# Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (II): A Study on Low-Temperature Heat Capacities and Thermodynamic Properties of VOSO<sub>4</sub>·2.63H<sub>2</sub>O(s)

Ye Qin,<sup>†</sup> Jian-Guo Liu,<sup>†</sup> You-Ying Di,<sup>‡</sup> Chuan-Wei Yan,<sup>†</sup> Chao-Liu Zeng,<sup>†</sup> and Jia-Zhen Yang<sup>\*,§</sup>

State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China, and College of Chemistry, Liaoning University, Shenyang 110036, China

The low-temperature heat capacities of VOSO<sub>4</sub>·2.63H<sub>2</sub>O(s) which is a key component in the electrolyte of the vanadium redox flow battery were measured by adiabatic calorimetry in the temperature range of (78 to 388) K, and the experimental values of the molar heat capacities in the temperature regions of (78 to 372) K were fitted to a polynomial equation. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the compound relative to the standard reference temperature of 298.15 K were calculated at intervals of 5 K. Additionally, a dehydration process occurred in the temperature range of (372 to 382) K, and the peak temperature,  $T_{de} = (378.895 \pm 0.309)$  K, molar enthalpy of dehydration,  $\Delta_{de}H_m = (116.446 \pm 0.148)$  kJ·mol<sup>-1</sup>, and molar entropy of dehydration,  $\Delta_{de}S_m = (307.329 \pm 0.141)$  J·K<sup>-1</sup>·mol<sup>-1</sup>, were determined in terms of the heat capacity curve.

### 1. Introduction

The vanadium redox flow battery (VRB) was first proposed and investigated by Skyllas-Kazacos et al.,<sup>1,2</sup> in which the V(II)/ V(III) and V(IV)/V(V) redox couples were successfully employed as the negative and positive half-cell electrolytes. The VRB, as a promising large-scale energy storage system, has been investigated extensively since then.<sup>3,4</sup> The chemistry of vanadium has recently attracted considerable attention from industry and the academic community.<sup>5,6</sup> Reliable thermodynamic data are needed to provide clues to optimize the overall performance of the VRB. VOSO<sub>4</sub> is a key component in the positive electrolyte of the VRB. To our knowledge, no reports on low-temperature heat capacities and thermodynamic properties of VOSO4 are at present available. As a continuation of our earlier work,<sup>7</sup> in this paper the heat capacities of  $VOSO_4 \cdot 2.63H_2O(s)$  in the temperature range of (78 to 388) K were measured by an adiabatic calorimetry method. The thermodynamic functions,  $(H_T - H_{298.15})$ ,  $(S_T - S_{298.15})$ , and  $(G_T$ -  $G_{298.15}$ ) of VOSO<sub>4</sub>·2.63H<sub>2</sub>O(s), were calculated from heat capacity data in the temperature range of (80 to 370) K. The thermodynamic properties such as molar enthalpies and entropies of the thermal dehydration process of VOSO<sub>4</sub> • 2.63H<sub>2</sub>O(s) were determined on the basis of the heat capacity measurements.

#### 2. Experimental Section

**2.1.** Chemicals.  $VOSO_4 \cdot nH_2O(s) (\ge 97 \text{ mass }\%, \text{Shanghai} \text{ Chemical Co.})$  was recrystallized twice from water.

**2.2.** Determination of the Value of *n*. The recrystallized VOSO<sub>4</sub>•*n*H<sub>2</sub>O(s) was then dried under reduced pressure at 80 °C for an hour,<sup>8</sup> and the value of *n* (n = 2.63) was determined by thermogravimetric analysis (TG) (ThermoMax 700, Thermo

<sup>†</sup> Chinese Academy of Sciences.

<sup>§</sup> Liaoning University.

Carhn, U.S.). The temperature range of the TG was (273 to 673) K with a heating rate of 20  $\text{K}\cdot\text{min}^{-1}$  in a nitrogen atmosphere.

2.3. Measurement of Heat Capacity. A precision automatic adiabatic calorimeter was used to measure heat capacities of  $VOSO_4 \cdot 2.63H_2O(s)$  over the temperature range of  $78 \le (T/K)$  $\leq$  388. The calorimeter was established in the Thermochemistry Laboratory of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.<sup>9-11</sup> The calorimeter mainly comprised a sample cell, a platinum resistance thermometer, an electric heater, inner and outer adiabatic shields, two sets of six-junction chromel-constantan thermopiles installed between the calorimetric cell and the inner shield and between the inner and the outer shields, respectively, and a high vacuum can. A 100  $\Omega$  miniature platinum resistance thermometer (IPRT No. 2, Shanghai Institute of Industrial Automatic Meters, China) was applied to measure the temperature of the sample. The thermometer was calibrated on the basis of ITS-90 by the Station of Low-Temperature Metrology and Measurements, Academia Sinica. The electrical energy introduced into the sample cell and the equilibrium temperature of the cell after the energy input were automatically recorded by use of a data acquisition/switch unit (model 34970A, Agilent, U.S.) and processed online by a computer.

To verify the accuracy of the calorimeter, the heat capacities of a reference standard material ( $\alpha$ -Al<sub>2</sub>O<sub>3</sub>) were measured over the temperature range of 78  $\leq$  (*T*/K)  $\leq$  400. The mass of the sample was 1.7143 g, which was equivalent to 0.0168 mol on the basis of its molar mass,  $M(Al_2O_3) = 101.9613 \text{ g} \cdot \text{mol}^{-1}$ . Deviations of the experimental results from those of the smoothed curve lay within  $\pm$  0.2 %, while the experimental error was  $\pm$  0.3 %, as compared with the values given by the former National Bureau of Standards<sup>12,13</sup> over the whole temperature range.

Heat-capacity measurements of VOSO<sub>4</sub>  $\cdot$  2.63H<sub>2</sub>O(s) over the temperature range of 78  $\leq$  (*T*/K)  $\leq$  388 were continuously and

<sup>\*</sup> Corresponding author. E-mail: jzyanglnu@yahoo.com.cn.

<sup>&</sup>lt;sup>‡</sup> Liaocheng University.

| Т       | $C_{p,\mathrm{m}}$                                                 | Т       | $C_{p,\mathrm{m}}$                                                 | Т       | $C_{p,\mathrm{m}}$              |
|---------|--------------------------------------------------------------------|---------|--------------------------------------------------------------------|---------|---------------------------------|
| K       | $\overline{J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}}$ | K       | $\overline{J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}}$ | K       | $J \cdot K^{-1} \cdot mol^{-1}$ |
| 78.212  | 100.219                                                            | 200.631 | 182.711                                                            | 326.529 | 232.149                         |
| 79.813  | 101.752                                                            | 202.649 | 183.736                                                            | 329.174 | 233.212                         |
| 82.179  | 103.584                                                            | 204.667 | 184.723                                                            | 331.957 | 234.356                         |
| 84.058  | 105.051                                                            | 206.825 | 185.747                                                            | 334.811 | 235.399                         |
| 86.425  | 106.453                                                            | 208.843 | 186.810                                                            | 337.664 | 236.625                         |
| 88.582  | 107.985                                                            | 210.861 | 187.702                                                            | 340.518 | 237.728                         |
| 90.670  | 109.518                                                            | 212.880 | 188.666                                                            | 343.301 | 238.934                         |
| 92.967  | 111.204                                                            | 214.898 | 189.585                                                            | 346.016 | 239.813                         |
| 95.054  | 112.847                                                            | 216.707 | 190.571                                                            | 348.660 | 240.815                         |
| 96.794  | 114.380                                                            | 218.795 | 191.425                                                            | 351.166 | 241.816                         |
| 99.230  | 116.372                                                            | 220.605 | 192.450                                                            | 353.532 | 242.961                         |
| 101.596 | 118.190                                                            | 222.623 | 193.343                                                            | 355.829 | 243.921                         |
| 103.893 | 119.942                                                            | 224.641 | 194.131                                                            | 358.056 | 244.923                         |
| 106.259 | 121.737                                                            | 226.242 | 194.841                                                            | 360.144 | 245.904                         |
| 108.556 | 123.511                                                            | 228.678 | 195.774                                                            | 362.162 | 246.864                         |
| 110.644 | 125.000                                                            | 230.696 | 196.601                                                            | 364.041 | 247.968                         |
| 112.940 | 126.555                                                            | 232.575 | 197.455                                                            | 365.850 | 248.969                         |
| 115.098 | 128.394                                                            | 234.385 | 198.257                                                            | 367.590 | 249.705                         |
| 117.186 | 129.839                                                            | 236.472 | 199.058                                                            | 369.191 | 250.502                         |
| 119.343 | 131.834                                                            | 238.560 | 199.860                                                            | 370.583 | 251.769                         |
| 121.431 | 133.365                                                            | 240.579 | 200.648                                                            | 371.766 | 252.117                         |
| 123.589 | 134.876                                                            | 242.458 | 201.436                                                            | 372.810 | 253.869                         |
| 125.537 | 136.540                                                            | 244.476 | 202.133                                                            | 373.645 | 257.810                         |
| 127.695 | 137.832                                                            | 246.494 | 203.000                                                            | 374.411 | 269.197                         |
| 129.643 | 139.628                                                            | 248.373 | 203.709                                                            | 375.107 | 281.752                         |
| 131.522 | 140.942                                                            | 250.531 | 204.550                                                            | 375.733 | 293.869                         |
| 133.471 | 142.345                                                            | 252.549 | 205.247                                                            | 376.220 | 307.372                         |
| 135.489 | 143.745                                                            | 254.706 | 206.048                                                            | 376.568 | 323.431                         |
| 137.299 | 144.905                                                            | 256.933 | 206.889                                                            | 376.916 | 340.511                         |
| 139.317 | 146.307                                                            | 258.743 | 207.651                                                            | 377.264 | 354.526                         |
| 141.405 | 147.469                                                            | 260.900 | 208.413                                                            | 377.473 | 370.292                         |
| 143.145 | 148.854                                                            | 262.919 | 209.162                                                            | 377.751 | 388.832                         |
| 145.372 | 150.258                                                            | 265.215 | 210.042                                                            | 377.960 | 407.372                         |
| 148.225 | 151.909                                                            | 267.303 | 210.988                                                            | 378.099 | 428.540                         |
| 150.383 | 153.504                                                            | 269.391 | 211.566                                                            | 378.238 | 444.453                         |
| 152.471 | 154.908                                                            | 271.618 | 212.539                                                            | 378.378 | 460.073                         |
| 155.742 | 156.692                                                            | 273.845 | 213.353                                                            | 378.517 | 476.058                         |
| 159.013 | 158.780                                                            | 276.003 | 214.247                                                            | 378.586 | 498.102                         |
| 162.562 | 160.886                                                            | 278.369 | 215.140                                                            | 378.826 | 480.201                         |
| 164.789 | 162.309                                                            | 281.361 | 216.034                                                            | 378.973 | 462.911                         |
| 167.503 | 163.885                                                            | 284.215 | 216.888                                                            | 379.091 | 448.073                         |
| 170.217 | 165.403                                                            | 287.068 | 217.847                                                            | 379.239 | 433.112                         |
| 173.140 | 166.921                                                            | 289.922 | 218.898                                                            | 379.356 | 415.822                         |
| 175.020 | 168.326                                                            | 292.775 | 219.968                                                            | 379.500 | 395.956                         |
| 176.968 | 169.559                                                            | 295.629 | 221.039                                                            | 379.704 | 378.666                         |
| 178.987 | 170.565                                                            | 298.482 | 222.018                                                            | 379.883 | 362.969                         |
| 180.935 | 171.723                                                            | 301.335 | 223.010                                                            | 380.117 | 349.051                         |
| 182.814 | 172.918                                                            | 304.328 | 224.088                                                            | 380.326 | 331.022                         |
| 184.833 | 174.114                                                            | 307.181 | 225.191                                                            | 380.465 | 314.380                         |
| 186.712 | 175.196                                                            | 310.104 | 226.164                                                            | 380.700 | 295.279                         |
| 188.521 | 176.258                                                            | 312.819 | 227.188                                                            | 380.966 | 274.555                         |
| 190.539 | 177.188                                                            | 315.394 | 227.924                                                            | 381.788 | 259.717                         |
| 192.418 | 178.365                                                            | 317.760 | 228.660                                                            | 385.059 | 261.434                         |
| 194.437 | 179.371                                                            | 319.917 | 229.585                                                            | 387.912 | 263.028                         |
| 196.455 | 180.509                                                            | 322.005 | 230.269                                                            |         |                                 |
| 108 /72 | 101 6/10                                                           | 224 002 | 221 169                                                            |         |                                 |

automatically carried out by means of the standard method of intermittently heating the sample and alternately measuring the temperature. The heating rate and temperature increments were generally controlled at (0.1 to 0.4)  $K \cdot min^{-1}$  and (1 to 3) K. The heating duration was 10 min, and the temperature drift rates of the sample cell measured in an equilibrium period were always kept within ( $10^{-3}$  to  $10^{-4}$ )  $K \cdot min^{-1}$  during the acquisition of all heat-capacity data. The data of heat capacities and corresponding equilibrium temperature have been corrected for heat exchange of the sample cell with its surroundings.<sup>9</sup> The sample mass used for calorimetric measurements was 1.65749 g.



**Figure 1.** Curve of experimental molar heat capacities against the temperature  $(C_{p,m} \sim T)$  of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s).



**Figure 2.** Curve of experimental molar heat capacities of the dehydration process against the temperature  $(C_{p,m} \sim T)$  of VOSO<sub>4</sub>·2.63H<sub>2</sub>O(s).  $\bigcirc$ , the first series;  $\Leftrightarrow$ , the second series of heat capacity measurements.

## 3. Results and Discussion

**3.1.** Low-Temperature Heat Capacities. The experimental molar heat capacities of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s) are listed in Table 1 and plotted in Figure 1. The heat capacities of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s) increase slowly in the temperature range of (78 to 372) K, which shows that the structure of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s) is stable in this temperature region, that is, no thermal decomposition occurs. The accelerated rise of the experimental heat capacities after T = 372 K results from dehydration of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s). All of the experimental points in the temperature range between T = 78 K and T = 372 K were fitted by means of a least-squares method, and a polynomial equation of the experimental molar heat capacities  $(C_{p,m})$  versus reduced temperature (X), X = f(T), was obtained

$$C_{p,m}/(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}) = 194.1129 + 65.14856X - 26.3759X^2 + 11.0306X^3 + 8.19886X^4 \quad (1)$$

where X = (T - 225)/147. The coefficient of determination for the fitting is  $R^2 = 0.99997$ . The standard deviations of experimental molar heat capacities from the smoothed heat capacities calculated through the polynomial equation are within  $\pm 0.4$  %.

**3.2.** Thermodynamic Functions of the Compound. The smoothed molar heat capacities were calculated on the basis of the fitted polynomial equation. Thermodynamic functions of

Table 2. Smoothed Heat Capacities and Thermodynamic Functions of  $VOSO_4 {\cdot} 2.63 H_2O(s)$ 

| Т      | $C_{p,\mathrm{m}}$                                                                              | $H_T - H_{298.15K}$ | $S_T - S_{298.15K}$                                                | $G_T - G_{298.15K}$ |
|--------|-------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|---------------------|
| K      | $\overline{\mathbf{J} \boldsymbol{\cdot} \mathbf{K}^{-1} \boldsymbol{\cdot} \mathbf{mol}^{-1}}$ | $kJ \cdot mol^{-1}$ | $\overline{J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}}$ | $kJ \cdot mol^{-1}$ |
| 80     | 101.363                                                                                         | -37.35              | -1.413                                                             | -37.23              |
| 85     | 105.360                                                                                         | -36.83              | -1.371                                                             | -36.71              |
| 90     | 109.325                                                                                         | -36.29              | -1.330                                                             | -36.17              |
| 95     | 113.256                                                                                         | -35.74              | -1.289                                                             | -35.61              |
| 100    | 117.147                                                                                         | -35.16              | -1.249                                                             | -35.04              |
| 105    | 120.994                                                                                         | -34.57              | -1.209                                                             | -34.44              |
| 110    | 124.794                                                                                         | -33.95              | -1.170                                                             | -33.82              |
| 115    | 128.542                                                                                         | -33.32              | -1.132                                                             | -33.19              |
| 120    | 132.235                                                                                         | -32.67              | -1.094                                                             | -32.53              |
| 125    | 135.871                                                                                         | -32.00              | -1.056                                                             | -31.86              |
| 130    | 139.447                                                                                         | -31.31              | -1.019                                                             | -31.17              |
| 135    | 142.960                                                                                         | -30.60              | -0.9823                                                            | -30.47              |
| 140    | 146.407                                                                                         | -29.88              | -0.9462                                                            | -29.74              |
| 145    | 149.787                                                                                         | -29.14              | -0.9105                                                            | -29.00              |
| 150    | 153.099                                                                                         | -28.38              | -0.8753                                                            | -28.25              |
| 155    | 156.339                                                                                         | -27.61              | -0.8405                                                            | -27.48              |
| 160    | 159.508                                                                                         | -26.82              | -0.8062                                                            | -26.69              |
| 165    | 162.605                                                                                         | -26.01              | -0.7723                                                            | -25.88              |
| 170    | 165.628                                                                                         | -25.19              | -0.7388                                                            | -25.06              |
| 1/5    | 108.578                                                                                         | -24.35              | -0.7057                                                            | -24.23              |
| 180    | 171.455                                                                                         | -23.50              | -0.6/31                                                            | -23.38              |
| 100    | 176.084                                                                                         | -22.04<br>-21.76    | -0.6408                                                            | -22.32              |
| 190    | 170.964                                                                                         | -21.70              | -0.6090                                                            | -21.03<br>-20.76    |
| 200    | 182 223                                                                                         | -10.07              | -0.5773                                                            | -20.70<br>-10.86    |
| 200    | 184.736                                                                                         | -19.05              | -0.5157                                                            | -18.94              |
| 205    | 187 180                                                                                         | -18.12              | -0.4853                                                            | -18.02              |
| 215    | 189 556                                                                                         | -17.18              | -0.4553                                                            | -17.08              |
| 220    | 191.866                                                                                         | -16.22              | -0.4256                                                            | -16.13              |
| 225    | 194.113                                                                                         | -15.26              | -0.3962                                                            | -15.17              |
| 230    | 196.299                                                                                         | -14.28              | -0.3672                                                            | -14.20              |
| 235    | 198.426                                                                                         | -13.30              | -0.3385                                                            | -13.22              |
| 240    | 200.499                                                                                         | -12.30              | -0.3101                                                            | -12.22              |
| 245    | 202.519                                                                                         | -11.29              | -0.2820                                                            | -11.22              |
| 250    | 204.491                                                                                         | -10.27              | -0.2542                                                            | -10.21              |
| 255    | 206.418                                                                                         | -9.246              | -0.2267                                                            | -9.188              |
| 260    | 208.304                                                                                         | -8.209              | -0.1995                                                            | -8.157              |
| 265    | 210.155                                                                                         | -7.163              | -0.1725                                                            | -7.117              |
| 270    | 211.973                                                                                         | -6.107              | -0.1458                                                            | -6.068              |
| 275    | 213.765                                                                                         | -5.043              | -0.1194                                                            | -5.010              |
| 280    | 215.534                                                                                         | -3.970              | -0.09319                                                           | -3.943              |
| 285    | 217.288                                                                                         | -2.888              | -0.06722                                                           | -2.868              |
| 290    | 219.030                                                                                         | -1.797              | -0.04148                                                           | -1.785              |
| 295    | 220.768                                                                                         | -0.6972             | -0.01597                                                           | -0.6925             |
| 298.15 | 221.863                                                                                         | 0                   | 0 000228                                                           | 0 4082              |
| 205    | 222.507                                                                                         | 0.4111              | 0.009558                                                           | 0.4085              |
| 210    | 224.235                                                                                         | 1.528               | 0.05444                                                            | 1.317               |
| 315    | 220.014                                                                                         | 2.034               | 0.03934                                                            | 2.035               |
| 320    | 227.790                                                                                         | 1 932               | 0.1086                                                             | 1 897               |
| 325    | 222.007                                                                                         | 6.084               | 0.1330                                                             | 6.041               |
| 330    | 233 345                                                                                         | 7,247               | 0.1572                                                             | 7 195               |
| 335    | 235,287                                                                                         | 8.418               | 0.1812                                                             | 8 357               |
| 340    | 237.289                                                                                         | 9,600               | 0.2051                                                             | 9.530               |
| 345    | 239.360                                                                                         | 10.79               | 0.2288                                                             | 10.71               |
| 350    | 241.509                                                                                         | 11.99               | 0.2525                                                             | 11.91               |
| 355    | 243.743                                                                                         | 13.21               | 0.2760                                                             | 13.11               |
| 360    | 246.074                                                                                         | 14.43               | 0.2994                                                             | 14.32               |
| 365    | 248.509                                                                                         | 15.67               | 0.3226                                                             | 15.55               |
| 370    | 251.060                                                                                         | 16.92               | 0.3458                                                             | 16.79               |

 $VOSO_4 \cdot 2.63H_2O(s)$  relative to the standard reference temperature of 298.15 K,  $(H_T - H_{298.15})$ ,  $(S_T - S_{298.15})$ , and  $(G_T -$   $G_{298,15}$ ), were evaluated according to the following thermodynamic equations,

$$(H_T - H_{298.15}) = \int_{298.15}^T C_p \,\mathrm{d}T \tag{2}$$

$$(S_T - S_{298.15}) = \int_{298.15}^T C_p \cdot T^{-1} \,\mathrm{d}T \tag{3}$$

$$(G_T - G_{298.15}) = \int_{298.15}^T C_{p,m} \, \mathrm{d}T - T \cdot \int_{298.15}^T C_{p,m} \cdot T^{-1} \, \mathrm{d}T$$
(4)

The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of  $VOSO_4 \cdot 2.63H_2O(s)$  relative to the standard reference temperature of 298.15 K are tabulated in Table 2 over the temperature range of (78 to 370) K at intervals of 5 K.

**3.3.** Molar Enthalpy of Dehydration and Entropy of Dehydration. To verify the repeatability of the dehydration process of the sample, two additional series of experiments in the dehydration process of  $VOSO_4 \cdot 2.63H_2O(s)$  with different cooling rates were carried out. The cooling rate of series 1 was about 15 K · min<sup>-1</sup> (liquid nitrogen as the coolant), and that of the series 2 was about 2.5 K · min<sup>-1</sup> (ice water cooling). The results of two series of heat capacity measurements are listed in Table 3 and plotted in Figure 2.

It can be concluded from Figure 2 that  $C_p$  values during the dehydration process of the repeated experiments are in agreement with each other. The dehydration process basically exhibited good repeatability, though there were some slight differences in heights and widths of peaks corresponding to each series of the experiment. In addition, different cooling rates do not affect the experimental results.

The molar enthalpy of dehydration,  $\Delta_{de}H_m$ , in the  $C_{p,m} - T$  curve was evaluated in terms of eq 5, and the molar entropy of dehydration,  $\Delta_{de}S_m$ , was calculated with the thermodynamic eq 6:

$$\Delta_{de} H_{m} = [Q - n \int_{T_{i}}^{T_{de}} C_{p(i)} dT - n \int_{T_{de}}^{T_{f}} C_{P(f)} dT - \int_{T_{i}}^{T_{f}} H_{0} dT] / n (J \cdot K^{-1} \cdot mol^{-1})$$
(5)

$$\Delta_{\rm de}S_{\rm m} = \Delta_{\rm de}H_{\rm m}/T_{\rm de} \,(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}) \tag{6}$$

where  $T_{de}$  is the peak temperature of the dehydration process of the sample;  $T_i$  is a temperature slightly below the starting dehydration temperature;  $T_f$  is a temperature slightly higher than the finishing dehydration temperature;  $C_{p,(s)}$  is the average heat capacity at the temperature  $(T_i + T_{de})/2$ ;  $C_{p,(f)}$  is the average heat capacity at the temperature  $(T_{de} + T_f)/2$ ; Q is the total heat quantity introduced to the calorimeter from temperature  $T_i$  to  $T_f$ ; n is the mole number of the sample;  $H_0$  is the heat capacity of the empty sample cell. Values of Q and  $H_0$  are calculated with the program stored in the computer linked with the adiabatic calorimetric system and printed along with experimental results of heat capacities. The results of the dehydration process obtained from every series of repeated experiments are listed in Table 3.

Table 3. Results of Dehydration Process Obtained from Two Series of Repeated Experiments of VOSO<sub>4</sub>·2.63H<sub>2</sub>O(s)

|                          | <i>m</i> | $T_{ m de}$           | $\Delta_{ m de} H_{ m m}$ | $\Delta_{ m de}S_{ m m}$        |
|--------------------------|----------|-----------------------|---------------------------|---------------------------------|
| thermodynamic properties | g        | K                     | $kJ \cdot mol^{-1}$       | $J \cdot K^{-1} \cdot mol^{-1}$ |
| series 1 $x_i$           | 1.64582  | 378.586               | 116.297                   | 307.188                         |
| series 2 $x_i$           | 1.65749  | 379.204               | 116.594                   | 307.470                         |
| mean value $(\bar{x})$   |          | $(378.895 \pm 0.309)$ | $(116.446 \pm 0.148)$     | $(307.329 \pm 0.141)$           |

The molar heat capacities of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s) were measured by an adiabatic calorimeter in the temperature range of (78 to 388) K and were fitted to a polynomial equation. The thermodynamic functions,  $(H_T - H_{298.15})$ ,  $(S_T - S_{298.15})$ , and  $(G_T - G_{298.15})$ , were calculated on the basis of the heat capacity measurements in the temperature range of (80 to 370) K at intervals of 5 K. In addition, a dehydration process of VOSO<sub>4</sub>•2.63H<sub>2</sub>O(s) was observed in the range of (372 to 382) K with the peak temperature of (378.895 ± 0.309) K; the molar enthalpy and entropy of the dehydration process were determined in terms of the heat capacity results.

#### Literature Cited

- Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G. New all-vanadium redox flow cell. J. Electrochem. Soc. 1986, 1057–1058.
- (2) Kazacos, M.; Cheng, M.; Skyllas-Kazacos, M. Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. 1990, 20, 463– 467.
- (3) Rahman, F.; Skyllas-Kazacos, M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources 1998, 72, 105– 110.
- (4) Kausar, N.; Howe, R.; Skyllas-Kazacos, M. Raman spectroscopy studies of concentrated vanadium redox battery positive electroytes. *J. Appl. Electrochem.* 2001, *31*, 1327–1332.
- (5) Oriji, G.; Katayama, Y.; Miura, T. Investigation on V(IV)/V(V) species in a vanadium redox flow battery. *Electrochim. Acta* 2004, 49, 3091– 3095.

- (6) Tian, B.; Yan, C.-W.; Qu, Q.; Li, H.; Wang, F.-H. Potentiometric titration analysis of electrolyte of vanadium battery. *Battery Bimon.* 2003, *33*, 261–263.
- (7) Liu, J.-G.; Xue, W.-F.; Qin, Y.; Yan, C.-W.; Yang, J.-Z. Enthalpy of solution for anhydrous VOSO<sub>4</sub> and estimated enthalpy of reaction for formation of the ion pair [VOSO<sub>4</sub>]<sup>0</sup>. J. Chem. Eng. Data **2009**, 54, 1938–1941.
- (8) Li, D.-L.; Chen, H.-S. The preparation and application of VOSO<sub>4</sub>. Patent Application PCT Appl/CN 02/02133808.6, 2002.
- (9) Tan, Z.-C.; Liu, B.-P.; Yan, J.-B.; Sun, L.-X. A fully automated adiabatic calorimeter workable between 80 and 400 K. J. Comput. Appl. Chem. 2003, 20, 264–268.
- (10) Di, Y.-Y.; Tan, Z.-C.; Sun, X.-H.; Wang, M.-H.; Xu, F.; Liu, Y.-F.; Sun, L.-X.; Zhang, H.-T. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C<sub>14</sub>H<sub>12</sub>O). *J. Chem. Thermodyn.* **2004**, *36*, 79–86.
- (11) Xing, J.; Tan, Z.-C.; Di, Y.-Y.; Sun, X.-H.; Sun, L.-X.; Zhang, T. Thermodynamic study of methyl N-(4,6-dimethoxypyrimidin-2-yl-)carbamate. Acta Chim. Sin. 2004, 62, 2415–2420.
- (12) Ditmars, D. A.; Ishihara, S.; Chang, S. S. Enthalpy and heat-capacity standard reference material: synthetic sapphire (a-Al<sub>2</sub>O<sub>3</sub>) from 10 to 2250 K. J. Res. Nat. Bur. Stand. **1982**, 87, 159–163.
- (13) Archer, D. G. Thermodynamic properties of synthetic sapphire(a-Al<sub>2</sub>O<sub>3</sub>), standard reference material 720 and the effect of temperaturescale differences on thermodynamic properties. *J. Phys. Chem. Ref. Data* **1993**, 22, 1441–1453.

Received for review July 22, 2009. Accepted November 27, 2009. This project was supported by the Natural Science Foundation of Liaoning Province China (No. 20071010).

JE900624D