Conductance Studies of NaCl, KCl, NaBr, NaI, NaBPh₄, and Bu₄NI in Water + 2-Ethoxyethanol Mixtures at 298.15 K

Agnieszka Boruń, Anna Florczak, and Adam Bald*

University of £óduź, Department of Physical Chemistry of Solutions, 90-236 £óduź, Pomorska 163, Poland

The electrical conductances of solutions of sodium chloride (NaCl), potassium chloride (KCl), sodium bromide (NaBr), sodium iodide (NaI), sodium tetraphenylborate (NaBPh₄), and tetrabutylammonium iodide (Bu₄NI) in water (1) + 2-ethoxyethanol (2) mixtures containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mol fractions of 2-ethoxyethanol have been measured at 298.15 K. The conductance data have been analyzed by the Fuoss–Justice equation. The individual limiting ionic conductivities of Na⁺, K⁺, Bu₄N⁺, BPh₄⁻, I⁻, Cl⁻, and Br⁻ ions have been determined using the Fuoss–Hirsch assumption. The dependencies of the limiting molar conductances, Λ_0 , and Walden products, $\Lambda_0\eta$, versus mixed solvent composition have been discussed.

Introduction

Mixed water—organic solvents are a subject of very intensive investigations carried out by many research centers all over the world. A knowledge of their structures and properties is very important on account of their application in various areas of chemistry and modern technologies. Alkoxyethanols, popularly called by the trade name cellosolves, are the perfect solvents of many substances, and they are commonly used in industry as a component of solvents and as coemulgators and stabilizers of emulsions, paints, lacquers, and plastics. Cellosolves are nonionic amphiphile molecules, very effective as surfactants. In addition, they are used as additives to gasoline due to their octane-enhancing and pollution-reducing properties.^{1,2} The possibilities of the applications of alkoxyethanols are known fairly well, while the properties of these solvents and their aqueous and nonaqueous mixtures are not yet fully understood.

Ion—ion and ion—solvent interactions are connected with the physicochemical properties of these mixtures and with the intermolecular interactions existing in these solutions. The conductometric investigations made in this paper allow us to determine the values of parameters as the limiting molar conductances and the association constants. The values of Λ_o may provide information about ion—solvent interactions, while knowledge of the association constant is essential for studies performed in solvents with low relative permittivity.

The electrical conductance of the solutions of Bu_4NBr , NaBPh₄, and NaBr in 2-ethoxyethanol have been reported in the temperature range from (308.15 to 323.15) K by Haldar and Das.³ The same measurements have been made in the 2-ethoxyethanol (1) + water (2) mixtures containing (0.25, 0.50, and 0.75) mass fractions of 2-ethoxyethanol.^{4,5} Sodium bromide and tetrabutylammonium bromide exist essentially in the form of free ions, and sodium tertraphenylborate is slightly associated in aqueous 2-ethoxyethanol solutions over the entire temperature range. Ion—solvent interactions are very weak for the tertrabutylammonium ion. The solvation of the Br⁻ and Na⁺ ions was found to be gradually weakened as the 2-ethoxyethanol content of the medium increases.

Table 1.	Experimental	and Literatur	e Densities, ρ ,	Viscosities, η ,
and Refr	active Indices,	$n_{\rm D}$, of 2-Ethox	yethanol at 29	98.15 K

ρ/g	•cm ⁻³	$\eta/{ m m}$	Pa•s	n _D		
exptl	lit.	exptl lit.		exptl	lit.	
0.92527	$\begin{array}{c} 0.92520^{a,b} \\ 0.925028^c \end{array}$	1.8450	1.850^{a} 1.8277^{d}	1.4056	1.4057^a 1.4051^b	

^a Ref 32. ^b Ref 33. ^c Ref 1. ^d Ref 5.

In the literature, we can find only several papers on the conductometric investigations of aqueous solutions of alkoxyethanols. These papers concern mainly the aqueous solutions of 2-methoxyethanol.^{6–10} Analyzing the conductometric data available in the literature, we can notice very large discrepancies. The differences between the values obtained by various authors are as high as 100 %. Analyzing the physicochemical property data of cellosolves and their aqueous mixtures, we can also notice that the results are not always consistent. Therefore, analysis of the literature data prompted us to carry out more systematic and extensive conductometric and physicochemical property studies in aqueous mixtures of 2-alkoxyethanols. In this paper, we present conductometric studies of NaCl, KCl, NaBr, NaI, NaBPh₄, and Bu₄NI in water (1)-rich 2-ethoxyethanol (2) mixtures at 298.15 K.

Experimental Section

Chemicals. 2-Ethoxyethanol (Fluka, puriss p.a. \geq 99.5 %) was dried over freshly activated molecular sieves of type 4A (Sigma) for several days before use and next double distilled. The measured density, viscosity, and refractive index of the pure solvent agreed well with those values published in the literature (Table 1).

The salts were of puriss grade and were used without further purification (with the exception of Bu_4NI). Sodium chloride (Merck) was dried at 373.15 K. Potassium chloride, sodium bromide, and sodium iodide were from Merck and were dried in vacuo at 353.15 K. Sodium tetraphenylborate (Fluka) was dried in vacuo at 353.15 K. Tetrabutylammonium iodide was of Aldrich purum grade and was purified by recrystallization from acetone and dried in vacuo at 333.15 K.

^{*} Corresponding author. E-mail: laurent@uni.lodz.pl.

Table 2. Densities, ρ , Viscosities, η , and Relative Permittivities, ε_r , of Water (1) + 2-Ethoxyethanol (2) Mixtures at 298.15 K

<i>x</i> ₂	$\rho/g \cdot cm^3$	$\eta/mPa \cdot s$	\mathcal{E}_{r}
0.0100	0.99708	1.0530	75.90
0.0250	0.99726	1.3193	72.42
0.0500	0.99822	1.7841	67.10
0.0750	0.99835	2.2245	62.30
0.1000	0.99723	2.6075	57.99
0.1500	0.99235	3.1639	50.62
0.2000	0.98604	3.4627	44.65

Double distilled, deionized, and degassed water with a specific conductance better than $0.5 \cdot 10^{-6} \text{ S} \cdot \text{cm}^{-1}$ was used for the preparation of the mixed solvents. All the solutions were prepared by mass using an analytical balance (Sartorius RC 210D) with an uncertainty of $\pm 1 \cdot 10^{-5}$ g. The uncertainty of composition of mixtures was 0.0001 as mole fraction.

Measurements. The details of the measuring procedure of conductance are presented elsewhere.^{11,12} Conductance measurements were performed in the solutions containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mol fractions of 2-ethoxyethanol (2), usually for (7 to 12) molar concentrations of salts, with the use of a Precise Component Analyzer type 6430B (Wayne-Kerr, UK). All conductance values were the result of an extrapolation to infinite frequency. All data were corrected with the specific conductance of the solvent. The temperature was kept constant within 0.003 K (Ultra Thermostat UB 20F with Through-flow cooler DLK 25, Lauda, Germany). The uncertainty of the measured values of conductivity was 0.03 %.

The experimental procedure for densimetric measurements was similar to those described previously,¹² and only the details of the procedure were modified. Measurements of density were carried out using a bicapillary pycnometer with a volume of about 30 cm³. The pycnometer was calibrated with extra pure water, previously degassed ultrasonically. The pycnometer was thermostatted using a precise thermostat (Julabo, MHF 32, Germany) with a temperature stability better than 0.01 K. The temperature was controlled by a calibrated digital thermometer (Anton Paar, DT 100-20) with an uncertainty of \pm 0.01 K. The uncertainty in the density measurements was 2·10⁻⁵ g·cm⁻³.

The experimental procedure for viscosimetric measurements was described in our previous papers.^{11,12} Viscosities were measured with a AVS 350 viscosimeter (Schott Geräte, Germany). The viscosimeter filled with the liquid was placed vertically in a glass-sided water thermostat. An electronic stopwatch with a precision of 0.01 s was used for flow time measurements. The temperature was kept constant using a precision thermostat Julabo F32 (Julabo Labortechnik GmbH, Germany). The uncertainty in the viscosity measurements was better than 0.05 %.

The refractive indices (Na-D line, at $\lambda = 589$ nm) were measured using an automatic precision refractometer (DR 5000 Krüss). The uncertainty in the refractive index measurements was $2 \cdot 10^{-5}$.

Results and Discussion

The physical properties (densities, dynamic viscosities, and relative permittivities) of water (1) + 2-ethoxyethanol (2) mixtures are summarized in Table 2. Viscosity data were interpolated for the full composition on the basis of our experimental data. The densities and relative permittivities were interpolated on the basis of literature data.¹³

The experimental molar conductances, Λ , and corresponding molarities, *c*, for the investigated salts in the mixed solvent are collected in Table 3.

The conductance data were analyzed using the Fuoss–Justice equation^{14,15} in the form

$$\Lambda = \alpha [\Lambda_{o} - S(\alpha c)^{1/2} + E(\alpha c) \ln(\alpha c) + J(\alpha c) + J_{3/2}(\alpha c)^{3/2}] \quad (1)$$

together with

and

$$K_{\rm A} = (1 - \alpha)/(\alpha^2 c y_{\pm}^2) \tag{2}$$

$$\ln y_{\pm} = -(A\alpha^{1/2}c^{1/2})/(1 + BR\alpha^{1/2}c^{1/2})$$
(3)

In these equations, Λ_0 is the limiting molar conductance; α is the dissociation degree of an electrolyte; K_A is the ionic association constant; R is the distance parameter of ions; y_{\pm} is the activity coefficient of ions on the molar scale; and A and B are the coefficients of the Debye–Hückel equation. The analytical form of the parameters S, E, J, and $J_{3/2}$ was presented previously.^{16–18} The values of Λ_0 , K_A , and R were obtained using the well-known procedure given by Fuoss.¹⁵

The values of density, dynamic viscosity, and relative permittivity necessary for the calculation are collected in Table 2. The values of Λ_0 , K_A , R, and the Walden products, $\Lambda_0\eta$, for the investigated salts in water (1) + 2-ethoxyethanol (2) mixtures are collected in Table 4. The limiting molar conductances for salts in water were taken from ref 19.

As seen from Table 4, NaI and NaBPh₄ are not associated in the mixed solvent media, and for the remaining salts the association constants are practically negligible (the values of K_A are very small and may be neglected^{4,5}). One can assume that these electrolytes exist essentially as free ions in the examined water (1) + 2-ethoxyethanol (2) mixtures. The K_A values increase with an increasing amount of 2-ethoxyethanol (2) in the mixture because the relative permittivity of the medium decreases.

Values in Table 4 demonstrate that slight additions of 2-ethoxyethanol (2) to water (1) cause an intensive decrease of the Λ_o value, and the decrease of these values is greater for larger water contents. The order of Λ_o values over the whole composition range is the same as in the water

$$\Lambda_{o}(NaBPh_{4}) < \Lambda_{o}(Bu_{4}NI) < \Lambda_{o}(NaCl) \approx \Lambda_{o}(NaI) \approx \Lambda_{o}(NaBr) < \Lambda_{o}(KCl)$$

The above order can be easily explained considering ion size. The largest ions (BPh₄⁻ and Bu₄N⁺) are practically unsolvated in solution, but due to their large size, the ionic mobility is small.^{4,5,11,20,21} The slight differences in the limiting conductances of sodium chloride, sodium bromide, and sodium iodide seem to indicate that the effective sizes of these anions are almost the same. The value of Λ_0 for potassium chloride is larger than for sodium chloride due to the larger crystallographic radii of the potassium ion. It causes the electric field intensity around the potassium ion to be smaller. The interactions with solvent dipoles are very weak, and the effective size of this ion is smaller than the sodium ion. Thereby, the mobility of the potassium ion becomes greater than that of the sodium ion, and the limiting conductance of KCl is higher than that of NaCl.

A decrease of Λ_o values observed during the addition of the organic solvent to water can be explained by changes of macroscopic viscosity. From simple hydrodynamic models it follows that the ionic mobility decreases as the viscosity increases, which is observed in the examined composition range. Therefore, a more reasonable analysis is consideration of the changes of the Walden product values, $\Lambda_o \eta$, versus composition of the mixture. The

Table 3. Molar Conductances, A, and Corresponding Molarities, c, for NaCl, KCl, NaBr, NaI, NaBPh₄, and Bu₄NI in Water (1) + 2-Ethoxyethanol (2) Mixtures at 298.15 K

$x_2 = 0$	0.0100	$x_2 = 0$	0.0250	$x_2 = 0$	0.0500	$x_2 = 0$	0.0750	$x_2 = 0$	0.1000	$x_2 = 0$	0.1500	$x_2 = 0$	0.2000
$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ
$mol \cdot dm^{-3}$	$S \cdot cm^2 \cdot mol^{-1}$	$mol \cdot dm^{-3}$	$\overline{\mathbf{S} \cdot \mathbf{cm}^2 \cdot \mathbf{mol}^{-1}}$	$mol \cdot dm^{-3}$	$\overline{\mathbf{S} \cdot \mathbf{cm}^2 \cdot \mathbf{mol}^{-1}}$	$mol \cdot dm^{-3}$	$\overline{{f S} \cdot {f cm}^2 \cdot {f mol}^{-1}}$	$mol \cdot dm^{-3}$	$s \cdot cm^2 \cdot mol^{-1}$	${mol} \cdot dm^{-3}$	$\frac{S \cdot cm^2 \cdot}{mol^{-1}}$	$mol \cdot dm^{-3}$	$\frac{S \cdot cm^2 \cdot}{mol^{-1}}$
						Na	ıCl						
17.715 24.946 35.777 50.804 65.658 79.946 93.498	107.94 107.31 106.56 105.74 105.07 104.52 104.04	13.929 20.912 31.194 60.114 74.678 87.970 101.49 114.91	90.41 89.84 89.10 87.89 87.20 86.90 86.50 86.15	24.154 35.415 50.208 64.341 78.291 92.270 105.29 118.25	69.12 68.57 68.02 67.57 67.18 66.89 66.60 66.34	16.432 24.229 36.522 51.933 66.061 80.456 93.881 107.00	56.68 56.28 55.76 55.26 54.88 54.54 54.26 54.01	19.086 27.034 37.150 52.171 81.241 95.351 108.89 122.49	48.02 47.68 47.33 46.89 46.20 45.94 45.71 45.48	15.868 23.091 34.857 49.728 63.398 77.298 91.046 103.74	38.29 37.96 37.53 37.09 36.76 36.46 36.20 35.98	37.841 53.155 67.227 81.642 96.373 109.81 122.85 135.61	31.26 30.78 30.44 30.11 29.84 29.61 29.40 29.22
						120.42	53.78			117.05	35.78		
35.376 50.828 65.231 79.938 93.555 108.00 121.38	126.74 125.85 125.15 124.53 124.03 123.54 123.13	6.0021 11.040 21.220 28.970 39.448 55.904 70.640 86.718 100.73 116.68 124.19	107.54 106.76 105.78 105.22 104.61 103.86 103.28 102.76 102.36 101.96 101.64	13.663 22.160 30.758 42.773 58.734 73.721 88.102 102.95 117.12 132.69	82.57 81.96 81.48 80.94 80.33 79.86 79.86 79.07 78.76 78.36	K 19.265 27.032 38.637 54.079 69.366 83.715 98.161 111.68 127.40	66.07 65.64 65.11 64.57 64.14 63.78 63.43 63.14 62.85	5.2886 11.422 29.224 41.907 72.957 87.294 102.89 116.96 129.33	56.92 56.35 55.32 54.74 53.73 53.36 52.99 52.71 52.45	12.062 21.228 29.228 40.737 57.588 72.285 87.177 101.45 115.56 129.22	44.28 43.76 43.39 42.97 42.47 42.11 41.79 41.52 41.27 41.05	22.035 31.217 42.824 59.114 75.278 89.426 105.30 119.18 131.85	36.98 36.55 36.11 35.60 35.19 34.88 34.58 34.34 34.13
21 201	109.91	21 545	00 252	20 742	69 95	Na 22.764	Br 55 72	0 7196	47.05	7 7771	29 64	11.007	22.06
21:301 31:699 45:119 61:035 76:579 90:555 104:63 119:34 132:92	108.81 108.02 107.23 106.50 105.89 105.42 104.97 104.56 104.19	21.545 29.961 42.994 59.441 74.020 89.471 103.92 118.57 131.24	90.353 89.833 89.155 88.516 88.017 87.557 87.185 86.840 86.564	20.743 29.292 41.334 57.880 76.106 91.042 106.95 121.11	68.85 68.43 68.00 67.48 67.01 66.68 66.38 66.12	22.764 31.781 42.435 61.111 78.002 93.451 108.44 122.93 137.87	55.72 55.34 54.99 54.51 54.58 53.88 53.64 53.42 53.21	9.7186 20.270 31.018 40.166 54.204 71.897 87.363 102.26 117.27 132.45 148.01	47,95 47,39 46,97 46,67 46,32 45,96 45,67 45,67 45,47 45,25 45,04 44,89	17.078 29.694 43.065 54.589 74.034 88.442 105.68 123.40 139.24 155.59	38.04 38.16 37.67 37.30 37.05 36.66 36.40 36.15 35.92 35.73 35.57	11.007 19.505 29.851 40.527 55.538 69.964 85.871 101.19 118.94 134.10 150.06	33.06 32.64 31.95 31.58 31.29 31.00 30.77 30.53 30.34 30.16
17.051	106.05	5 7070	00 00	21.079	65.20	N	aI	7 9141	15 15	7 0004	26.52	12 099	21.61
17.051 25.190 34.270 47.943 63.102 76.829 90.704 103.85 116.73	106.95 106.32 105.74 105.07 104.47 103.99 103.57 103.20 102.71	5.7070 10.950 25.162 36.283 50.713 66.709 84.433 101.58 119.10 134.59 150.16	88.88 88.33 87.48 87.04 86.54 86.01 85.59 85.26 84.93 84.66 84.42	31.978 45.714 61.054 77.010 94.106 111.44 126.63 141.59 156.29	65.39 64.91 64.52 64.12 63.93 63.64 63.43 63.24 63.07	25.162 36.283 50.713 66.709 84.433 101.58 119.10 134.59 150.16	52.85 52.45 52.08 51.76 51.47 51.22 51.00 50.83 50.67	1.8141 15.356 25.223 35.672 46.413 61.996 80.322 96.321 111.12 124.84 139.60	45.45 45.06 44.67 44.34 44.09 43.78 43.46 43.25 43.11 42.98 42.88	16.857 26.678 35.572 48.723 64.426 81.600 96.232 113.52 128.31 144.20	30.53 36.11 35.79 35.55 35.26 34.99 34.74 34.56 34.38 34.24 34.10	12:988 22:702 32:987 46:240 61:013 76:987 91:751 107:33 123:11 137:41	31.61 31.26 30.93 30.62 30.33 30.07 29.86 29.66 29.48 29.34
7 8917	59.82	4 4280	49 69	10.056	37.88	NaE 10 885	3Ph ₄ 30.85	13 913	26.43	11 983	21.66	13 044	19.03
12.165 16.813 23.424 31.258 39.262 46.727 54.207 61.304 67.758	59.42 59.08 58.68 58.25 57.94 57.65 57.39 57.19 57.01	8.6841 15.055 20.821 28.858 37.889 47.145 56.323 65.993 75.232 85.056 94.053	49.30 48.90 48.61 48.32 48.02 47.78 47.57 47.38 47.23 47.05 46.92	15.468 21.309 28.947 38.091 49.017 58.486 69.911 79.622 91.106 101.29	37.65 37.47 37.26 37.06 36.87 36.72 36.58 36.47 36.35 36.29	17.571 22.902 31.856 42.754 53.306 63.310 75.070 85.455 96.485	30.61 30.45 30.25 30.04 29.87 29.73 29.58 29.46 29.35	21.928 31.756 44.057 55.370 64.438 74.313 84.270 92.876 104.16	26.27 26.10 25.93 25.80 25.72 25.62 25.54 25.48 25.41	19.004 25.203 32.936 42.316 52.036 61.643 70.586 79.708 91.867	21.53 21.42 21.30 21.18 21.07 20.98 20.91 20.84 20.76	18.825 27.047 34.009 41.761 49.856 55.632 66.593 76.902 86.482 96.355 105.31	18.89 18.74 18.63 18.54 18.43 18.37 18.27 18.16 18.06 17.98 17.90
7.3345	80.89	3.8928	65.55	12.696	46.99	ви 15.858	36.64	4.4934	31.77	14.638	25.02	20.200	22.28
11.258 15.750 20.721 26.904 33.086 39.739 45.646 51.157 56.636	80.23 79.61 79.03 78.38 77.79 77.22 76.75 76.34 75.94	$\begin{array}{c} 7.6174 \\ 12.541 \\ 17.014 \\ 22.356 \\ 28.213 \\ 34.852 \\ 41.249 \\ 46.906 \\ 54.350 \end{array}$	64.97 64.38 63.89 63.39 62.91 62.41 61.96 61.62 61.20	18.725 24.252 31.109 37.972 45.026 52.230 58.588 62.608 67.803	46.48 46.09 45.68 45.35 45.06 44.75 44.47 44.31 44.10	21.641 28.967 35.226 42.738 49.153 55.332 63.259	36.30 35.97 35.72 35.43 35.20 34.99 34.74	9.5889 15.351 22.807 29.219 37.656 44.066 51.700 58.255 64.401 69.279	31.36 31.00 30.66 30.42 30.11 29.87 29.63 29.43 29.28 29.15	19.964 25.440 32.492 39.105 46.067 52.040 58.522 63.956	24.76 24.58 24.33 24.16 23.94 23.77 23.62 23.48	26.474 33.513 39.699 44.934 51.254 57.118 63.020	22.04 21.80 21.61 21.45 21.26 21.10 20.95

changes of the Walden product connected with the change of the mixture composition result from ion-solvent interactions. The values of $\Lambda_0 \eta$ increase clearly during the addition of a small amount of 2-ethoxyethanol (2) to water (1) (see Table 4). At about $x_2 = 0.75$ to 0.10 we can see a maximum of $\Lambda_0 \eta$. From an analysis of

the relationship $\Lambda_0 \eta = f(x_2)$, we can see the differences between conductometric properties of sodium and potassium halides and the salts containing the large ions (NaBPh₄ and Bu₄NI). The changes of the Walden product are clearly visible for NaCl, NaBr, NaI, and KCl.

Table 4. Limiting Molar Conductances, Λ_0 , Association Constants, K_A , Parameters, R, and Walden Products, $\Lambda_0\eta$, for NaCl, KCl, NaBr, NaI, NaBPh₄, and Bu₄NI in Water (1) + 2-Ethoxyethanol (2) Mixtures at 298.15 K^{*a*}

	$\Lambda_{ m o}$	K _A	R	$\Lambda_{ m o}\eta$ · 10^{-2}	$\Lambda_{ m o}$	$\Lambda_{\rm o}$ $K_{\rm A}$ R		$\Lambda_0 \eta \cdot 10^{-2}$	
x_2	$S \cdot cm^2 \cdot mol^{-1}$	$dm^3 \cdot mol^{-1}$	Å	$S \cdot cm^2 \cdot mol^{-1} \cdot mPa \cdot s$	$S \cdot cm^2 \cdot mol^{-1}$	$dm^3 \cdot mol^{-1}$	Å	$S \cdot cm^2 \cdot mol^{-1} \cdot mPa \cdot s$	
		NaCl				KO	21		
0.0000	126.59	-	_	1.127	149.95	-	-	1.335	
0.0100	111.16 ± 0.02	0.59 ± 0.08	3.8	1.170	131.53 ± 0.01	0.27 ± 0.05	3.6	1.385	
0.0250	92.82 ± 0.05	0.73 ± 0.06	3.8	1.225	108.85 ± 0.02	0.24 ± 0.05	3.7	1.436	
0.0500	71.58 ± 0.02	0.41 ± 0.04	3.8	1.276	84.67 ± 0.01	1.03 ± 0.06	4.3	1.509	
0.0750	58.53 ± 0.01	1.07 ± 0.09	4.1	1.301	68.24 ± 0.02	1.23 ± 0.06	4.2	1.517	
0.1000	49.87 ± 0.01	1.25 ± 0.09	4.2	1.301	57.98 ± 0.02	2.81 ± 0.08	4.3	1.512	
0.1500	39.90 ± 0.02	2.17 ± 0.08	4.4	1.262	45.78 ± 0.01	2.55 ± 0.09	4.6	1.448	
0.2000	33.76 ± 0.02	4.36 ± 0.11	4.5	1.169	39.05 ± 0.02	4.69 ± 0.11	4.8	1.352	
		NaBr				Na	ıI		
0.0000	128.38	_	_	1.143	126.92	_	_	1.130	
0.0100	112.27 ± 0.02	0.25 ± 0.06	3.7	1.182	109.96 ± 0.02	_	3.7	1.158	
0.0250	93.30 ± 0.02	0.23 ± 0.06	3.7	1.231	90.38 ± 0.01	_	3.9	1.192	
0.0500	71.15 ± 0.01	0.31 ± 0.05	3.8	1.268	67.98 ± 0.02	-	4.3	1.212	
0.0750	57.77 ± 0.01	0.16 ± 0.04	4.1	1.285	54.85 ± 0.01	-	4.1	1.220	
0.1000	49.18 ± 0.01	0.32 ± 0.03	4.2	1.283	46.51 ± 0.02	-	4.1	1.213	
0.1500	39.74 ± 0.01	0.41 ± 0.03	4.1	1.257	37.55 ± 0.01	-	4.3	1.188	
0.2000	34.35 ± 0.01	0.78 ± 0.04	3.9	1.188	32.94 ± 0.01 – 4.		4.3	1.140	
		NaBPh ₄				Bu ₄	NI		
0.0000	69.98	_	_	0.623	96.26	_	—	0.857	
0.0100	61.57 ± 0.01	_	5.4	0.648	83.09 ± 0.02	6.58 ± 0.11	4.3	0.875	
0.0250	50.77 ± 0.01	_	6.2	0.670	66.85 ± 0.01	6.85 ± 0.14	4.3	0.882	
0.0500	39.08 ± 0.01	_	7.5	0.697	48.76 ± 0.02	7.26 ± 0.16	6.9	0.869	
0.0750	31.93 ± 0.01	_	8.2	0.706	38.35 ± 0.01	7.85 ± 0.16	8.7	0.853	
0.1000	27.45 ± 0.01	_	10.4	0.716	32.56 ± 0.01	8.92 ± 0.15	9.3	0.849	
0.1500	22.56 ± 0.01	-	11.0	0.713	26.32 ± 0.01	9.95 ± 0.21	11.5	0.833	
0.2000	19.92 ± 0.01	0.31 ± 0.03	11.4	0.702	23.85 ± 0.01	10.50 ± 0.19	12.5	0.826	

^{*a*} In all cases, $\Delta R = 0.5 \cdot 10^{-8}$ cm.

Figure 1. Limiting molar conductance, Λ_0 , of NaBr as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures: Δ , ref 4 (at 308.15 K); \blacksquare , this work (at 298.15 K).

In the literature, we can find papers on conductometric studies in 2-ethoxyethanol (1) + water (2),^{4,5,20} but only ref 4 concerns the electrolytes (NaBr and NaBPh₄) investigated by us. However, the values of the limiting molar conductance obtained in that paper are higher than ours (see Figures 1 and 2) because the measurements were carried out at 308.15 K.

It is well-known that the Walden product values depend on changes in temperature to a very small degree.²² Therefore, the relationships $\Lambda_0 \eta = f(x_2)$ obtained in this paper and on the basis of data from ref 4 should be similar. Unfortunately, Figures 3 and 4 show significant differences between experimental and literature data. However, one should pay attention to the fact that the values of viscosity from ref 4 differ from other literature data.^{23,24} The viscosities at 308.15 K for $x_2 = 0.06247$, 0.16660, and 0.37488 are (1.8430, 1.9234, and 1.7002) mPa s (ref 4), respectively, and (1.4691, 2.1823, and 2.3420) mPa s (from ref 23). Thus, the results differ considerably. For $x_2 = 0.06247$, the value from ref 4 is about 25 % higher than from ref 23. For

Figure 2. Limiting molar conductance, Λ_0 , of NaBPh₄ as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures: Δ , ref 4 (at 308.15 K); \blacksquare , this work (at 298.15 K).

 $x_2 = 0.16660$ and $x_2 = 0.37488$, the values are, respectively, 10 % and 30 % lower.

The single-ion conductances were obtained on the basis of the Fuoss–Hirsch assumption²⁵

$$\lambda_{o}(\mathrm{Bu}_{4}\mathrm{N}^{\top}) = \lambda_{o}(\mathrm{BPh}_{4}^{-}) = [\Lambda_{o}(\mathrm{Bu}_{4}\mathrm{NI}) + \Lambda_{o}(\mathrm{NaBPh}_{4}) - \Lambda_{o}(\mathrm{NaI})]/2 \quad (4)$$

The dependencies $\lambda_0^+ = f(x_2)$ and $\lambda_0^- = f(x_2)$ are presented in Figures 5 and 6, respectively. The factors having an influence on these dependencies are the macroscopic viscosity and the effective size of ions. The values of limiting ionic conductances decrease with an increase of the macroscopic viscosities and of the effective ion size. Therefore, it is no wonder that in the case of the large ions (Bu₄N⁺ and BPh₄⁻) the values of λ_0 are the smallest.

The changes of the values of $\lambda_o^{\pm} \eta$ as a function of the mixed solvent composition are independent from the changes of the

Figure 3. Walden product, $\Lambda_0 \eta$, of NaBr as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures: Δ , ref 4 (at 308.15 K); \blacksquare , this work (at 298.15 K).

Figure 4. Walden product, $\Lambda_o \eta$, of NaBPh₄ as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures: Δ , ref 4 (at 308.15 K); \blacksquare , this work (at 298.15 K).

Figure 5. Limiting ionic conductances of the individual cations, λ_o^+ , as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures at 298.15 K: \blacktriangle , K⁺; \blacksquare , Na⁺; \times , Bu₄N⁺.

macroscopic viscosity. Thus, the difference between the values of $\lambda_o^{\pm}\eta$ for different ions may provide information about the differences in the ion-solvent interactions. The dependencies $\lambda_o^{\pm}\eta = f(x_2)$ and $\lambda_o^{-}\eta = f(x_2)$ are presented in Figures 7 and 8, respectively.

As can be seen in Figures 7 and 8, the addition of small amounts of 2-ethoxyethanol (2) to water (1) leads to an increase of the values of the ionic Walden product for the cations K⁺ and Na⁺ and the anions Cl⁻, Br⁻, and I⁻, but they remain almost constant for Bu₄N⁺ and BPh₄⁻. The big organic ions having small surface charge density are practically unsolvated in the solution, and this is why there are constant values of the Walden product. In the course of the dependence $\lambda_0^{\pm}\eta = f(x_2)$ for smaller

Figure 6. Limiting ionic conductances of the individual anions, λ_o^- , as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures at 298.15 K: \bigcirc , Cl⁻; \blacktriangle , Br⁻; \square , I⁻; \times , BPh₄⁻.

Figure 7. Walden product for cations, $\lambda_0^+ \eta$, as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures at 298.15 K: \blacktriangle , K⁺; \blacksquare , Na⁺; \times , Bu₄N⁺.

Figure 8. Walden product for anions, $\lambda_0^- \eta$, as a function of the mole fraction, x_2 , in water (1) + 2-ethoxyethanol (2) mixtures at 298.15 K: O, Cl⁻; \blacktriangle , Br⁻; \Box , I⁻; \times , BPh₄⁻.

ions, we can see a maximum. This phenomenon can be observed in other mixtures of water with organic cosolvents.^{11,12,26–31} It can be explained by the assumption of the preferential solvation of these ions by the water dipoles, as was proposed by Kay, who named it "sorting effect".²⁹ Preferential solvation of ions in the case when small amounts of 2-ethoxyethanol (2) are added to water (1) can lead to a change of the microscopic viscosity (around the ion) to a smaller extent than macroscopic viscosity, which is used for the calculation of the values of the Walden products. It can lead to an excess of the mobility of ions, which causes the presence of the maximum on the dependence of $\lambda_c^{\pm}\eta$ = f(x). Greater amounts of 2-ethoxyethanol (2) added to water (1) cause the values of the ionic Walden product to stabilize and next decrease insignificantly (what we can see for anions). This is probably caused by the fact that the ions are gradually presolvated by cellosolve molecules, which leads to an increase of the effective radii of the ions and decreases their mobility.

Conclusions

The electrical conductances of solutions of sodium chloride, potassium chloride, sodium bromide, sodium iodide, sodium tetraphenylborate, and tetrabutylammonium iodide have been measured in aqueous 2-ethoxyethanol (2) mixtures containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mol fractions of 2-ethoxyethanol (2) at 298.15 K. The limiting molar conductances, Λ_o , and Walden products, $\Lambda_o\eta$, have been determined. The conductometric data available in the literature have been compared with the data obtained by us. The changes of the dependence $\lambda_o^2 \eta = f(x)$ have been analyzed based on the "sorting effect" proposed by Kay. In the range of compositions containing a large amount of water (1), slight additions of 2-ethoxyethanol (2) do not cause significant changes in the hydration shells of ions.

Supporting Information Available:

Tables 1, SM1, and SM2 and experimental data summaries for the tables. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Mozo, I.; Garcia de la Fluente, I.; González, J. A.; Cobos, J. C. Thermodynamics of Mixtures Containing Alkoxyethanols. Part XX. Densities, Excess Molar Volumes, Speeds of Sound and Isothermal Compressibilities for 2-Alkoxyethanol + Dibutylether Systems at 293.15, 298.15 and 303.15 K. J. Mol. Liq. 2006, 129, 155–163.
- (2) Mozo, I.; González, J. A.; García de la Fuente, I.; Cobos, J. C.; Riesco, N. Thermodynamics of Mixtures Containing Alkoxyethanols. Part XXV. Densities, Excess Molar Volumes and Speeds of Sound at 293.15, 298.15 and 303.15 K, and Isothermal Compressibilities at 298.15 K for 2-Alkoxyethanol + 1-Butanol systems. J. Mol. Liq. 2008, 140, 87–100.
- (3) Haldar, P.; Das, B. Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate and Sodium Bromide in 2-Ethoxyethanol in the Temperature Range 35–50°C. Z. Phys. Chem. 2004, 218, 599–609.
- (4) Haldar, P.; Das, B. Electrical Conductances of Sodium Bromide and Sodium Tetraphenylborate in 2-Ethoxyethanol + Water Mixtures at 308.15, 313.15, 318.15 and 323.15 K. J. Mol. Liq. 2007, 130, 29–33.
- (5) Haldar, P.; Das, B. Electrical Conductances of Tetrabutylammonium Bromide and Tetrapentylammonium Bromide in 2-Ethoxyethanol + Water Mixtures at 308.15, 313.15, 318.15 and 323.15 K. *Phys. Chem. Liq.* **2008**, *46*, 18–26.
- (6) Nandi, D.; Hazra, D. K. Viscosity Coefficients of Alkali-Metal Bromides, Tetrabutyl Ammonium Bromide, and Sodium Tetraphenylborate in Aqueous Binary Mixtures of 2-Methoxy-1-ethanol at 298.15 K. J. Chem. Eng. Data 1998, 43, 523–526.
- (7) Das, B.; Hazra, D. K. Conductance of Selected Alkali Metal Salts in Aqueous Binary Mixtures of 2-Methoxyethanol at 25°C. J. Solution Chem. 1998, 27, 1021–1031.
- (8) Nandi, D.; Hazra, D.; K. Conductances of alkali metal chlorides and bromides in aqueous binary mixture of 2-methoxyethanol at 298.15 K. J. Indian Chem. Soc. 2003, 80, 21–29.
- (9) Das, B.; Hazra, D.; K. Ionic Association and Conductances of Some Symmetrical Tetraalkylammonium Perchlorates in 2-Methoxyethanol + Water at 298.15 K. J. Chem. Eng. Data 1996, 41, 1470–1472.
- (10) Corradini, F.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. Conductances of sodium tetraphenylborate in 2-methoxyethanol-water binary solvent mixtures. J. Chem. Soc., Faraday Trans. 1993, 89, 1357–1360.
- (11) Wypych-Stasiewicz, A.; Szejgis, A.; Chmielewska, A.; Bald, A. Conductance Studies of NaBPh₄, NBu₄I, NaI, NaCl, NaBr, NaClO₄ and the Limiting Ionic Conductance in Water + Propan-1-ol Mixtures at 298.15 K. J. Mol. Liq. **2007**, 130, 34–37.

- (12) Gregorowicz, J.; Bald, A.; Szejgis, A.; Chmielewska, A. Gibbs Energy of Transfer and Conductivity Properties of NaI Solutions in Mixtures of Water with Butan-1-ol at 298.15 K, and Some Physicochemical Properties of Mixed Solvent. J. Mol. Liq. 2000, 84, 149–160.
- (13) Douheiret, G.; Pal, A. Dielectric Constants and Densities of Aqueous Mixtures of 2-Alkoxyethanols at 25°C. J. Chem. Eng. Data 1988, 33, 40–43.
- (14) Fuoss, R. M. Paired Ions: Dipolar Pairs as Subset of Diffusion Pairs. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 16–20.
- (15) Fuoss, R. M. Conductance-Concentration Function for the Paired Ion Model. J. Phys. Chem. 1978, 82, 2427–2440.
- (16) Justice, J. -C. An Interpretation for the Distance Parameter of the Fuoss-Onsager Conductance Equation in the Case of Ionic Association. *Electrochim. Acta* 1971, *16*, 701–712.
- (17) Renard, E.; Justice, J. -C. A Comparison of the Conductimetric Behavior of Cesium Chloride in Water-Tetrahydrofuran, Water-Dioxane, and Water-1,2-Dimethoxyethane Mixtures. J. Solution Chem. 1974, 3, 633–647.
- (18) Fuoss, R. M.; Accascina, L. *Electrolytic Conductance*; Interscience: New York, 1959.
- (19) Barthel, J. M. G.; Krienke, H.; Kunz, W. Physical Chemistry of Electrolyte Solutions: modern aspects; Springer: New York, 1998; Vol. 5.
- (20) Haldar, P.; Das, B. Electrical Conductances of Tetraethylammonium Bromide and Tetrapropylammonium Bromide in 2+Ethoxyethanol (1) + Water (2) Mixtures at (308.15, 313.15, 318.15, and 323.15)K. J. Chem. Eng. Data 2005, 50, 1768–1772.
- (21) Muhuri, P. K.; Hazra, D. K. Electrical Conductances of Some Tetraalkylammonium Bromides, Lithium Tetrafluoroborate and Tetrabutylammonium Tetrabutylborate in Propylene Carbonate at 25°C. *J. Chem. Soc., Faraday Trans.* **1991**, 87, 3511–3513.
- (22) Harned, H. S.; Owen, B. B. *The Physical Chemistry of Electrolytic Solution*; Reinhold Publishing Corporation: New York, 1950.
- (23) Reddy, V. K.; Reddy, K. S.; Krishnaiah, A. Excess Volumes, Speeds of Sound, and Viscosities for Mixtures of 1,2-Ethanediol and Alkoxy Alcohols with Water at 308.15 K. J. Chem. Eng. Data **1994**, 39, 615– 617.
- (24) Islam, M. N.; Islam, M. M.; Yeasmin, M. N. Viscosity of Aqueous Solutions of 2-Methoxyethanol, 2-Ethoxyethanol, and Ethanolamine. *J. Chem. Thermodyn.* 2004, *36*, 889–893.
- (25) Fuoss, R. M.; Hirsch, E. Single Ion Conductances in Non-aqueous Solvents. J. Am. Chem. Soc. 1960, 82, 1013–1117.
- (26) Szejgis, A.; Bald, A.; Gregorowicz, J. Conductance Studies of i-Am₃BuNI and NaBPh₄ and the Limiting Ionic Conductance in Water + DMF Mixtures at 298.15K. J. Mol. Liq. **1998**, 75, 237–252.
- (27) Szejgis, A.; Bald, A.; Gregorowicz, J.; Zurada, M. Conductance Studies in Mixtures of Water with DMF at 298.15 K. Part VI. Lithium and Sodium Nitrates, Sodium Perchlorate and Propionate, Potassium Picrate and Thiocyanate, and Limiting Ionic Conductance. J. Mol. Liq. 1999, 79, 123–136.
- (28) Kay, R. L.; Broadwater, T. L. Solvent Structure in Aqueous Mixtures
 I. Ionic Mobilities in Dioxane-Water Mixtures at 25°C. *Electrochim. Acta* 1971, 16, 667–676.
- (29) Kay, R. L.; Broadwater, T. L. Solvent Structure in Aqueous Mixtures. III. Ionic Conductances in Ethanol-Water Mixtures at 10 and 25°C. *J. Solution Chem.* **1976**, *5*, 57–76.
- (30) Piekarski, H.; Tkaczyk, M.; Bald, A.; Szejgis, A. Conductivity Study of NaCl and NaI Solutions in Water-2-Butoxyethanol Mixtures at 298.15K. The Effect of Ion Pairing on the Standard Dissolution Enthalpies of NaCl and NaI. J. Mol. Liq. 1997, 73–74, 209–221.
- (31) Zhang, S.; Li, H.; Dai, S.; Wang, T.; Han, S. Molar Conductance of Sodium Bromide and Sodium Iodide in Methanol + Water at 298.15
 K. J. Chem. Eng. Data 1997, 42, 651–654.
- (32) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley: New York, 1986.
- (33) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N, N-Dimethylformamide, Dimethyl Sulfoxide, N, N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861.

Received for review July 21, 2009. Accepted October 9, 2009. The research was sponsored by the Polish State Committee for Scientific Research (Grant No. 505/669).

JE9006184