Excess Molar Volumes and Sound Speed in (Phenylacetonitrile + 1,2-Dichloroethane), (Phenylacetonitrile + 1,1,2-Trichloroethane), (Phenylacetonitrile + 1,1,2,2-Tetrachloroethane), (Phenylacetonitrile + Trichloroethene), and (Phenylacetonitrile + Tetrachloroethene) at Temperatures of (303.15, 308.15, and 313.15) K

Asra Banu Syeda, Amara Jyothi Koppula, Sathyanarayana Boodida, and Satyanarayana Nallani*

Department of Chemistry, Kakatiya University, Warangal-506 009, Andhra Pradesh, India

The present paper reports the experimental data for density ρ , viscosity η , and speed of sound u in (phenylacetonitrile + 1,2-dichloroethane), (phenylacetonitrile + 1,1,2-trichloroethane), (phenylacetonitrile + 1,1,2,2-tetrachloroethane), (phenylacetonitrile + trichloroethene), and (phenylacetonitrile + tetrachloroethene) over the entire range of composition at T = (303.15 to 313.15) K. These values have been used to calculate the excess molar volumes V^{E} and deviation in isentropic compressibility $\Delta \kappa_{\text{s}}$. The excess molar volumes and deviation in isentropic compressibility are fitted to a Redlich–Kister-type equation to derive binary coefficients and standard deviation and to elicit the specific interactions like complex formation as well as the saturation of chlorine atoms with π electrons.

1. Introduction

A deeper knowledge of the thermodynamic and transport properties of multicomponent liquid mixtures is essential in many industrial applications such as design, calculation, heat transfer, mass transfer, and fluid flow and so forth.¹ The acoustic properties of binary liquid mixtures can be quite significant and give a measure of molecular interactions and hence can provide information needed to test existing theories of solutions. Ultrasonic velocity data can be utilized to deduce some useful properties of liquid mixtures, which are not easily accessible by other means. The high precision of speed of sound measurements makes it possible to calculate many other reliable parameters which give information regarding deviations of the system from ideality. Research activities of our laboratory comprise the systematic measurements of volumetric and transport properties of mixtures of compounds.^{2–11}

Chloroethanes and chloroethenes have relatively low values of dielectric constants ($\varepsilon = 2$),¹² even though they are familiar solvents in the industrial applications. The most common use of 1,2-dichloroethane is in the production of vinyl chloride which is used to make a variety of plastic and vinyl products including polyvinyl chloride (PVC). It is also used as a solvent and added to leaded gasoline to remove lead, whereas 1,1,2trichloroethane, 1,1,2,2-tetrachloroethane, and trichloroethene are nonflammable solvents used in fats, waxes, resins, oils, rubber, paints, varnishes, natural resins, and alkaloids. Tetrachloroethene has its importance in dry cleaning, textile processing, degreasing metals, insulating fluid, and cooling gas in electrical transformers.¹²

The aim of the present work is to analyze the changes in the thermodynamic properties, as a function of temperature and composition of mixture. For that purpose, density ρ , viscosity η , and speed of sound *u* were measured within the temperature

Table 1.	Experimental Density (ρ) , Viscosity (η) , and Speed of
Sound (u)) of Pure Liquids at $T = 298.15$ K

	$10^{-3} \cdot \rho / (\text{kg} \cdot \text{m}^{-3})$		$10^{3} \cdot \eta/($	mPa•s)	$u/(m \cdot s^{-1})$	
component	exptl	lit.	exptl	lit.	exptl	lit.
phenylacetonitrile	1.00883 ^a		1.761 ^a		1519.2 ^a	
1,2-dichloroethane	1.2467	1.2468 ^b	0.776	0.779^{d}	1174.0 ^a	1174.0^{h}
1,1,2-trichloroethane	1.4161 ^f	1.4161 ^g	1.105	1.100^{e}	1129.2 ^a	
1,1,2,2- tetrachloroethane	1.5868	1.5866 ^b	1.456 ^a	1.456 ^e	1134.7 ^{<i>a</i>}	1135.0 ^h
trichloroethene	1.4559	1.4558 ^c	0.527	0.529^{c}	1014.7 ^a	1012.4^{h}
tetrachloroethene	1.6148	1.6147 ^c	0.847	0.846^{c}	1028.0^{a}	1030.0 ^h
^{<i>a</i>} Values at $T =$	303.15 K	^b Ref 1	9. ^c Ref	14 d R	ef 20 ^e	Ref 12

^{*f*} Values at T = 308.15 K. ^{*g*} Ref 16. ^{*h*} Ref 21.

range from (303.15 to 313.15) K. The measured values were used to calculate the various properties such as excess molar volumes $V^{\rm E}$ and deviations in isentropic compressibility $\Delta \kappa_{\rm s}$.

2. Experimental Section

2.1. *Materials.* All the solvents, phenylacetonitrile (mass fraction 0.98 determined by GC Assay, SD Fine Chemicals Ltd., India), 1,2-dichloroethane¹³ (mass fraction of 0.99 supplied by Merck GR grade), 1,1,2,2-tetrachloroethane¹³ (supplied by Acros Organics, USA, with cited mass fraction purity of 0.985), tetrachloroethene¹⁴ (mass fraction of 0.99 supplied by Merck, India), trichloroethene¹² (mass fraction purity of 0.99 supplied by Merck, India), and 1,1,2-trichloroethane¹² (mass fraction of 0.98 provided by Acros Organics, USA), are purified by the standard methods. The purity of the chemicals is checked by GC which shows a single sharp peak and densities and sound speed of the pure liquids are listed in Table 1.

2.2. Apparatus and Procedure. Binary mixtures were prepared by mass in airtight bottles. The mass measurements were performed on a Dhona 100 DS, India, single-pan analytical balance with a resolution of $1 \cdot 10^{-8}$ kg. The required properties of the mixture were measured on the same day of preparing

^{*} Corresponding author. E-mail: ns_narayana@yahoo.com. Office: +91-870-2438866. Fax +91-870-2438800.

Table 2.	Values of Density (ρ) ,	Viscosity (η) , Speed	of Sound (u) , l	Excess Molar	Volume (V^{E}) , and	Deviation in 1	Isentropic (Compressibility	$(\Delta \kappa_s)$
for the B	inary Liquid Mixtures	at Various Tempera	atures						

tor the Di		inixuites at	various 1	emperatures			10.2	?		1.06 F	
	$10^{-3} \cdot \rho$	$10^3 \cdot \eta$	и	$10^{\circ} \cdot V^{\text{E}}$	$10^{11} \cdot \Delta \kappa_{\rm s}$		$10^{-3} \cdot \rho$	$10^3 \cdot \eta$	и	$10^6 \cdot V^E$	$10^{11} \cdot \Delta \kappa_s$
x_1	$(kg \cdot m^{-3})$	(mPa•s)	$(m \cdot s^{-1})$	$(m^3 \cdot mol^{-1})$	$(m^2 \cdot N^{-1})$	x_1	$(kg \cdot m^{-3})$	(mPa•s)	$(m \cdot s^{-1})$	$(m^3 \cdot mol^{-1})$	$(m^2 \cdot N^{-1})$
Phenylacetonitrile $(1) + 1.2$ -Dichloroethane (2)											
T = 303.15 K											
0.0000	1.2387	0.7237	1174.0	0.0000	0.0000	0.5122	1.1007	1.2130	1374.8	-0.0780	-1.0664
0.0165	1.2335	0.7352	1182.2	-0.0177	-0.1943	0.6480	1.0720	1.3645	1418.6	-0.0608	-0.8459
0.1059	1.2055	0.8165	1221.2	-0.0382	-0.6543	0.8003	1.0428	1.5359	1465.2	-0.0342	-0.5711
0.2041	1.1771	0.9029	1262.4	-0.0603	-1.0228	0.9705	1.0136	1.7253	1512.6	-0.0103	-0.1496
0.3088	1.1492	1.0032	1304.2	-0.0751	-1.2614	1.0000	1.0088	1.7613	1519.2	0.0000	0.0000
0.4073	1.1248	1.1034	1339.5	-0.0812	-1.2163						
					T = 30	8.15 K					
0.0000	1.2305	0.6737	1164.8	0.0000	0.0000	0.5122	1.0956	1.1167	1367.5	-0.1600	-1.1980
0.0165	1.2253	0.6821	1171.9	-0.0138	-0.0846	0.6480	1.0672	1.2481	1411.8	-0.1406	-0.9655
0.1059	1.1989	0.7512	1211.5	-0.1103	-0.6657	0.8003	1.0382	1.3981	1458.9	-0.0922	-0.6617
0.2041	1.1710	0.8313	1252.3	-0.1436	-1.0035	0.9705	1.0088	1.5678	1505.4	-0.0107	-0.1082
0.3088	1.1435	0.9258	1293.6	-0.1597	-1.1940	1.0000	1.0041	1.6021	1512.9	0.0000	0.0000
0.4073	1.1194	1.0169	1330.8	-0.1653	-1.2775						
					T = 31	3.15 K					
0.0000	1.2237	0.6419	1153.5	0.0000	0.0000	0.5122	1.0876	1.0479	1355.9	-0.2091	-1.0551
0.0165	1.2187	0.6456	1161.0	-0.0307	-0.1351	0.6480	1.0588	1.1649	1399.9	-0.1734	-0.7460
0.1059	1.1915	0.7080	1200.5	-0.1041	-0.6695	0.8003	1.0295	1.2986	1447.6	-0.1318	-0.4338
0.2041	1.1635	0.7877	1243.7	-0.1549	-1.2053	0.9705	0.9999	1.4556	1499.1	-0.0489	-0.1167
0.3088	1.1361	0.8746	1285.3	-0.2074	-1.3927	1.0000	0.9995	1.4893	1503.4	0.0000	0.0000
0.4073	1.1118	0.9576	1320.8	-0.2221	-1.3006						
					T = 30	3.15 K					
0.0000	1.4250	1.0192	1129.2	0.0000	0.0000	0.5545	1.1734	1.5447	1342.8	-0.0867	-0.4351
0.0185	1.4156	1.0463	1137.0	-0.0085	-0.1167	0.6861	1.1217	1.6310	1393.4	-0.0704	-0.2884
0.1212	1.3649	1.1580	1176.7	-0.0492	-0.3562	0.8245	1.0703	1.7063	1446.6	-0.0489	-0.0695
0.2319	1.3126	1.2635	1219.7	-0.0741	-0.5311	0.9720	1.0184	1.7576	1505.3	-0.0096	0.1132
0.3463	1.2611	1.3652	1263.4	-0.0911	-0.5641	1.0000	1.0088	1.7613	1519.2	0.0000	0.0000
0.4450	1.2186	1.4537	1301.0	-0.0954	-0.5262						
					T = 30	8.15 K					
0.0000	1.4161	0.9483	1115.9	0.0000	0.0000	0.5545	1.1689	1.4114	1343.3	-0.2483	-1.2946
0.0185	1.4072	0.9728	1125.0	-0.0282	-0.2566	0.6861	1.1173	1.4907	1392.9	-0.2014	-0.9404
0.1212	1.3586	1.0637	1168.2	-0.1837	-0.8472	0.8245	1.0657	1.5615	1445.1	-0.1219	-0.5125
0.2319	1.3073	1.1628	1214.2	-0.2512	-1.2310	0.9720	1.0137	1.5945	1498.7	-0.0280	0.1081
0.3463	1.2562	1.258/	1261.9	-0.2698	-1.4896	1.0000	1.0041	1.6021	1512.9	0.0000	0.0000
0.4450	1.2140	1.3338	1301.5	-0.2682	-1.5025						
					T = 31	3.15 K					
0.0000	1.4096	0.8888	1096.1	0.0000	0.0000	0.5545	1.1636	1.3069	1332.8	-0.2573	-1.7041
0.0185	1.4005	0.9045	1105.9	-0.0193	-0.3290	0.6861	1.1121	1.3811	1383.2	-0.2016	-1.2572
0.1212	1.3512	0.9825	1150.9	-0.1051	-1.0190	0.8245	1.0607	1.4357	1431.8	-0.1107	-0.4451
0.2319	1.3006	1.0735	1199.9	-0.1988	-1.6208	0.9720	1.0090	1.4//2	1488.9	-0.0229	0.1046
0.3403	1.2502	1.1088	1248.1	-0.2562 -0.2771	-1.8400 -1.8713	1.0000	0.9995	1.4895	1503.4	0.0000	0.0000
0.4450	1.2084	1.2410	1200.9	0.2771	1.6715						
					T = 30	3.15 K					
0.0000	1.5796	1.4562	1134.7	0.0000	0.0000	0.5852	1.2364	2.0169	1343.4	-0.2724	-0.5801
0.0221	1.5665	1.4892	1142.0	-0.0426	-0.0698	0.7131	1.1642	1.9660	1393.9	-0.1731	-0.4136
0.13/4	1.4972	1.0012	11/9./	-0.158/	-0.2533	0.8414	1.0939	1.8939	1446.4	-0.1154	-0.16/5
0.2304	1.4209	1.0504	1220.9	-0.2030 -0.3892	-0.4484 -0.6101	1.0000	1.0223	1.7719	1504.5	-0.0487	0.1278
0.3743	1.3388	2 0114	1203.5	-0.3563	-0.6476	1.0000	1.0088	1.7015	1319.2	0.0000	0.0000
5.7777	1.2912	2.0117	1505.1	0.5505	0.0470	0.15 **					
0.0000	1 550 5	1.0544	1117 -	0.0000	T = 30	8.15 K	1 2217	1.001 -	1220 -	0.4217	0.50.11
0.0000	1.5706	1.3544	1115.5	0.0000	0.0000	0.5852	1.2317	1.8316	1329.5	-0.4215	-0.5941
0.0221	1.3383	1.3/3/	1125.0	-0.1092 -0.2512	-0.28/2	0.7131	1.1002	1.7930	1381.0	-0.3492	-0.3/96
0.1374	1.4901	1.3263	1200.3	-0.2312	-0.0988 -0.0107	0.0414	1.0099	1.7240	1430.3	-0.2330 -0.1130	-0.1755
0.2304	1.4200	1.0778	1209.5	-0.4025	-0.9092	1 0000	1.0132	1.6021	1512.9	0.0000	0.0000
0.4799	1.2915	1.8374	1289.9	-0.4463	-0.7884	1.0000	1.0041	1.0021	1512.)	0.0000	0.0000
/				005		2 15 17					
0.0000	1 5627	1 2612	1005 5	0.0000	I = 31	0.10 K	1 2262	1 2010	1222.0	_0 4291	_1 2002
0.0000	1.3037	1.2013	1095.5	-0.1121	-0.5106	0.3852	1.2202	1.0818	1323.9	-0.4281	-1.2882 -0.7771
0.0221	1.3317	1.2708	1107.4	-0.2528	-1 3876	0.7131	1.1349	1.0431	1476 2	-0.2478	-0.2823
0.2564	1.4138	1.5439	1201.6	-0.3442	-1.8315	0.9748	1.0135	1.5031	1487.4	-0.1121	0.1232
0.3743	1.3459	1.6299	1245.6	-0.4247	-1.8352	1.0000	0.9995	1.4893	1503.4	0.0000	0.0000
0.4799	1.2859	1.6744	1283.9	-0.4691	-1.5834						
				Dhanvla	petonitrila (1)	+ Trichler	oethene(2)				
				1 nenyla	comune (1)		(2)				
0.0000		0.51-5	101	0.0000	T = 30	3.15 K		4 0	1005 5	0.477.4	
0.0000	1.4475	0.5172	1014.7	0.0000	0.0000	0.5443	1.1845	1.0655	1293.3	-0.1924	-2.0286
0.0195	1.4370	0.5201	1024.6	-0.0212	-0.2081	0.6782	1.1288	1.2478	1364.1	-0.1233	-1.8731

Table 2.	Continued										
	$10^{-3} \cdot \rho$	$10^3 \cdot \eta$	и	$10^6 \cdot V^E$	$10^{11} \cdot \Delta \kappa_{\rm s}$		$10^{-3} \cdot \rho$	$10^3 \cdot \eta$	и	$10^6 \cdot V^E$	$10^{11} \cdot \Delta \kappa_s$
x_1	$\overline{(\text{kg} \cdot \text{m}^{-3})}$	(mPa•s)	$\overline{(\mathbf{m} \cdot \mathbf{s}^{-1})}$	$(m^3 \cdot mol^{-1})$	$(m^2 \cdot N^{-1})$	x_1	$\overline{(\text{kg} \cdot \text{m}^{-3})}$	(mPa•s)	$\overline{(\mathbf{m} \cdot \mathbf{s}^{-1})}$	$(m^3 \cdot mol^{-1})$	$(m^2 \cdot N^{-1})$
0.1190	1.3838	0.5905	1073.5	-0.0633	-0.8314	0.8190	1.0741	1.4555	1435.8	-0.0678	-1.3446
0.2263	1.3295	0.6901	1128.2	-0.1052	-1.4284	0.9692	1.0197	1.6982	1504.1	-0.0269	-0.1857
0.3478	1.2719	0.8200	1191.0	-0.1803	-1.8767	1.0000	1.0088	1.7613	1519.2	0.0000	0.0000
0.4396	1.2302	0.9316	1238.9	-0.2008	-2.0413						
					T = 30)8.15 K					
0.0000	1.4378	0.4992	993.7	0.0000	0.0000	0.5443	1.1796	0.9721	1284.6	-0.3339	-2.8024
0.0195	1.4285	0.4860	1004.9	-0.0907	-0.4448	0.6782	1.1247	1.1471	1356.5	-0.2976	-2.4863
0.1190	1.3772	0.5530	1057.5	-0.2185	-1.5454	0.8190	1.0703	1.3395	1428.4	-0.2306	-1.6914
0.2263	1.3239	0.6417	1114.1	-0.2899	-2.2564	0.9692	1.0153	1.5460	1502.7	-0.0761	-0.5477
0.3478	1.2663	0.7558	1179.2	-0.3291	-2.7364	1.0000	1.0041	1.6021	1512.9	0.0000	0.0000
0.4396	1.2250	0.8529	1228.9	-0.3516	-2.9080						
					T = 31	13.15 K					
0.0000	1.4304	0.4833	982.0	0.0000	0.0000	0.5443	1.1742	0.9137	1279.3	-0.3593	-3.4133
0.0195	1.4200	0.4908	992.5	-0.0134	-0.3044	0.6782	1.1195	1.0750	1351.0	-0.3129	-2.9782
0 1 1 9 0	1 3695	0.5292	1045.8	-0.1688	-15819	0.8190	1 0649	1 2478	1425.0	-0.1917	-2.1898
0.2263	1 3169	0.6092	1102.9	-0.2672	-23961	0.9692	1.0102	1 4388	1499.2	-0.0287	-0.9100
0.3478	1.2601	0.7150	1169.9	-0.3341	-3.0825	1,0000	0.9995	1 4893	1503.4	0.0000	0.0000
0.4396	1.2192	0.7976	1221.9	-0.3680	-3.4388	1.0000	0.7775	1.1095	1505.1	0.0000	0.0000
					T = 30)3.15 K					
0.0000	1 6072	0 7971	1028.0	0.0000	0.0000	0 5767	1 2457	1 2686	1288 5	-0.0566	-0.8826
0.0231	1 5919	0.8124	1037.5	-0.0118	-0.1037	0 7051	1 1714	1 4134	1355.0	-0.0432	-0.7681
0.1322	1 5201	0.8840	1082.9	-0.0330	-0.4471	0.8386	1 0965	1 5715	1428.0	-0.0329	-0.5527
0.2490	1 4452	0.9577	1133.9	-0.0442	-0.7307	0.9720	1.0239	1 7262	1504.1	-0.0132	-0.1749
0.3700	1 3698	1.0605	1188.9	-0.0564	-0.8902	1,0000	1.0289	1 7613	1519.2	0.0000	0.0000
0.4713	1 3083	1 1 5 9 3	1236.8	-0.0635	-0.9311	1.0000	1.0000	1.7015	1517.2	0.0000	0.0000
0.4715	1.5005	1.1575	1250.0	0.0055	0.9511	00 15 V					
0.0000	1 5050	0.0650	1014.0	0.0000	1 - 30	18.15 K	1 2200	1 1710	1070 5	0.1015	1.0216
0.0000	1.5979	0.7657	1014.0	0.0000	0.0000	0.5/6/	1.2398	1.1/18	12/8.5	-0.1045	-1.0216
0.0231	1.5830	0.7752	1024.4	-0.0295	-0.2178	0.7051	1.1661	1.2945	1345.0	-0.0922	-0.8109
0.1322	1.5121	0.8382	1070.9	-0.0714	-0.6620	0.8386	1.0916	1.4299	1419.2	-0.0702	-0.5636
0.2490	1.4380	0.9171	1123.3	-0.0945	-1.0385	0.9720	1.0192	1.5697	1497.9	-0.0244	-0.2132
0.3700	1.3631	0.9982	1178.8	-0.1046	-1.1681	1.0000	1.0041	1.6021	1512.9	0.0000	0.0000
0.4713	1.3020	1.0769	1226.7	-0.1101	-1.1383						
					T = 31	13.15 K					
0.0000	1.5906	0.7395	996.6	0.0000	0.0000	0.5767	1.2343	1.0957	1268.9	-0.1184	-1.4653
0.0231	1.5757	0.7460	1010.5	-0.0264	-0.6540	0.7051	1.1608	1.2069	1335.7	-0.1025	-1.1411
0.1322	1.5053	0.8001	1060.1	-0.0794	-1.4027	0.8386	1.0866	1.3295	1409.3	-0.0790	-0.7133
0.2490	1.4316	0.8680	1113.4	-0.1130	-1.7831	0.9720	1.0145	1.4583	1486.1	-0.0290	-0.1096
0.3700	1.3571	0.9342	1168.9	-0.1268	-1.7994	1.0000	0.9995	1.4893	1503.4	0.0000	0.0000
0.4713	1.2962	1.0030	1216.8	-0.1278	-1.6668						

the mixtures. The uncertainty in mole fraction was estimated to be less than $\pm 1 \cdot 10^{-4}$.

Densities of pure liquids and their mixtures were determined by using a double arm pycnometer of volume $1 \cdot 10^{-5}$ m^{3.10} The uncertainty in density and excess molar volume values was found to be ± 0.04 kg·m⁻³ and ± 0.01 m³·mol⁻¹, respectively.

A suspended level viscometer^{11,15} was used to measure the flow times of pure liquids and liquid mixtures, and it was calibrated with benzene and doubly distilled water (water conductivity less than $1 \cdot 10^{-6} \Omega^{-1} \cdot \text{cm}^{-1}$ with (0.9970 and 0.9940) g·cm⁻³ as its density at (298.15 and 308.15) K, respectively, and the density of benzene of (0.87381 and 0.87341) g·cm⁻³ at (298.15 and 308.15) K, respectively). Viscosity values η of pure liquids and mixtures were calculated using the flow times by relation

$$\eta = (at - b/t)\rho \tag{1}$$

where *a* and *b* are the characteristic constants of the viscometer; ρ is the density; and *t* represents the flow time. The flow times of pure liquids and liquid mixtures were determined by the average of five measurements. The uncertainty of viscosity was found to be ± 0.005 mPa·s.

Speeds of sound were determined by using an ultrasonic interferometer [model M-82, Mittal Enterprises, India], working at a frequency of 2 MHz. The working principle used in the measurement of speed of sound through medium was based on the accurate determination of the wavelength of ultrasonic waves of known frequency produced by a quartz crystal in the

measuring cell.^{7,9} The temperature of the solution was controlled by circulating water at a desired temperature through the jacket of the double-walled cell. The speed of sound was measured with relative uncertainty of \pm 0.3 %.

In all the property measurements, the temperature was controlled within \pm 0.01 K using a constant-temperature bath [INSREF model IRI-016 C, India], and the temperature was monitored with a platinum resistance thermometer with an accuracy of \pm 0.001 K and an uncertainty of \pm 0.004 K.

3. Results and Discussion

Table 2 lists the measured density, viscosity, sound speed u, excess molar volume V^{E} , and deviation in isentropic compressibility $\Delta \kappa_s$ for (phenylacetonitrile + 1,2-dichloroethane), (phenylacetonitrile + 1,1,2-trichloroethane), (phenylacetonitrile + 1,1,2,2-tetrachloroethane), (phenylacetonitrile + trichloroethene), and (phenylacetonitrile + tetrachloroethene) at T = (303.15, 308.15, and 313.15) K along with the mole fraction.

The excess molar volumes $(V^{\rm E})$ have been evaluated from density using

$$V^{\rm E} = (x_1 M_1 + x_2 M_2) / \rho_{\rm m} - (x_1 M_1 / \rho_1 + x_2 M_2 / \rho_2)$$
(2)

where $\rho_{\rm m}$ is the density of the mixture; x_1 , M_1 , ρ_1 , and x_2 , M_2 , and ρ_2 are the mole fraction, molar mass, and density of pure components, respectively. The deviations in isentropic compressibility ($\Delta \kappa_{\rm s}$) have been evaluated using the equation 1408 Journal of Chemical & Engineering Data, Vol. 55, No. 3, 2010

$$\Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1}) = \kappa_{\rm s} - (\Phi_1 \kappa_{\rm s1} + \Phi_2 \kappa_{\rm s2}) \tag{3}$$

where Φ_i is the volume fraction of pure components and is calculated from the individual pure molar volumes, V_i , using the relation

$$\Phi_i = x_i V_i / (\sum x_i V_i) \tag{4}$$

and κ_{s1} , κ_{s2} , and κ_s are the isentropic compressibility of the pure components and observed isentropic compressibility of the liquid mixture, respectively.

The excess or deviation properties ΔY are fitted by the method of nonlinear least-squares to the fourth-order Redlich–Kister-type polynomial equation.¹⁶

$$\Delta Y = x_1 x_2 \sum A_i (x_1 - x_2)^i$$
 (5)

where A_0 , A_1 , A_2 , A_3 , and A_4 are adjustable binary coefficients. The coefficients A_i were estimated using multiparametric regression analysis based on a nonlinear least-squares method. The number of A_i parameters was optimized using the *F*-test and is found to be five (m = 5). In each case, the optimum number of coefficients A_i is determined from an examination of the variation of standard deviation (σ) as calculated by

$$\sigma(Y^{\rm E}) = \left[\sum \left(\Delta Y_{\rm obs} - \Delta Y_{\rm cal}\right)^2 / (n-m)\right]^{1/2} \tag{6}$$

where *n* represents the number of experimental points and *m* is the number of coefficients used in fitting the data. The coefficients A_i and standard deviations $(\sigma)V^{\text{E}}$ and $(\sigma)\Delta\kappa_s$ of the fit are summarized in Table 3.

3.1. Excess Molar Volume (V^E). The excess molar volume (V^E) curves are negative for (phenylacetonitrile + 1,2-dichloroethane), (phenylacetonitrile + 1,1,2-trichloroethane), (phenylacetonitrile + trichloroethene), and (phenylacetonitrile + tetrachloroethene).

The observed V^{E} values in the chloroethane system over the entire range of compositions can be attributed to the following volume reduction factors: (i) specific interactions between the unlike molecules, dipole–induced dipole interactions; (ii) complex formation between unlike molecules; (iii) formation of new hydrogen bonds between unlike molecules of the type of C–H··· π electrons.

The isothermal curves at T = 303.15 K shown in Figure 1 suggest that in the binary mixtures the volume reduction factors are preponderant. The algebraic values of V^{E} of phenylacetonitrile with chloroethanes fall in the order: 0 > 1,2-dichloroethane > 1,1,2-trichloroethane > 1,1,2,2-tetrachloroethane.

The above-mentioned order indicates that an increase in the number of chlorine atoms in the molecule entails a reduction in the volume of the system.

 V^{E} values for the systems of phenylacetonitrile with chloroethenes are explained by taking the following factors into consideration: (i) double bond character of chloroethenes, (ii) shielding of the ethylenic double bond by chlorine atoms, and (iii) partial saturation of the electron accepting nature of chlorine atoms by π -electrons of the ethylenic double bond. The algebraic values of V^{E} of phenylacetonitrile with chloroethenes fall in the order: 0 > tetrachloroethene > trichloroethene.

The more negative deviation in excess volumes of the system phenylacetonitrile with trichloroethene than 1,2-dichloroethane

Table 3. Binary Coefficients (A_i) and Standard Errors (σ) of Phenylacetonitrile (1) + Chloroethanes and Ethenes (2)

•	,	. ,	•			. ,	
function	T/K	A_0	A_1	A_2	A_3	A_4	σ
		Phenylacetor	nitrile $(1) + 1,2-D$	ichloroethane (2)			
$10^{6} \cdot V^{E}/(m^{3} \cdot mol^{-1})$	303.15	-0.321	0.138	0.25	-0.03	-0.5	0.0037
	308.15	-0.643	0.119	-0.28	0.44	0.03	0.0043
	313.15	-0.863	0.370	0.33	-0.65	-1.24	0.0048
$10^{11} \cdot \Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1})$	303.15	-4.939	1.59	2.40	-2.15	-5.1	0.027
2, ,	308.15	-5.032	0.29	0.09	-0.63	-0.7	0.024
	313.15	-5.223	3.46	2.2	-4.16	-1.8	0.022
		Phenylacetoni	trile $(1) + 1, 1, 2-T$	richloroethane (2)			
$10^{6} \cdot V^{E}/(m^{3} \cdot mol^{-1})$	303.15	-0.3679	0.117	0.011	-0.08	-0.116	0.0013
	308.15	-1.040	0.400	-0.33	0.27	-0.12	0.0052
	313.15	-1.0902	0.321	0.483	-0.26	-0.20	0.0031
$10^{11} \cdot \Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1})$	303.15	-2.1	0.83	-0.6	2.19	2.9	0.037
	308.15	-5.92	0.95	1.6	2.99	-0.4	0.076
	313.15	-7.51	0.58	1	6.28	3.9	0.063
		Phenylacetonitri	le $(1) + 1,1,2,2$ -T	etrachloroethane (2	2)		
$10^{6} \cdot V^{E}/(m^{3} \cdot mol^{-1})$	303.15	-1.411	1.14	1.91	-1.70	-2.68	0.015
	308.15	-1.806	0.04	1.66	0.03	-4.61	0.015
	313.15	-1.88	0.17	1.94	-0.26	-4.97	0.014
$10^{11} \cdot \Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1})$	303.15	-2.54	-0.31	0.8	2.22	2.5	0.046
2, ,	308.15	-3.1	2.38	-0.8	2.34	0.3	0.071
	313.15	-6.48	4.60	-0.1	4.70	-1.0	0.086
		Phenylacet	onitrile $(1) + Tric$	hloroethene (2)			
$10^{6} \cdot V^{E}/(m^{3} \cdot mol^{-1})$	303.15	-0.812	0.292	1.46	-0.4	-1.80	0.0039
	308.15	-1.395	0.14	0.21	0.16	-2.23	0.013
	313.15	-1.461	0.069	-0.10	0.29	0.47	0.0076
$10^{11} \cdot \Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1})$	303.15	-8.09	-2.4	-1.5	-0.26	0.9	0.049
	308.15	-11.65	-1.10	1.7	0.09	-9.9	0.06
	313.15	-13.76	-2.3	5.6	-4.17	-17.8	0.12
		Phenylaceto	nitrile (1) + Tetra	chloroethene (2)			
$10^{6} \cdot V^{E}/(m^{3} \cdot mol^{-1})$	303.15	-0.2486	0.0459	0.266	-0.06	-0.60	0.0007
	308.15	-0.4407	0.032	0.1	0.05	-0.71	0.0033
	313.15	-0.5085	0.134	-0.002	-0.17	-0.60	0.0026
$10^{11} \cdot \Delta \kappa_{\rm s} / ({\rm m}^2 \cdot {\rm N}^{-1})$	303.15	-3.731	0.14	0.42	-1.57	-2.25	0.012
	308.15	-4.629	1.62	1.40	-2.02	-4.8	0.031
	313.15	-6.79	2.49	-0.4	4.27	-7.5	0.094

Figure 1. Plots of excess molar volumes $V^{\mathbb{E}}$ against mole fraction x_1 of phenylacetonitrile (1) with \diamond , 1,2-dichloroethane (2); \Box , 1,1,2-trichloroethane (2); λ , 1,1,2,2-tetrachloroethane (2); \times , trichloroethene (2); and \bigcirc , tetrachloroethylene (2) at T = 303.15 K.

Figure 2. Plots of excess molar volumes V^{E} against mole fraction x_1 of phenylacetonitrile (1) with 1,2-dichloroethane (2) at \diamond , 303.15 K; \Box , 308.15 K; and \bigcirc , 313.15 K.

and 1,1,2-trichloroethane may be attributed to the $\pi - \pi$ interactions between the unlike molecules.

The V^{E} values for equimolar mixtures were found to vary in the order

0 > TECEE > DCE > TCE > TCEE > TECE

It is interesting to observe that the $V^{\rm E}$ of mixtures containing tetrachloroethene is less negative than the mixtures containing 1,1,2,2-tetrachloroethane but more negative than the mixtures containing 1,2-dichloroethane and 1,1,2-trichloroethane. This observation lends support to the contention that the π -electrons in tetrachloroethene are shielded by four chlorine atoms,¹⁷ and also the electron-accepting ability of these chlorine atoms is partially saturated by the π -electrons.¹⁸

A comparison of algebraic values of V^{E} at (303.15, 308.15, and 313.15) K shows that V^{E} becomes more negative with an increase in temperature, shown in Figure 2, and it is observed that this does not affect the order of chloroethanes and chloroethanes.

3.2. Deviation in Isentropic Compressibility ($\Delta \kappa_s$). The data presented in Table 2 show that the deviations in isentropic compressibility are negative in the mixtures of phenylacetonitrile with chloroethanes and chloroethenes over the entire range of composition at T = 303.15 K shown in Figure 3. All are showing maxima at the mole fraction around $x_1 = 0.5$, indicating maximum interactions at that mole fraction range in every system.

The observed negative values of $\Delta \kappa_s$ over the entire range of compositions for phenylacetonitrile with chloroethane binary mixtures at (303.15, 308.15, and 313.15) K may be explained in terms of

Figure 3. Variation of deviation in isentropic compressibility, $(\Delta \kappa_s)$, versus volume fraction (Φ_1) of binary mixtures of phenylacetonitrile (1) with \diamond , 1,2-dichloroethane (2); \Box , 1,1,2-trichloroethane (2); Δ , 1,1,2,2-tetrachloroethane (2); \times , trichloroethene (2); and \bigcirc , tetrachloroethene (2) at 303.15 K.

(i) Contraction of volume due to dipole-dipole and dipole-induced dipole interactions.

(ii) Complex formation between phenylacetonitrile with chloroethanes.

From Figure 3 it is observed that the isotherm of 1,1,2trichloroethane and 1,1,2,2-tetrachloroethane shows a little positive lobe in the rich region of phenylacetonitrile. A small hump in the isotherms of 1,1,2-trichloroethane and 1,1,2,2tetrachloroethane may be due to addition of a small amount of phenylacetonitrile to 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane where many molecules of these two solvents are liberated. Thus, these molecules may form weaker molecular complexes leading to negative deviation in the lower range of phenylacetonitrile, whereas a small positive in the rich region of phenylacetonitrile may be attributed to the poor availability of 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane molecules for interactions. The same trend is observed at temperatures of (308.15 and 313.15) K.

The negative $\Delta \kappa_s$ values of chloroethanes decrease in the following order

1,1,2-trichloroethane > 1,1,2,2-tetrachloroethane >

1,2-dichloroethane

The $\Delta \kappa_s$ values for the systems of phenylacetonitrile with chloroethenes are explained by taking three factors into consideration, that is:

(i) Double bond character of chloroethenes;

(ii) Deshielding of ethylenic double bond by chlorine atoms; and

(iii) Partial saturation of the electron-accepting nature of chlorine atoms by π -electrons of the ethylenic double bond.

The negative $\Delta \kappa_s$ values of chloroethenes are in the following order:

tetrachloroethene > trichloroethene

However, it is found that in all the binary systems negative $\Delta \kappa_s$ values decreased with an increase in temperature.

4. Conclusion

Experimental data of density, viscosity, and speed of sound for the system of phenylacetonitrile with chloroethanes and chloroethenes were measured over the whole range of composition from the temperature range of (303.15 to 313.15) K. The excess isentropic compressibilities of these systems are correlated using the Redlich-Kister-type polynomial equation. Estimated coefficients and standard deviation values are also presented. Thus, it can be concluded that the evaluated experimental results are interpreted in terms of specific interactions through complex formation and dipole–dipole and $\pi - \pi$ interactions.

Acknowledgment

One of the authors (A.B.S.) thanks Dr. K. Sampath Kumar, Assistant Professor, Department of Applied Statistics, Telangana University, Nizamabad (Andhra Pradesh, India), for his assistance in calculating the coefficients of polynomial equation of various degrees through nonlinear regression analysis.

Literature Cited

- Venkatesu, P.; Rao, M. V. P. Excess Volume of N, N-Dimethylformamide + Cyclohexanone + 1-Alkanols at 303.15 K. J. Chem. Eng. Data. 1997, 42, 90–92.
- (2) Ranjith Kumar, B.; Murali Krishna, P.; Asra Banu, S.; Satyanarayna, B.; Savitha Jyostna, T.; Satyanarayana, N. Thermodynamic and Transport Properties of Binary Liquid Mixtures of Phenylacetonitrrile with Some Aliphatic Amines at 308.15 K. *Indian J. Chem.* 2008, 47A, 1026–1031.
- (3) Savitha Jyostna, T.; Satyanarayana, N. Ultrasonic Studies of Binary Mixtures of Some Aromatic Ketones with N-Methylacetamide at 308.15 K. J. Chem. Eng. Data 2005, 50, 89–91.
- (4) Savitha Jyostna, T.; Satyanarayana, N. Density and Viscosity of Binary Liquid Systems of N-Methylacetamide with Aromatic Ketones at 308.15 K. J. Chem. Thermodyn. 2006, 38, 272–277.
- (5) Savitha Jyostna, T.; Satyanarayana, N. Densities and Viscosities of Binary Liquid Systems of Acetonitrile with Aromatic Ketones at 308.15 K. *Indian J. Chem.* 2005, 44A, 1365–1371.
- (6) Satyanarayna, B.; Ranjith Kumar, B.; Savitha Jyostna, T.; Satyanarayana, N. Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of N-methylacetamide with Ethyl Acetate, Ethyl Chloroacetatae and Ethyl Cyanoacetate. *Indian J. Chem.* 2008, 47A, 66–70.
- (7) Satyanarayana, N.; Satyanarayna, B.; Savitha Jyostna, T. Density and Speed of Sound of Binary Mixtures of *N*-Methylacetamide with Ethyl Acetate, Ethyl Chloroacetate and Ethyl Cyanoacetate in the Temperature Interval (303.15 to 318.15) K. J. Chem. Eng. Data 2007, 52, 405–409.
- (8) Satyanarayna, B.; Ranjith Kumar, B.; Murali Krishna, P.; Satyanarayana, N. Volumetric and Transport Properties of Binary Liquid Mixtures of N-mathylacetamide with Lactones at Temperatures (303.15 to 318.15) K. J. Chem. Thermodyn. 2008, 40, 1422–1427.
- (9) Satyanarayna, B.; Savitha Jyostna, T.; Satyanarayana, N. Acoustic Studies of Binary Mixtures of N-methylacetamide with Some Chlo-

roethanes and Chloroethenes at 308.15 K. Indian J. Pure Appl. Phys. 2006, 44, 587–591.

- (10) Satyanarayna, B.; Savitha Jyostna, T.; Satyanarayana, N. Ultrasonic Studies on Binary Mixtures of Some Aromatic Ketones with Acetonitrile at T = 308.15 K. J. Chem. Thermodyn. 2006, 38, 1438–1442.
- (11) Satyanarayna, B.; Ranjith Kumar, B.; Savitha Jyostna, T.; Satyanarayana, N. Densities and Viscosities of Binary Liquid Mixtures of N-methylacetamide with Some Chloroethanes and Chloroethanes at *T* = 308.15 K. *J. Chem. Thermodyn.* **2007**, *39*, 16–21.
- (12) Riddick, J. A.; Bonger, W. B. Organic Solvents Physical Properties and Method of Purification; Wiley Inter-Science: New York, 1986.
- (13) Dayananda Reddy, K.; Iloukhani, H.; Rao, M. V. P. Excess Volumes of Chlorobenzene and Bromobenzene with Some Chloroethanes at 303.15 and 313.15 K. *Fluid Phase Equilib.* **1984**, *17*, 123–130.
- (14) Busa, G.; Venkatesu, P.; Rao, M. V. P. Excess Volumes of 1,1,2,2-Tetrachloroethane +2-Chlorotoluene + 3-Chlorotoluene and 4-Chlorotoluene at 303.15 and 313.15 K. J. Chem. Eng. Data 1995, 40, 1211–1213.
- (15) Nikam, P. S.; Shrisat, L. N.; Hasan, M. B. Density and Viscosity Studies of Binary Mixtures of Acetonitrile with Methanol, Ethanol, Propan-1-ol, Butan-1-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 1998, 43, 732–737.
- (16) Redlich, O.; Kister, A. T. Algebriac Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (17) Handa, Y. P.; Benson, G. C. Thermodynamic Properties of Binary Liquid Mixtures involving Weak Specific Interactions: Part II. Excess Enthalpies of Binary Mixtures of Tetrachloroethene with Some Aromatic Hydrocarbons at 298.15 K. *Fluid Phase Equilib.* **1980**, *4*, 269–277.
- (18) Reddy, D. V. B.; Ramanjaneyulu, L.; Krishnaiah, A. Ind. J. Tech. 1989, 27, 303–305.
- (19) Reddy, K. D.; Iloukhani, H.; Rao, M. V. P. Excess Volumes of Chlorobenzene and Bromobenzene with Some Chloroethanes at 303.15 and 313.15 K. *Fluid Phase Equilib.* **1984**, *17*, 123–130.
- (20) Vijayakumar, R.; Viswanathan, S.; Anand Rao, M. Excess Volumes Speeds of Sound and Isentropic Compressibilities of 2-Propyn-1-ol + 1,2 Dichloroethane + 1,1,2 Trichloroethane +1,1,2,2 Tetrachloroethane and + Trichloroethene at 303.15 K. J. Chem. Eng. Data 1996, 41, 755–757.
- (21) Gnana Kumari, P.; Radhamma, M.; Sekhar, G. C.; Rao, M.V. P. Excess Volumes and Speeds of Sound of N-Methyl-2-Pyrrolidone with Chloroethanes and Chloroethenes at 303.15 K. J. Chem. Eng. Data 2002, 47, 425–427.

Received for review July 6, 2009. Accepted August 5, 2009.

JE900570E