M2 sites remain vacant.^{4,5}

Knowledge of the NZP compound thermodynamic functions over a wide temperature range is necessary as they are fundamental characteristics and needed for the different chemical process calculations in which these substances participate. In earlier work⁶ the temperature dependence of the NaZr₂(PO₄)₃ heat capacity was measured over the range from (7 to 640) K, and the standard ($p^{\circ} = 0.1$ MPa) thermochemical parameters of its formation at T = 298.15 K were reported.

The purpose of the present investigation is to measure the heat capacities by adiabatic calorimetry and differential scanning calorimetry over the temperature range of T = (6 to 650) K of the NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ compounds, to calculate the standard thermodynamic functions $(C_{p,m}^0, H^o(T) - H^o(0), S^o(T),$ and $G^o(T) - H^o(0)$) of the phosphates over the range from $T \rightarrow 0 \text{ K}$ to T = 650 K), to determine the characteristic temperatures and fractal dimensions D_{fr} , to establish the structure topology, to calculate the standard entropies of formation at T = 298.15 K of NaTi₂(PO₄)₃(cr) and NaHf₂(PO₄)₃(cr), and to compare the

thermal behavior and thermodynamic characteristics of the series of isostructural compounds $NaL_2(PO_4)_3$ containing IVB group metals where L = Ti, Zr, and Hf.

Experimental Section

Synthesis and Characterization of Samples. The compounds $NaTi_2(PO_4)_3$ and $NaHf_2(PO_4)_3$ were synthesized by solid-state reactions starting from NaCl, TiO₂, HfO(NO₃)₂•2H₂O, and NH₄H₂PO₄. A fine mixture of the stoichiometric amounts of the reactants was dried at 473 K for (10 to 16) h and then thermally processed in unconfirmed air access at (873 and 1073) K for at least 24 h at each stage. Thermal stages were alternated with careful grinding.

All chemicals used were provided by REACHEM,⁷ and their purity was not less than 99.5 % (except for HfO(NO₃)₂•2H₂O, purity > 98 %). The purity of the starting HfO(NO₃)₂•2H₂O is

Table 1.	Results	of Element	Analyses	(Mass	Fraction	w)	on	the
Calorime	tric San	iples ^a						

sample	Na	Ti or Hf	Р	0		
NaTi ₂ P ₃ O ₁₂		w/9	%			
	Electron 1	Microprobe Anal	ysis			
1	5.65	23.80	23.06	47.49		
2	5.64	23.77	22.98	47.61		
3	5.68	23.70	23.10	47.52		
4	5.72	23.76	23.05	47.47		
5	5.66	23.79	23.00	47.55		
average	5.67	23.76	23.04	47.53		
	Chemical Analysis					
	5.73	23.80	22.95	47.52		
NaHf ₂ P ₃ O ₁₂		w/9	6			
	Electron 1	Microprobe Anal	ysis			
1	3.43	53.81	13.90	28.86		
2	3.41	53.70	13.98	29.51		
3	3.49	53.73	13.86	28.92		
4	3.44	53.76	13.95	28.85		
5	3.47	53.79	13.92	28.82		
average	3.45	53.66	13.92	28.87		
	Che	mical Analysis				
	3.49	53.59	14.01	28.91		

^{*a*} Actual composition of $\text{NaTi}_2\text{P}_3\text{O}_{12}$: *w*(Na) = 5.69 %, *w*(Ti) = 23.73 %, *w*(P) = 23.02 %, *w*(O) = 47.56 % and of $\text{NaHf}_2\text{P}_3\text{O}_{12}$: *w*(Na) = 3.46 %, *w*(Hf) = 53.69 %, *w*(P) = 13.98 %, *w*(O) = 28.88 %.

^{*} Corresponding author. E-mail: petkov@inbox.ru.

Table 2. Experimental Molar Heat Capacities of Crystalline NaTi₂(PO₄)₃ ($M = 403.704 \text{ g} \cdot \text{mol}^{-1}$, $p^{\circ} = 0.1 \text{ MPa}$)

Table 2. Experimen				, p - 0.1 mi a)	
T	$C_{p,\mathrm{m}}^{\mathrm{o}}$	T	$C_{p,\mathrm{m}}^{\mathrm{o}}$	T	$C_{p,\mathrm{m}}^{\mathrm{o}}$
К	$J \cdot K^{-1} \cdot mol^{-1}$	K	$J \cdot K^{-1} \cdot mol^{-1}$	K	$J \cdot K^{-1} \cdot mol^{-1}$
		S	eries 1		
7.17	0.135	16.61	2.23	45.01	35.31
7.83	0.169	17.33	2.58	48.56	40.52
8.49	0.228	18.03	2.95	52.13	45.97
9.15	0.295	18.73	3.41	55.71	51.23
9.81	0.373	19.43	3.81	59.31	56.47
10.26	0.445	20.10	4.300	62.92	61.82
10.88	0.540	21.07	7 590	00.34 70.17	72.03
12.15	0.052	25.90	10.91	74.16	79.24
12.83	0.951	29.46	13.83	77.80	85.01
13.63	1.15	31.81	16.86	81.43	90.18
14.41	1.37	34.18	19.97	85.54	96.45
15.16	1.63	37.80	24.94	88.90	101.4
15.89	1.93	41.49	30.14		
		S	eries 2		
81.75	90.81	113.35	135.4	147.97	176.7
84.30	94.70	115.73	138.8	150.93	179.9
87.01	98.52	118.11	141.7	153.90	183.1
89.06	102.0	120.48	145.1	156.86	185.9
91.43	105.3	122.86	147.8	159.83	188.8
93.81	108.7	125.24	150.4	162.79	192.1
90.18	112.3	127.02	155.4	105.70	195.2
98.30	115.5	129.99	150.4	108.75	200.7
103.42	121.6	136.12	163.7	174.67	200.7
105.81	124.9	139.08	166.6	177.64	206.3
108.32	128.4	142.04	170.1	180.63	209.5
110.84	131.9	145.01	173.3	184.36	213.0
187.43	215.8	244.17	260.9	298.62	293.7
190.39	218.8	247.10	263.4	301.14	294.9
193.37	221.7	250.03	265.2	303.97	296.4
196.34	224.2	252.96	267.3	306.76	297.5
199.32	226.4	255.68	269.0	309.55	299.2
202.30	229.0	258.59	270.7	312.32	300.8
203.27	231.0	261.50	272.9	313.60	302.4
208.50	235.7	267.30	276.0	320.60	305.0
214.37	239.0	270.20	277.4	323.34	306.7
217.34	240.9	273.08	279.1	326.07	308.6
220.31	243.3	275.95	281.0	328.79	310.0
223.26	245.7	278.82	282.5	331.51	311.9
226.95	248.8	281.68	284.1	334.51	313.5
229.39	250.8	284.53	285.8	336.39	313.9
232.40	252.6	287.37	287.4	339.08	315.3
235.35	254.5	290.20	289.2	341.75	310.7
230.29	250.7	295.05	291.0	544.41	518.0
271.23	237.1		2 <i>72.</i> 7		
221.0	210	25C 2	eries 3	274 6	222
331.0	312	350.2	324	3763	555 334
336.4	315	359.4	326	378.1	335
339.0	316	361.0	326	379.9	336
341.5	317	362.4	327	381.6	337
344.0	318	363.9	328	383.6	338
346.3	319	365.3	329	385.5	338
348.5	320	367.5	330	387.5	339
350.5	321	369.3	331	389.4	340
352.5	322	371.0	331	391.3	341
354.4	323	372.8	332	393.2	342
395.0	343	423.5	350 257	480.2	380
398.7	344 345	423.5 427 1	358	402.U 183 8	381
400 5	346	429.0	359	485.6	382
402.3	346	430.8	359	487.4	383
404.0	347	432.6	360	489.2	383
405.8	348	434.5	361	491.0	384
407.6	349	436.3	362	492.9	385
409.3	350	438.2	363	494.7	385
411.1	350	440.0	363	496.5	386
412.8	351	441.9	364	498.3	387
414.6	352	443.7	365	500.1	387
416.4	555 254	445.6	366	502.7	388
410.2	334	447.3	307	505.7	202

Т	$C^0_{p,\mathrm{m}}$	Т	$C^0_{p,\mathrm{m}}$	Т	$C_{p,\mathrm{m}}^0$
K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}}$	K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}}$	K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}}$
419.9	354	450.3	368	505.6	389
395.0	343	451.2	368	507.4	390
396.9	344	453.0	369	509.2	391
398.7	345	454.9	370	511.0	391
400.5	346	456.7	370	512.9	392
402.3	346	458.6	371	514.7	393
404.0	347	460.4	372	516.5	393
405.8	348	462.2	373	518.3	394
407.6	349	464.0	373	520.2	395
409.3	350	465.8	374	522.0	395
411.1	350	467.6	375	523.8	396
412.8	351	469.4	376	525.6	396
414.6	352	471.2	376	527.4	397
416.4	353	473.0	377	529.2	398
418.2	354	474.8	378	531.0	398
419.9	354	476.6	379	532.8	399
421.7	355	478.4	379	534.6	399
536.5	400	574.8	411	610.5	420
538.3	401	576.2	412	612.3	420
540.1	401	578.1	412	614.1	420
541.9	402	579.9	413	615.9	421
543.8	402	581.8	413	617.8	421
545.6	403	583.6	413	619.6	421
547.4	403	585.4	414	621.4	422
549.2	404	587.2	414	623.2	422
551.1	405	589.0	415	625.1	423
552.9	405	590.8	415	626.9	423
554.7	406	592.6	416	628.7	423
556.6	406	594.4	416	630.6	424
558.4	407	596.2	417	632.4	424
560.2	407	598.0	417	634.2	424
562.0	408	599.8	417	636.0	424
563.9	408	601.6	418	637.8	425
565.7	409	603.3	418	639.6	425
567.5	409	605.1	419	641.4	425
569.3	410	606.9	419	643.3	426
571.1	410	608.7	419	645.1	426
572.9	411				

explained by the uncertainty in the H_2O content in this chemical. That is why the hafnium concentration in the solution taken for synthesis was confirmed gravimetrically with cupferron, following a documented procedure.⁸

The samples obtained were colorless polycrystalline powders. Confirmation of the desired compounds was obtained on a Shimadzu XRD-6000 powder X-ray diffractometer over the 2θ range of (10 to 60)°. A Cu anode (30 mA and 30 kV) with filtered monochromatic K_a radiation ($\lambda = 1.54178$ Å) was used in the determination. The X-ray patterns of the samples contained only reflections of NaTi₂(PO₄)₃⁹ and NaHf₂(PO₄)₃¹⁰ phosphates, respectively. The symmetry of these crystals was rhombohedral (space group $R\overline{3}c$). The unit cell parameters for the synthesized phosphates were derived from the least-squares refinement of powder X-ray diffraction data: a = 8.479(4) Å, c = 21.77(2) Å, and V = 1355 Å³ for NaTi₂(PO₄)₃, and a = 8.780(5) Å, c = 22.62(3) Å, and V = 1510 Å³ for NaHf₂(PO₄)₃. These agreed favorably with those reported elsewhere.^{9,10}

The IR spectra of the samples were recorded on an IR Fourier spectrometer FSM-1201 over the range of (1400 to 400) cm⁻¹. They agreed with data presented elsewhere¹¹ and showed no evidence of condensed phosphate groups.

The homogeneity and chemical composition of the samples were checked by electron microprobe analysis on a CamScan MV-2300 device with a Link Inca Energy 200C energy dispersion detector operated at 20.0 kV. The results showed the homogeneity of the calorimetric samples. Microprobe analysis (Table 1) confirmed the stoichiometry of the samples

to be close to the theoretical composition of $NaTi_2P_3O_{12}$ and $NaHf_2P_3O_{12}$. There were no substantial impurities (within 0.5 %) of other elements in the samples.

The chemical compositions of the samples were also confirmed by chemical analysis. Known masses of the samples were dissolved in the HF aqueous solutions. The sodium mass contents were determined by an atomic absorption method on a Perkin-Elmer device. The titanium and hafnium mass contents were determined gravimetrically with cupferron, following a demonstrated procedure.⁸ The phosphorus mass contents were determined colorimetrically according to the method employing solutions of ammonium vanadate and ammonium molybdate.¹² Owing to the presence of fluoride, colorimetric determinations were performed with perspex cells on a SF-46 spectrophotometer. Results of analyses (Table 1) proved that the stoichiometries of the obtained samples were close to ideal.

Adiabatic Calorimetry. A precision automatic adiabatic calorimeter (BCT-3) was used to measure heat capacities over the temperature range of $6 \le (T/K) \le 350$. The calorimeter was established in the Termis joint-stock company at the All-Russian Metrology Research Institute, Moscow region, Russia. The principle and structure of the adiabatic calorimeter are described in detail elsewhere.^{13,14} Briefly, all measurements were monitored by a complex-measuring system consisting of a computer, analog-to-digital and digital-to-analog converters, and a switch. The calorimetric ampule is a thin-walled cylindrical vessel made from titanium of $1.5 \cdot 10^{-6}$ m³. Its mass is 2.0400 g. A miniature iron—rhodium resistance thermometer (a nominal

Table 3. Experimental Molar Heat Capacities of Crystalline NaHf₂(PO₄)₃ ($M = 664.884 \text{ g} \cdot \text{mol}^{-1}, p^{\circ} = 0.1 \text{ MPa}$)

			$C_{4)3} (m - 004.004 \text{ g mor})$	$\frac{p}{T}$	C ⁰
K	$\frac{\mathbf{C}_{p,\mathbf{m}}}{\mathbf{I}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1}}$	<u></u>	$\frac{\mathbf{C}_{p,\mathbf{m}}}{\mathbf{I}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1}}$	<u> </u>	$\frac{C_{p,m}}{\mathbf{I} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}}$
IX	J IX III01		arias 1	IX	J IX III01
6.03	0 190	ن 25 33	13.01	58.15	58 57
7.27	0.320	27.97	16.78	60.61	61.70
8.51	0.510	30.58	20.66	63.14	65.07
9.75	0.740	33.18	24.40	65.61	68.54
10.99	1.17	35.76	28.09	68.03	71.80
12.23	1.66	38.28	31.91	70.45	75.29
13.48	2.21	40.80	35.37	72.85	78.58
14.72	2.85	43.31	39.15	75.29	81.81
15.96	3.71	45.79	42.57	//./4	85.10
1/.10	4.03	48.27	45.88	80.18	88.32
10.45	5.78	53.75	49.04	85.04	91.50
22.56	9 760	55.69	55.41	87.48	97 50
2210 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00105		0,110	27120
02 57	02 50	110.52	eries 2	155.00	169.1
83.37 86 77	92.59	119.52	135./	155.00	108.1
89.82	100.4	122.49	130.0	157.95	170.7
92.85	104.1	128.44	142.4	163.85	175.5
95.88	107.8	131.41	145.4	166.80	178.7
98.89	111.2	134.37	148.5	169.71	181.3
101.90	114.5	137.32	151.7	172.63	183.8
104.89	118.1	140.28	154.7	175.70	186.7
107.89	121.4	143.23	157.5	178.48	189.2
110.89	124.5	146.18	160.3	181.39	192.0
113.87	127.7	149.12	162.8	184.31	194.8
116.85	130.9	152.06	165.7	187.22	197.1
		S	eries 3		
184.11	194.5	244.40	247.4	300.95	294.4
188.28	198.2	248.80	251.0	302.62	295.6
192.33	201.6	252.59	254.5	305.60	298.0
196.37	205.1	256.58	257.9	309.02	300.6
200.40	208.7	260.58	261.2	312.30	303.2
204.42	212.1	264.57	264.5	315.30	305.5
208.45	215.7	268.56	267.7	318.72	308.1
212.47	219.2	272.56	2/1.3	321.84	310.4
210.49	222.9	270.55	274.9	324.93	313.2
220.32	220.1	280.34	278.5	327.94	317.0
224.50	233.1	288.49	284.6	333.40	318.9
232.58	236.8	292.70	288.0	336.63	321.4
236.30	240.0	295.90	290.5	339.39	323.1
240.59	244.0	298.12	292.2		
		S	Series 4		
322.9	311	351.2	331	378.9	349
324.9	312	353.2	332	380.7	350
326.9	314	355.2	334	382.6	351
328.9	316	357.2	335	384.4	353
331.0	317	359.2	336	386.1	354
333.0	319	361.3	338	387.9	355
335.0	320	363.3	339	389.7	356
557.0	522	365.3	340	391.4	351 250
339.0 341 1	323 325	307.3 360 3	342 343	373.2 304 8	538 350
341.1	325	309.5	343 345	3967	360
345 1	327	373.2	346	398.4	361
347.1	329	375.1	347	399.7	361
349.2	330	377.0	348	401.9	363
403.7	364	459.8	390	516.7	413
405.5	364	461.7	391	518.5	413
407.2	365	463.5	392	520.2	414
409.0	366	465.4	392	522.0	415
410.8	367	467.2	393	523.8	416
412.6	368	469.1	394	525.5	416
414.4	369	470.9	395	527.3	416
416.2	370	472.8	395	529.1	41/
418.0	3/1 271	4/4.0	390 207	530.9 520 7	418
419.9 201 7	371	470.3	308	534.6	419
423.6	372	480.2	399	536.4	420
425.4	374	482.0	399	538.2	420
427.3	375	483.9	400	540.1	421
429.2	376	485.7	401	541.9	422

Table	3	Continued
Lanc	9	Commutu

Т	$C_{p,\mathrm{m}}^0$	Т	$C_{p,\mathrm{m}}^0$	Т	$C_{p,\mathrm{m}}^0$
K	$\overline{\mathbf{J} \boldsymbol{\cdot} \mathbf{K}^{-1} \boldsymbol{\cdot} \mathbf{mol}^{-1}}$	K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}}$	K	$\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}}$
431.0	377	487.6	401	543.7	423
432.9	377	489.4	403	545.5	423
434.7	378	491.3	403	547.3	424
436.5	379	493.2	404	549.1	424
438.6	380	495.0	405	550.9	425
440.1	381	496.9	406	552.7	425
441.9	382	498.7	406	554.5	426
443.8	382	500.6	407	556.3	427
445.5	383	502.4	408	558.1	427
447.4	384	504.2	408	559.9	427
449.1	385	506.0	409	561.8	428
450.9	386	507.8	410	563.6	429
452.7	387	509.6	410	565.5	429
454.5	388	511.4	411	567.3	430
456.2	388	513.1	412	569.1	431
458.0	389	514.9	412	571.0	431
572.8	432	599.8	439	624.9	444
574.6	432	601.6	439	626.7	445
576.4	433	603.4	440	628.5	445
578.2	433	605.1	440	630.3	445
580.0	434	606.9	440	632.1	446
581.9	434	608.7	441	633.9	446
583.7	435	610.5	441	635.7	446
585.5	435	612.3	442	637.5	447
587.3	435	614.1	442	639.3	447
589.1	436	615.9	443	641.2	447
590.9	436	617.7	443	643.0	447
592.7	437	619.5	443	644.9	447
594.5	438	621.3	444	646.8	448
596.3	438	623.1	444	648.6	448
598.0	438				

 $C_{p,\mathfrak{m}}^{0}$, J·K⁻¹·mol⁻¹

Figure 1. Temperature dependence of the heat capacity of the crystalline substances: $NaHf_2(PO_4)_3$ (1) and $NaTi_2(PO_4)_3$ (2).

resistance of 100 Ω) was applied to measure the temperature of the sample. The thermometer was calibrated on the basis of IST-90 by the Russian Metrology Research Institute, Moscow region, Russia. The difference in temperature between the ampule and an adiabatic shield was controlled by a four-junction copper—iron—chromel thermocouple. The sensitivity of the thermometric circuit was $1 \cdot 10^{-3}$ K and of the analog-to-digital converter 0.1 μ V. The energy introduced into the sample cell and the equillibrium temperature of the cell after the energy input were automatically recorded and processed online by a computer. The speed of the computer-measuring system was 10 measurements per second. To verify the accuracy of the calorimeter, the heat capacities of the standard reference materials (K-2 benzoic acid and α -Al₂O₃)^{15,16} prepared at the Institute of Metrology of the State Standard Committee of the Russian Federation were measured over the temperature range of $6 \le (T/K) \le 350$. The sample masses were (0.7682 and 1.5000) g, respectively. It was established that the apparatus and the measurement technique enable the determination of the heat capacities of substances with an error not exceeding ± 2 % over the temperature range of $6 \le (T/K) \le 15, \pm 0.5$ % between T = (15 and 40) K and ± 0.2 % over the temperature range $40 \le (T/K) \le 350$ and the measuring of the phase transition temperatures within about \pm 0.01 K and the enthalpies of transitions with the error of ± 0.2 %.

Heat capacity measurements were continuously and automatically carried out by means of the standard method of intermittently heating the sample and alternately measuring the temperature. The heating rate and temperature increments were controlled at 0.01 K \cdot s⁻¹ and (0.5 to 2) K. The heating duration was ~ 10 min, and the temperature drift rates of the sample cell measured in an equilibrium period were always kept within 0.01 $K \cdot s^{-1}$ during the acquisition of all heat capacity results. Liquid helium and nitrogen were used as coolants. The ampule with the substance was filled with dry helium as a heat exchange gas to the pressure of 4 kPa at room temperature. The sample masses used for calorimetric measurements were (1.013 and 1.250) g for NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃, respectively. The molar masses of the objects under study were calculated from the IUPAC table of atomic weights.¹⁷ The experimental values of $C_{p,m}^0$ (136 and 119 points for NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃, respectively) were obtained in the experiments.

Differential Scanning Calorimetry. An automatic thermoanalytical complex, namely, a differential scanning calorimeter operating on the principle of a triple thermal bridge (ADCTTB),

Table 4.	Smoothed	Molar Heat	Capacities	and Th	nermodyna	imic
Functions	of Crystal	lline NaTi ₂ (l	$PO_{4}_{3}(M =$	403.704	4 g·mol ⁻¹ ,	$p^{0} =$
0.1 MPa)						-

 $S^{o}(T)$

 $\overline{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}}$

0.0352

0.280

0.963

2.371

4.592

7.514

11.11

15.20

19.66

24.37

34.28

44.69

55.54

66.64

77.87

89.13

100.3

111.5

122.5

133.5

144.4

155.1

165.8

176.3

186.8

197.1

207.4

217.7

227.9

238.0

248.0

258.0

268.0

277.9

285.9

287.7

297.4

307.1

316.8

326.3

335.8

345.2

354.5

364

373

382

391

400

417

435

451

468

484

500

515

530

545

559

574

580

 $-[G^{0}(T) - H^{0}(0)]$

 $kJ \cdot mol^{-1}$

0.0000440

0.000704

0.00354

0.01157

0.02862

0.05841

0.1048

0.1706

0.2575

0.3675

0.6604

1.055

1.556

2.167

2.889

3.724

4.672

5.731

6.902

8.181

9.572

11.07

12.67

14.38

16.20

18.12

20.14

22.27

24.50

26.82

29.25

31.78

34.41

37.14

39.44

39.97

42.90

45.92

49.04

52.25

55.56

58.97

62.47

66.1

69.7

73.5

77.4

81.3

89.5

98.0

107

116

126

135

146

156

167

178

189

195

Table 5. Smoothed Molar Heat Capacities and Thermodynamic
Functions of Crystalline NaHf ₂ (PO ₄) ₃ ($M = 664.884 \text{ g} \cdot \text{mol}^{-1}, p^{\circ} =$
0.1 MPa)

 $[H^{0}(T) - H^{0}(0)]$

kJ∙mol⁻¹

0.000100

0.00210

0.03580

0.08620

0.1670

0.2840

0.4373

0.6270

0.8511

1.397

2.074

2.888

3.831

4.898

6.081

7.368

8.762

10.25

11.85

13.53

15.30

17.16

19.11

21.15

23.28

25.50

27.80

30.19

32.67

35.23

37.88

40.62

43.44

45.79

46.33

49.31

52.36

55.49

58.69

61.96

65.30

68.70

72.2

75.7

79.3

82.9

86.6

94.1

102

110

118

126

134

143

151

160

169

178

182

0.0109

Т

Κ

5

10

15

20

25

30

35

40

45

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320 330

340

350

360

370

380

390

400

410

420

440

460

480

500

520

540

560

580

600

620

640

650

298.15

 $C_{p,m}^0$

 $J \cdot K^{-1} \cdot mol^{-1}$

0.106

0.840

3.05

7.250

12.59

19.78

27.03

34.33

41.47

48.16

60.92

74.59

88.04

100.6

112.6

123.6

134.2

144.0

154.4

163.8

172.7

181.5

190.8

199.7

208.4

217.2

225.9

234.6

243.5

252.2

260.7

269.1

277.8

285.9

292.3

293.6

301.4

309.1

316.5

323.6

330.5

337.1

343.5

350

356

362

367

371

381

390

398

407

414

421

428

434

439

443

447

448

Т	$C_{p,\mathrm{m}}^0$	$[H^{\rm o}(T)-H^{\rm o}(0)]$	$S^{o}(T)$	$-[G^{o}(T) - H^{o}(0)]$	
K	$\overline{J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}}$	kJ∙mol ^{−1}	$\overline{J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}}$	kJ∙mol ^{−1}	
5	0.0502	0.000100	0.0167	0.0000210	
10	0.400	0.00100	0.133	0.000326	
15	1.58	0.00540	0.477	0.00172	
20	4.221	0.01920	1.247	0.005749	
25	8.649	0.05070	2.630	0.01504	
30	14.55	0.1081	4.712	0.03326	
35	21.09	0.1971	7.438	0.06328	
40	28.02	0.3197	10.70	0.1084	
45	35.27	0.4778	14.42	0.1711	
50	42.74	0.6727	18.52	0.2534	
60	57.51	1.174	27.62	0.4832	
70	72.69	1.825	37.62	0.8088	
80	88.18	2.629	48.34	1.238	
90	103.1	3.587	59.60	1.777	
100	117.2	4.689	/1.20	2.431	
110	130.8	5.929	85.01	3.202	
120	144.5	7.305	94.97	4.092	
130	150.5	8.809	107.0	5.102	
140	107.0	10.45	121.0	0.232	
150	180 2	14.00	1/2 8	8 851	
170	109.2	15.05	154.6	10.34	
180	209.0	17.99	166.3	11.94	
190	218.2	20.13	177.8	13.66	
200	227.0	22.35	189.3	15.50	
210	235.4	24.66	200.5	17.45	
220	243.3	27.06	211.7	19.51	
230	250.8	29.53	222.7	21.68	
240	258.1	32.07	233.5	23.96	
250	265.3	34.69	244.2	26.35	
260	271.5	37.37	254.7	28.85	
270	277.6	40.12	265.0	31.44	
280	283.5	42.93	275.3	34.15	
290	289.0	45.79	285.3	36.95	
298.15	293.2	48.16	293.4	39.31	
210	294.4	48.70	295.2	39.85	
220	299.9	51.08	304.9	42.85	
220	303.5	57.79	224.0	45.95	
240	215.6	57.78	222.4	49.14 52.42	
340	320.9	64.10	342.6	55.81	
360	325.9	67.33	351.7	59.28	
370	330.9	70.61	360.7	62.84	
380	336	73.9	370	66.5	
390	341	77.3	378	70.2	
400	345	80.8	387	74.1	
420	355	87.8	404	82.0	
440	363	94.9	421	90.2	
460	372	102	437	98.8	
480	380	110	453	108	
500	387	117	469	117	
520	395	125	484	126	
540	401	133	499	136	
560	407	141	514	140	
580	413	150	528 542	15/	
500 520	417	150	542 556	170	
640	422	175	570	190	
650	42.7	179	576	196	
		117	570		

was used to measure the heat capacities over the temperature range of $330 \leq (T/K) \leq 650$.¹⁸ The design of the device and the measurement procedure of the heat capacities were demonstrated in detail.¹⁸ The reliability of the calorimeter operation was checked by measuring the heat capacity of a standard sample of synthetic corundum and the thermodynamic characteristics of fusion of indium, tin, and lead. As a result of the calibrations, it was found that the calorimeter and the measurement technique make it possible to obtain the heat capacity values with a maximum error of ± 2 % and the transformation temperatures within 0.5 K. Since the heat capacity of the compound examined was also measured over the temperature range of $330 \leq (T/K) \leq 350$ in the adiabatic calorimeter with

an error of ± 0.2 % and the conditions of measurements in the dynamic device were chosen such that within the above temperature interval the $C_{p,m}^0$ values measured with the use of both calorimeters coincided, it was assumed that at $T \ge 350$ K the heat capacities were determined with an error of $\pm (0.5 \text{ to } 2.0)$ %. The results for the heat capacity of the objects under study were obtained over the range of $330 \le (T/\text{K}) \le 650$ at the average rate of heating of the calorimeter and the substance of $1.5 \text{ K} \cdot \text{s}^{-1}$. The sample masses used for the calorimetric measurements were (0.9720 and 0.4704) g for $\text{NaTi}_2(\text{PO}_4)_3$ and $\text{NaHf}_2(\text{PO}_4)_3$, respectively.

Table 6. Parameters of the Debye Heat Capacity Functions for $NaTi_2(PO_4)_3$ and $NaHf_2(PO_4)_3$

substance	Θ_D/K	δ /%	temperature interval/K
NaTi ₂ (PO ₄) ₃	169.1	1.1	7 to 12
NaHf ₂ (PO ₄) ₃	132.0	1.0	6 to 11

Results and Discussion

All experimental results of the molar heat capacities of NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ over the range from T = (6 to 650) K are shown in Tables 2 and 3 and plotted in Figure 1. The heat capacities of the samples were between (30 and 70) % of the overall heat capacity of the calorimetric ampules with the substances under temperature change from (6 to 650) K.

The heat capacities of the samples rise gradually with increasing temperature, and no phase changes or thermal decompositions occurred.

The experimental points of $C_{p,m}^0$ in the above temperature interval were fitted by means of the least-squares method using polynomial dependences, and the smoothed heat capacity values are shown in Tables 4 and 5. The root-mean-square deviations of the experimental points from the smoothed $C_{p,m}^0 = f(T)$ curves were within ± 0.6 % in the range $T = (6 \text{ to } 80) \text{ K}, \pm 0.3$ % from $T = (80 \text{ to } 200) \text{ K}, \pm 0.05$ % between T = (200 to 350) K, and ± 0.5 % over the range T = (350 to 650) K, for both samples under study.

As Figure 1 illustrates, the phosphates do not undergo phase transitions in the studied temperature interval. It is seen that the temperature dependences of the molar heat capacities of NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ cross: at 100 \leq (*T*/K) \leq 300 the $C_{p,m}^{0}$ (NaTi₂(PO₄)₃) > $C_{p,m}^{0}$ (NaHf₂(PO₄)₃), and at $T \geq$ 300 K the $C_{p,m}^{0}$ (NaTi₂(PO₄)₃) < $C_{p,m}^{0}$ (NaHf₂(PO₄)₃). It may be explained by the influence of sample's density on its heat capacity. The larger ionic radius and bigger molar mass of the framework-forming cation Hf⁴⁺ (compared with Ti⁴⁺) differently influence the density of the hafnium sample (compared with titanium sample). At high temperatures the heat capacities of both samples are close to the value theoretically predicted from the Dulong and Pti rule: $C_{0,m}^{0}$ (predicted) = $3RN = 3 \cdot 8.314 \cdot 18 = 449$ J·K⁻¹·mol⁻¹ (where *N* is number of atoms in the formula unit).

The values of the fractal dimension $D_{\rm fr}$ for NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ were determined from the experimental results of their heat capacities. In the fractal theory of the heat capacity^{19–21} of solids, $D_{\rm fr}$ is the exponent at *T* in the $C_{\nu,m}^0 = f(T)$ function. The significance of the $D_{\rm fr}$ value for solids gives information on the topology type of their structure. The relation "heat capacity versus *T*" is proportional to T^1 in the lower temperature range for chain-structured bodies, T^2 for solids with layer structures, and T^3 in the case of three-dimensional structures.

For sufficient accuracy, it can be taken that isobaric and isochoric heat capacities are equal at temperatures below 50 K. From the ln $C_{p,m}^{0}$ versus ln*T* plot, it is found that at temperatures between (20 and 45) K $D_{fr} = 3$ for NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃, within uncertainties of (1.1 and 1.0) %, respectively. This means that crystalline NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ have three-dimensional structures.

At lower temperatures, to calculate the thermodynamic functions (Tables 4 and 5), the heat capacities of the studied phosphates were described by the Debye function, $C_{p,m}^0 \sim T^3$:

$$C_{p,\mathrm{m}}^0 = nD(\Theta_D/T)$$

where *D* denotes the Debye heat capacity function and *n* and Θ_D are specially selected parameters. Their values for NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ and uncertainties of their deter-

Table 7. Absolute Entropies of the Simple Substances Necessary to Calculate the Standard Entropy of Formation of $NaTi_2(PO_4)_3$ and $NaHf_2(PO_4)_3$; T = 298.15 K, p = 0.1 MPa

substance	physical state ^a	$\Delta_0^{298.15}{}^{\rm K}S^0_{\rm m}/{\rm J}{\scriptstyle \bullet}{\rm K}^{-1}{\scriptstyle \bullet}{\rm mol}^{-1}$
Na	cr	51.30 ± 0.02
Ti	cr	30.72 ± 0.10
Hf	cr	43.555 ± 0.209
Р	cr, white	41.09 ± 0.25
O_2	g	205.152 ± 0.005

^{*a*} cr, crystalline; g, gaseous.

mination are presented in Table 6. While calculating the thermodynamic functions, it was assumed that, at T < (6 or 7) K, this equation reproduces the $C_{p,m}^0$ values of NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ almost with the same accuracies.

The thermodynamic functions of crystalline NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ were calculated from the $C_{p,m}^0 = f(T)$ curves in the range from (0 to 650) K. The enthalpies $[H^o(T) - H^o(0)]$ and entropies $S^o(T)$ were calculated by numerical integration of the curves with respect to *T* and ln *T*, respectively. The Gibbs functions $[G^o(T) - H^o(0)]$ were calculated from $[H^o(T) - H^o(0)]$ and $S^o(T)$ values at respective temperatures.²² The uncertainties for the function values are ± 2 % at T < 15 K, ± 0.5 % from (15 to 40) K, ± 0.3 % from T = (40 to 350) K, and ± 1.5 % in the temperature range between T = (350 and 650) K.

Using the value of the absolute entropies (Tables 4 and 5) and the elemental substances^{23,24} (Table 7), the standard entropies of NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ formation at T = 298.15 K were estimated to be [(1174 ± 2) and (1207 ± 2)] J·K⁻¹·mol⁻¹, respectively.

The values obtained fit to the following equations:

Na(cr) + 2Ti(cr) + 3P(cr, white) +
$$6O_2(g) =$$

NaTi₂(PO₄)₃(cr)

and

$$Na(cr) + 2Hf(cr) + 3P(cr, white) + 6O_2(g) =$$

NaHf₂(PO₄)₂(cr)

Conclusions

The general aim of these investigations was to report the results of a thermodynamic study of the NaTi₂(PO₄)₃ and NaHf₂(PO₄)₃ compounds belonging to the kosnarite structure type. The heat capacities of these phosphates were measured by adiabatic calorimetry and differential scanning calorimetry in the temperature range from [(6 or 7) to 650] K. The standard thermodynamic functions for $NaTi_2(PO_4)_3(cr)$ and NaHf₂(PO₄)₃(cr), $C_{p,m}^0$, $[H^o(T) - H^o(0)]$, $S^o(T)$, and $[G^o(T) - H^o(0)]$ $H^{0}(0)$], over the range from $T \rightarrow 0$ to T = 650 K and the standard entropies of formation at T = 298.15 K were derived from these experimental results. The low-temperature ($T \leq 50$ K) dependences of the heat capacity were analyzed on the basis of the heat capacity theory of Debye and the multifractal variant, and as a result, their three-dimensional structure was established. The thermodynamic characteristics of the studied compounds were compared.

Supporting Information Available:

Tables with the experimental molar heat capacities of crystalline $NaHf_2(PO_4)_3$ and $NaTi_2(PO_4)_3$. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

 Scheetz, B. E.; Agrawal, D. K.; Breval, E.; Roy, R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review. *Waste Manage. (Amsterdam, Neth.)* **1994**, *14*, 489–505.

- (2) Pet'kov, V. I.; Orlova, A. I. Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family. *Inorg. Mater.* 2003, *39*, 1013–1023.
- (3) Vashihta, E. A., Ed. Fast Ion Transport in Solids; North-Holland: New York, 1979; p 744.
- (4) Hong, H. Y.-P. Crystal structures and crystal chemistry in the system Na_{1+x}Zr₂Si_xP_{3-x}O₁₂. *Mater. Res. Bull.* **1976**, *11*, 173–182.
- (5) Hagman, L. O.; Kierkegaard, P. The crystal structure of NaMe₂(PO₄)₃, Me = Ge, Ti, Zr. Acta Chem. Scand. **1968**, 22, 1822–1832.
- (6) Pet'kov, V. I.; Kir'yanov, K. V.; Orlova, A. I.; Kitaev, D. B. Thermodynamic properties of compounds of the MZr₂(PO₄)₃ composition (M = Na, K, Rb or Cs). *J. Therm. Anal. Calorim.* **2001**, *65*, 381– 389.
- (7) Chemical reagents and high-pure chemicals, catalog; Khimia: Moscow, 1990.
- (8) Hillebrand, W., Lundell, G., Eds. Applied inorganic analysis; John Wiley & Sons, Inc.: New York, 1953.
- (9) Rodrigo, J. L.; Carrasco, P.; Alamo, J. Thermal expansion of NaTi₂(PO₄)₃ studied by Rietveld method from X-ray diffraction data. *J. Mater. Res. Bull.* **1989**, *24*, 611–618.
- (10) Taylor, B. E.; English, A. D.; Berzins, T. New solid ionic conductors. *Mater. Res. Bull.* **1977**, *12*, 171–181.
- (11) Pet'kov, V. I.; Asabina, E. A.; Markin, A. V.; Smirnova, N. N. Synthesis, characterization and thermodynamic data of compounds with NZP structure. J. Therm. Anal. Calorim. 2008, 91, 155–161.
- (12) Umbland, F., Janssen, A., Thierig, D., Wünsch G., Eds. *Theorie und praktisch anwendung von komplexbildnern*; Akademisch verlagsgesellschaft: Frankfurt Am Main, 1971.
- (13) Varuschenko, R. M.; Druzhinina, A. I.; Sorkin, E. L. Low temperature heat capacity of 1-bromoperfluorooctane. J. Chem. Thermodyn. 1997, 29, 623–637.

- (14) Malyshev, V. M.; Milner, G. A.; Sorkin, E. L.; Shibakin, V. F. An automatic and low-temperature calorimeter. *Prib. Tekh. Eksp.* **1985**, *6*, 195–197.
- (15) Ginnings, D. C.; Furukawa, G. T. Heat capacity standards for the range 14 to 1200 K. J. Am. Chem. Soc. 1953, 75, 522–527.
- (16) Gatta, G. T.; Richardson, M. J.; Sarge, S. M.; Stolen, S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential calorimetry. *Pure Appl. Chem.* 2006, 78, 1455–1476.
- (17) Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 667–683.
- (18) Kabo, A. G.; Diky, V. V. Details of calibration of a scanning calorimeter of the triple heat bridge type. *Thermochim. Acta* 2000, 347, 79–84.
- (19) Yakubov, T. S. About heat capacity of solids having fractal character. Dokl. Akad. Nauk SSSR 1990, 310, 145–149.
- (20) Izotov, A. D.; Shebershnyova, O. V.; Gavrichev, K. S. In *Fractal model of low-temperature heat capacity*, Third All-Union Conference on Thermal Analysis and Calorimetry, Kazan, 1996.
- (21) Lazarev, V. B.; Izotov, A. D.; Gavrichev, K. S.; Shebersheneva, O. V. Fractal model of heat capacity for substances with diamond-like structures. *Thermochim. Acta* **1995**, *269*, 109–1116.
- (22) McCullough, J. P.; Scott, D. W. *Calorimetry of Non-reacting Systems*; Butterworth: London, 1968.
- (23) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for Thermodynamics; Hemisphere Publishing Corp.: New York, 1984; p 1.
- (24) Glushko, V. P., Ed. Thermal constants of substances, Issues 1–9; Nauka: Moscow, 1965–1981.

Received for review June 11, 2009. Accepted November 6, 2009.

JE900494G