Density, Viscosity, and Speed of Sound of (Methyl Benzoate + Cyclohexane), (Methyl Benzoate + n-Hexane), (Methyl Benzoate + Heptane), and (Methyl Benzoate + Octane) at Temperatures of (303.15, 308.15, and 313.15) K

Manapragada V. Rathnam,* Sharad Mankumare, and M. S. S. Kumar[†]

Department of Chemistry, B. N. Bandodkar College of Science, Thane 400 601, India

Density, viscosity, and speed of sound data of (methyl benzoate + cyclohexane), (methyl benzoate + n-hexane), (methyl benzoate + heptane), and (methyl benzoate + octane) have been determined at T = (303.15, 308.15, and 313.15) K. From this data, excess volume, V^{E} , and isentropic compressibility, K_{s} , have been estimated. The values of V^{E} for (methyl benzoate + cyclohexane) are very largely positive, while for (methyl benzoate + octane) they are both positive and negative and for the remaining mixtures negative. The V^{E} were fitted to the Redlich–Kister polynomial equation. The measured viscosities were correlated with Auslander and McAllister's four-body interaction models.

Introduction

Excess thermodynamic and transport properties of binary mixtures provide important information with which to speculate the molecular liquid structure. These properties are mostly dependent on the molecular interactions as well as the difference in the sizes of molecules. Several researchers¹⁻⁹ have measured the density, viscosity, and refractive index for a wide range of binary mixtures containing esters as one of the components, and these properties were interpreted in terms of specific or nonspecific interactions. In continuation of our research,^{10–12} in this paper we report the results of excess volume, viscosity, and speed of sound for (methyl benzoate + cyclohexane), (methyl benzoate + n-hexane), (methyl benzoate + heptane), and (methyl benzoate + octane) at temperatures of (303.15, 318.15, and 313.15) K. Methyl benzoate is an important industrial chemical that is widely used in perfumery and pesticides. The excess volumes, V^{E} , were correlated using the Redlich-Kister¹³ equation to estimate the binary interaction parameters and standard errors. Furthermore, the viscosity data were correlated with the Auslander¹⁴ and McAllister's¹⁵ fourbody interaction models.

Experimental Procedure

Materials. Methyl benzoate, cyclohexane, *n*-hexane, heptane, and octane, all Fluka, with stated purities of better mass fraction purities of > 0.99 were used without further purification. The density and viscosity were determined at a temperature of 303.15 K to evaluate the samples for the presence of large quantities of impurities. Table 1 shows a comparison of densities and viscosities with the available literature data.^{16–22} There is fairly good agreement between our data and the previously reported values.

Methods. All binary mixtures were prepared gravimetrically in air-tight bottles. The mass measurements were performed on a digital electronic balance (Mettler AE 240, Switzerland) with an uncertainty of \pm 0.0001 g. The binary mixtures were prepared just before use. The uncertainty in mole fraction was estimated

Table 1. Comparison of Experimental Densities, ρ , Viscosities, μ	η,
and Speed of Sound, <i>u</i> , of Pure Components with Available	
Literature Values at (303.15, 308.15, and 313.15) K	

	Т	$\rho/(g \cdot cm^{-3})$		$\eta/(n$	nPa•s)	$u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	
liquid	K	exptl	lit.	exptl	lit.	exptl	lit.
methyl benzoate	303.15	1.0783	1.078816	1.667	1.67317	1380	139216
	308.15	1.0744	1.073916	1.514		1364	137216
	313.15	1.0703	1.0690^{16}	1.376	1.36516	1348	135216
cyclohexane	303.15	0.7683	0.7685^{17}	0.823	0.820^{17}	1228	123021
-	308.15	0.7644		0.772		1208	
	313.15	0.7605		0.685		1188	
<i>n</i> -hexane	303.15	0.6498	0.6502^{18}	0.283	0.276^{17}	1048	105419
	308.15	0.6459	0.645318	0.269		1028	103219
	313.15	0.6422		0.252		1008	101019
heptane	303.15	0.6745	0.675118	0.375	0.375^{17}	1116	112222
î	308.15	0.6703	0.6707^{18}	0.350	0.34918	1092	
	313.15	0.6672		0.325		1072	
octane	303.15	0.6939	0.694517	0.491	0.484^{17}	1148	115220
	308.15	0.6904	0.6906^{18}	0.450	0.450^{18}	1132	113320
	313.15	0.6870		0.415		1112	

to be $< \pm 0.0001$. Caution was taken to prevent the evaporation of the solutions after preparation. The required properties of the mixture were determined on the same day. The procedure for measuring viscosity has been described in our previous publication.¹² The densities of the pure and their mixtures were determined with a DMA 35 Anton Paar digital density meter. The instrument has a resolution of 0.0001 g \cdot cm⁻³. The average uncertainty in the measured density was ± 0.1 %. The speed of sound was measured with a single-crystal variable path interferometer (Mittal Enterprises, New Delhi, India) operating at a frequency of 2 MHz that had been calibrated with water and benzene. The uncertainty in the speed of sound was found to be ± 2 %. In all property measurements the temperature was controlled within \pm 0.01 K using a constant temperature bath (INSREF model IRI O16C, India) by circulating water from the thermostat.

Results and Discussion

Table 2 lists the measured density, ρ , viscosity, η , and speed of sound, u, data at temperatures of (303.15, 308.15, and 313.15) K along with the corresponding excess volume,

^{*} Corresponding author. E-mail: mvrathnam58@rediffmail.com.

[†] Zulal Bilajrao Pail College, Dhule-424002, India.

Table 2. Values of Density, ρ , Excess Volume, V^{E} , Viscosity, η , Speed of Sound, u, and Isentropic Compressibility, K_{s} , for the Binary Liquid Mixtures

	ρ	$V^{\rm E}$	η	и	$K_{\rm s}$		ρ	$V^{\rm E}$	η	и	Ks
x_1	g·cm ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	mPa•s	$\overline{\mathbf{m} \cdot \mathbf{s}^{-1}}$	$\overline{\text{TPa}^{-1}}$	x_1	g•cm ⁻³	$cm^3 \cdot mol^{-1}$	mPa•s	$\overline{\mathbf{m} \cdot \mathbf{s}^{-1}}$	TPa^{-1}
Methyl Benzoate (1) + Cyclohexane (2) Methyl Benzoate (1) + Heptane (2)											
					T = 30)3.15 K					
0.0000	0.7683		0.823	1228	863	0.0000	0.6745		0.375	1116	1190
0.0880	0.7969	0.343	0.802	1240	816	0.1154	0.7155	-0.141	0.413	1128	1098
0.1777	0.8259	0.573	0.820	1252	772	0.2273	0.7564	-0.215	0.467	1148	1003
0.2692	0.8558	0.655	0.854	1264	731	0.3350	0.7971	-0.276	0.533	1168	920
0.3668	0.8875	0.642	0.905	12/6	692	0.4390	0.8377	-0.312	0.627	1192	840
0.4007	0.9188	0.585	1.076	1292	615	0.5404	0.8780	-0.345	0.723	1220	/03
0.5059	0.9300	0.481	1.070	1308	581	0.0303	0.9185	-0.294	0.840	1248	640
0.0075	1 0133	0.238	1 308	1340	550	0.8252	0.9994	-0.217	1 172	1308	585
0.8859	1.0461	0.125	1.478	1360	517	0.9133	1.0387	-0.126	1.404	1348	530
1.0000	1.0783		1.667	1380	487	1.0000	1.0783		1.667	1380	487
					T = 30)8.15 K					
0.0000	0.7644		0.772	1208	896	0.0000	0.6703		0.350	1092	1251
0.0880	0.7930	0.335	0.740	1220	847	0.1154	0.7113	-0.154	0.380	1108	1145
0.1777	0.8221	0.556	0.757	1232	801	0.2273	0.7524	-0.271	0.430	1128	1045
0.2692	0.8519	0.650	0.792	1244	759	0.3350	0.7931	-0.338	0.494	1148	957
0.3668	0.8836	0.632	0.840	1260	713	0.4390	0.8339	-0.406	0.575	1172	873
0.4667	0.9150	0.560	0.904	1276	671	0.5404	0.8748	-0.436	0.666	1196	799
0.5639	0.9461	0.470	0.999	1292	633	0.6365	0.9147	-0.437	0.781	1228	725
0.6675	0.9780	0.342	1.090	1308	598	0.7324	0.9553	-0.370	0.904	1260	659
0.7727	1.0095	0.220	1.197	1324	565	0.8252	0.9957	-0.2//	1.068	1296	598
0.8839	1.0422	0.118	1.505	1344	500	1.0000	1.0348	-0.142	1.284	1350	500
1.0000	1.0744		1.514	1504	500	1.0000	1.0744		1.514	1504	500
0.0000	0.7605		0 695	1100	I = 31	13.15 K	0.6672		0.225	1072	1204
0.0000	0.7605	0 333	0.685	1188	932	0.0000	0.0072	-0.163	0.323	1072	1304
0.0880	0.8182	0.535	0.073	1200	832	0.2273	0.7081	-0.289	0.330	1108	1087
0.2692	0.8481	0.613	0.736	1222	787	0.3350	0.7898	-0.371	0.458	1128	995
0.3668	0.8797	0.613	0.781	1240	739	0.4390	0.8305	-0.445	0.529	1152	907
0.4667	0.9111	0.539	0.835	1256	696	0.5404	0.8713	-0.468	0.615	1180	824
0.5639	0.9422	0.451	0.932	1276	652	0.6365	0.9111	-0.467	0.728	1212	747
0.6675	0.9741	0.317	1.004	1292	615	0.7324	0.9517	-0.405	0.849	1248	675
0.7727	1.0055	0.203	1.097	1312	578	0.8252	0.9921	-0.326	0.982	1284	611
0.8859	1.0383	0.092	1.234	1332	543	0.9133	1.0309	-0.156	1.150	1324	553
1.0000	1.0703		1.376	1348	514	1.0000	1.0703		1.376	1348	514
	Met	hyl Benzoate (1)	+ <i>n</i> -Hexane	(2)			М	ethyl Benzoate (1) + Octane (2))	
					T = 30)3.15 K					
0.0000	0.6498		0.283	1048	1401	0.0000	0.6939		0.491	1148	1094
0.1027	0.6927	-0.144	0.324	1072	1256	0.1290	0.7322	0.194	0.522	1160	1015
0.2076	0.7380	-0.464	0.384	1100	1120	0.2456	0.7700	0.149	0.576	1180	933
0.3084	0.7814	-0.641	0.441	1128	1006	0.3586	0.8092	0.003	0.644	1200	858
0.4087	0.8252	-0.828	0.527	1160	901	0.4655	0.8484	-0.098	0.727	1220	792
0.5114	0.8090	-0.8/3	0.624	1190	804 722	0.5072	0.8875	-0.144 -0.168	0.852	1240	/ 33 680
0.7092	0.9555	-0.820	0.915	1232	647	0.0020	0.9643	-0.174	1 084	1284	629
0.8069	0.9977	-0.692	1.104	1312	582	0.8382	1.0023	-0.165	1.245	1308	583
0.9024	1.0369	-0.275	1.370	1344	534	0.9213	1.0406	-0.100	1.434	1340	535
1.0000	1.0783		1.667	1380	487	1.0000	1.0783		1.667	1380	487
					T = 30)8.15 K					
0.0000	0.6459		0.269	1028	1465	0.0000	0.6904		0.450	1132	1130
0.1027	0.6890	-0.201	0.301	1052	1311	0.1290	0.7288	0.151	0.484	1140	1056
0.2076	0.7342	-0.512	0.358	1080	1168	0.2456	0.7664	0.125	0.529	1160	970
0.3084	0.7776	-0.701	0.409	1108	1048	0.3586	0.8055	0.002	0.596	1180	892
0.4087	0.8213	-0.870	0.487	1140	937	0.4655	0.8445	-0.080	0.668	1200	822
0.5114	0.8656	-0.905	0.579	1180	830	0.5672	0.8836	-0.135	0.762	1224	755
0.6115	0.9092	-0.911	0.688	1220	139	0.6620	0.9219	-0.165	0.857	1248	697
0.7092	0.9515	-0.843 -0.711	0.844	1230	603	0.7528	0.9005	-0.160 -0.134	0.990	1272	044 503
0.8009	1.0330	-0.294	1 238	1292	549	0.8382	1.0364	-0.059	1.125	1328	547
1.0000	1.0744	0.274	1.514	1364	500	1.0000	1.0744	0.057	1.514	1364	500
					T = 21	13 15 K					200
0.0000	0.6422		0.252	1008	1 - 51	0 0000	0.6870		0.415	1112	1177
0.1027	0.6851	-0.184	0.283	1036	1360	0.1290	0.7253	0.160	0.447	1124	1091
0.2076	0.7303	-0.533	0.335	1064	1209	0.2456	0.7629	0.118	0.492	1144	1002
0.3084	0.7737	-0.723	0.383	1096	1076	0.3586	0.8018	0.005	0.556	1164	920
0.4087	0.8173	-0.899	0.454	1128	962	0.4655	0.8407	-0.078	0.621	1184	849
0.5114	0.8617	-0.944	0.542	1164	857	0.5672	0.8797	-0.129	0.705	1204	784
0.6115	0.9053	-0.954	0.635	1200	767	0.6620	0.9180	-0.170	0.788	1228	722
0.7092	0.9473	-0.844	0.780	1240	687	0.7528	0.9565	-0.187	0.913	1252	667
0.8069	0.9897	-0.730	0.935	1280	617	0.8382	0.9943	-0.165	1.033	1280	614
0.9024	1.0291	-0.320	1.135	1310	514	1.0000	1.0324	-0.072	1.195	1308	500 514
1.0000	1.0705		1.570	1.540	514	1.0000	1.0705		1.570	1340	514

Table 3. Fitting Parameters and Standard Deviations (σ) of Equation 3 for the Least-Squares Representation of V^{E}

	Т	$cm^3 \cdot mol^{-1}$					
system	K	A_0	A_1	A_2	σ		
methyl benzoate (1) + cyclohexane (2)	303.15	2.221	-1.938	0.805	0.011		
	308.15	2.147	-1.951	0.774	0.012		
	313.15	2.052	-2.031	0.708	0.008		
methyl benzoate $(1) + $ <i>n</i> -hexane (2)	303.15	-3.729	1.145	1.735	0.061		
	308.15	-3.848	0.929	1.304	0.055		
	313.15	-3.984	1.077	1.435	0.055		
methyl benzoate (1) + heptane (2)	303.15	-1.329	-0.182	-0.199	0.011		
^	308.15	-1.734	-0.283	0.123	0.015		
	313.15	-1.885	-0.370	0.101	0.015		
methyl benzoate $(1) +$ octane (2)	303.15	-0.409	-1.903	1.083	0.031		
	308.15	-0.422	-1.495	1.179	0.012		
	313.15	-0.427	-1.644	1.045	0.019		

 $V^{\rm E}$, and isentropic compressibility, $K_{\rm s}$, for (methyl benzoate + cyclohexane), (methyl benzoate + hexane), (methyl benzoate + heptane), and (methyl benzoate + octane) as a function of mole fraction of methyl benzoate. The density values have been used to calculate excess volumes, $V^{\rm E}$, using the following equation.

$$V^{\rm E} = (x_1 M_1 + x_2 M_2)/\rho - (x_1 M_1/\rho_1 + x_2 M_2/\rho_2) \quad (1)$$

where ρ is the density of the mixture and x_1 , M_1 , and ρ_1 and x_2 , M_2 , and ρ_2 are the mole fraction, molar mass, and density of pure components 1 and 2, respectively.

The speed of sound, u, was used to calculate the isentropic compressibility, K_s using

$$K_{\rm s} = 1/u^2 \rho \tag{2}$$

The excess volumes $V^{\mathbb{E}}$ were fitted by the method of nonlinear least-squares to a Redlich-Kister type polynomial.¹³

$$V^{\rm E} = x_1 x_2 \sum A_i (x_1 - x_2)^i \tag{3}$$

The values of coefficient A_i were determined by a regression analysis based on the least-squares method and are reported along with the corresponding standard deviations between the experimental and the calculated values of the respective functions in Table 3.

Figure 1. Excess volume, $V^{\mathbb{E}}$, from eq 3 as a function of methyl benzoate mole fraction. (Methyl benzoate + cyclohexane): \Box , T = 303.15 K; \diamond , T = 308.15 K; \triangle , T = 313.15 K. (Methyl benzoate + *n*-hexane): \times , T = 303.15 K; \star , T = 308.15 K; -, T = 313.15 K. (Methyl benzoate + heptane): \bigcirc , T = 303.15 K; +, T = 308.15 K; \blacksquare , T = 313.15 K. (Methyl benzoate + octane): \blacklozenge , T = 303.15 K; \blacktriangle , T = 303.15 K; \bigstar , T = 303.15 K; \blacksquare , T = 308.15 K; \blacksquare , T = 313.15 K. (Methyl benzoate + octane): \diamondsuit , T = 303.15 K; \blacktriangle , T = 308.15 K; \blacksquare , T = 313.15 K.

The standard deviation (σ) was calculated using the relation

$$\sigma(V^{\rm E}) = \left[\sum (V^{\rm E}_{\rm obsd} - V^{\rm E}_{\rm calcd})^2 / n - m\right]^{1/2}$$
(4)

where *n* represents the number of experimental points and *m* is the number of adjustable parameters.

Figure 1 displays the dependence of V^{E} on the mole fraction of ester (x_1) for all of the studied systems at temperatures of (303.15, 308.15, and 313.15) K. The V^{E} for (methyl benzoate + cyclohexane) are positive, while for (methyl benzoate + *n*-hexane) and (methyl benzoate + heptane) they are negative over the whole composition range. However, for (methyl

Table 4. Adjustable Parameters and Percentage Standard Deviation σ (%) of Equations 5 and 6 for the Viscosities of Binary Liquid Mixtures

Т		Auslar	ıder		McAllister for	ır-body model				
K	B ₁₂	A_{21}	B_{21}	σ (%)	ν_{1112}	ν_{1122}	ν_{2221}	σ (%)		
Methyl Benzoate (1) + Cyclohexane (2)										
303.15	-0.2461	0.4832	4.4488	0.17	1.2487	1.1052	0.8728	0.18		
308.15	-0.3076	0.2909	7.2194	0.30	1.1434	1.0746	0.7793	0.36		
313.15	-0.1446	0.3368	5.9487	0.40	1.0544	0.9793	0.7707	0.41		
Methyl Benzoate $(1) + n$ -Hexane (2)										
303.15	0.2319	1.1546	2.3359	0.57	1.0124	0.6556	0.5315	0.34		
308.15	0.1728	0.9792	2.7348	0.59	0.9220	0.6332	0.4776	0.42		
313.15	0.2025	1.03936	2.4919	0.59	0.8611	0.5885	0.4535	0.43		
			Methyl Ber	zoate (1) + Hep	tane (2)					
303.15	0.0724	0.6128	4.6227	0.32	1.0047	0.7818	0.5833	0.29		
308.15	0.1581	0.9827	2.7894	0.31	1.0636	0.7944	0.6854	0.25		
313.15	0.0010	0.3581	7.5721	0.38	0.9339	0.7780	0.6351	0.40		
			Methyl Be	nzoate $(1) + Oct$	ane (2)					
303.15	0.1298	1.0164	2.7663	0.20	1.0505	0.8750	0.6904	0.19		
308.15	0.1274	0.8533	3.3532	0.20	0.9548	0.8092	0.6470	0.19		
313.15	0.1742	0.9257	2.9851	0.27	0.8852	0.7567	0.6080	0.26		

benzoate + octane), the V^{E} values are both positive and negative at all of the studied temperatures displaying an s-shaped curve. The magnitude of V^{E} increases with an increase in chain length of the alkanes (*n*-hexane to octane). The more negative value of V^{E} for *n*-hexane may possibly be explained as a result of an increase in the number of carbon atoms in methyl benzoate, leading to low polarity and weakening of the association between benzoate molecules and hence forming induced dipole—dipole complexes between methyl benzoate and *n*-hexane. In case of cyclohexane, the excess volumes are positive over the whole composition range.

The experimental viscosity data were correlated with the three-parameter equation of Auslander as

$$\eta = \frac{\eta_1 x_1 (x_1 + B_{12} x_2) + \eta_2 (A_{21} x_2 (B_{21} x_1 + x_2))}{x_1 (x_1 + B_{12} x_2) + (A_{21} x_2) (B_{21} x_1 + x_2)}$$
(5)

where η , η_1 , and η_2 are the dynamic viscosities of the mixture and pure components, respectively. B_{12} , A_{21} , and B_{21} are the parameters representing binary 1,2 interactions.

The kinematic viscosities were correlated to McAllister fourbody interaction model given by

$$\ln \nu = x_1^4 \ln \nu_1 + 4x_1^3 x_2 \ln \nu_{1112} + 6x_1^2 x_2^2 \ln \nu_{1122} + 4x_1 x_2^3 \ln \nu_{2221} + x_2^4 \ln \nu_2 - \ln[x_1 + (x_2 M_2 / M_1)] + 4x_1^3 x_2 \ln[\{3 + (M_2 / M_1)\}/4] + 6x_1^2 x_2^2 \times \ln[\{1 + (M_2 / M_1)\}/2] + 4x_1 x_2^3 \ln[\{1 + (3M_2 / M_1)\}/4] + x_2^4 \ln(M_2 / M_1)$$
(6)

where ν , ν_1 , and ν_2 are the kinematic viscosities of the mixture and pure components 1 and 2, respectively. ν_{1112} , ν_{1122} , and ν_{2221} are the model parameters. The correlating ability of eqs 5 and 6 was tested by calculating the standard percentage deviation σ between the experimental and the calculated viscosity as

$$\sigma = [1/(n-m)\sum \{(100(\nu_{\text{exptl}} - \nu_{\text{calcd}})/\nu_{\text{exptl}})^2\}^{1/2}]$$
(7)

where n represents the number of data points and m the number of numerical coefficients in the respective equations. Table 4 records the model parameter along with standard percentage deviations σ . It is observed that the values of the parameter B_{12} of the Auslander model for the cyclohexane mixture are negative, whereas A_{21} and B_{21} are positive. However, for the remaining system, they are $(B_{12}, A_{21}, and$ B_{21}) are positive, while for the McAllister model the parameters (ν_{1112} , ν_{1122} , and ν_{2221}) are positive for all of the studied systems. The proposed models provide a reasonably accurate estimation of viscosity of the binary liquid mixtures under consideration at the studied temperatures, which is evident from the small standard percentage deviations between the experimental and the calculated viscosity values. The values of σ for the Auslander (three-parameter) equation are in the range from 0.17 to 0.59, while for the McAllister four-body interaction model they are in the range from 0.18 to 0.43. As could be expected, the McAllister's four-body interaction model is adequate for correlating the kinematic viscosities of the binary mixtures under study.

Acknowledgment

The authors are thankful to Dr. (Mrs.) Madhuri K. Pejaver, Principal, B. N. Bandodkar College of Science, Thane (India), for providing necessary facilities in the physical research laboratory. The authors also sincerely acknowledge the reviewers for their constructive comments.

Supporting Information Available:

Experimental data summary. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Tejraj, M. A.; Banarjee, K. Density, viscosity, Refractive index and speed of sound in binary mixtures of acrylonitrile with methyl acetate, ethyl acetate, n-propyl acetate n-butyl acetate and 3-methyl butyl-2-acetate in the temperature interval (298.15-308.15) K. J. Chem. Eng. Data 1998, 43, 514-518.
- (2) Baragi, J. G.; Aralaguppi, M. I.; Aminabhavi, T. M.; Kariduraganvar, M. Y.; Kulkarni, S. S. Density, viscosity, refractive index and speed of sound for Binary mixtures of 1,4-Dioxane with different organic liquids at (303.15, 308.15 and 313.15) K. J. Chem. Eng. Data 2005, 50, 917–923.
- (3) Wankhede, D. S.; Wankhede, N. N.; Lande, M. K.; Arbad, B. R. Ultrasonic velocities and refractive indices of binary mixtures of propylene carbonate + n-Alkaloids. *Indian J. Pure Appl. Phys.* 2006, 44, 909–916.
- (4) Chandrasekhar, G.; Venkatesu, P.; Prabhakara Rao, M. V. Excess molar volumes and speed of sound of ethyl acetate and butyl acetate with 2-Alkoxy ethanols at 308.15 K. J. Chem. Eng. Data 2000, 45, 590– 593.
- (5) Naik, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, + Bromobenzene, or + Benzyl Alcohol at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 2003, 48, 628–631.
- (6) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 2003, 48, 1489–1494.
- (7) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate with Aromatic Liquids at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 2002, 47, 964–969.
- (8) Resa, J. M.; González, C.; de Landaluce, S. O.; Goenaga, G. M. Density, Refractive Index, Speed of Sound, and Vapor-Liquid Equilibria for Binary Mixtures of Methanol + Vinyl Propionate and Vinyl Acetate + Vinyl Propionate. Vapor Pressures of Vinyl Propionate. J. Chem. Eng. Data 2005, 50, 319–324.
- (9) Nallani, S.; Boodida, S.; Tangeda, S. J. Density and Speed of Sound of Binary Mixtures of *N*-Methylacetamide with Ethyl Acetate, Ethyl Chloroacetate, and Ethyl Cyanoacetate in the Temperature Interval (303.15 to 318.15) K. J. Chem. Eng. Data **2007**, *52*, 405–409.
- (10) Rathnam, M. V.; Singh, R. K.; Kumar, M. S. Excess volume of Binary solutions of methyl formate, ethyl formate, propyl formate and benzyl acetate with bromo, chloro, and nitrobenzene at (303.15, 308.15 and 313.15) K. J. Chem. Eng. Data 2008, 53, 265–270.
- (11) Rathnam, M. V.; Mohite, S.; Kumar, M. S. S. Interaction studies in binary liquid mixtures of methyl formate with o-, m-, and p-xylenes using viscosity data at 303.15 K. *Indian J. Chem. Technol.* 2008, 15, 409–412.
- (12) Rathnam, M. V.; Mohite, S.; Kumar, M. S. S. Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K. J. Chem. Eng. Data 2009, 54, 305–309.
- (13) Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolytic solutions. Algebraic representation of thermodynamic properties and classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345– 348.
- (14) Auslander, G. Calculating the properties of multicomponent mixtures. *Br. Chem. Eng.* **1965**, *10*, 196.
- (15) McAllister, R. A. The viscosity of liquid mixtures. *AIChE J.* **1960**, 6 (3), 427–431.
- (16) Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Go-palakrishna, B. Densities, refractive indices, speeds of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl succinate in the temperature range from (298.15 to 318.15) K. J. Chem. Eng. Data 1994, 39, 251–260.
- (17) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic solvents, Physical properties and Method of Purification, Techniques of chemistry; Wiley-Interscience: New York, 1986; Vol. II.
- (18) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I.; Phayde, H. T. S. Density, Viscosity, and Refractive Index of the Binary Mixtures

of Cyclohexane with Hexane, Heptane, Octane, Nonane, and Decane at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data **1996**, 41, 521–525.

- (19) Bolotnikov, M. F.; Neruchev, Y. A.; Melikhov, Y. F.; Verveyko, V. N.; Verveyko, M. V. Temperature Dependence of the Speed of Sound, Densities, and Isentropic Compressibilities of Hexane + Hexadecane in the Range of (293.15 to 373.15) K. J. Chem. Eng. Data 2005, 50, 1095–1098.
- (20) Mascato, E.; Mussari, L.; Postigo, M.; Mariano, A. B.; Pineiro, M. M.; Legido, J. L.; Andrade, M. I. P. Excess Enthalpy, Density, and Speed of Sound for the Ternary Mixture Methyl *tert*-Butyl Ether (1) + Butan-1-ol (2) + Octane (3). *J. Chem. Eng. Data* 2009, 54, 453–458.
- (21) Oswal, S. L.; Ghael, N. Y.; Prajapati, K. D. Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of cyclohexanol + cyclohexane at 303.15 K. *Thermochim. Acta* 2004, 419, 59–65.
- (22) Sastry, N. V.; Raj, M. M. Densities, Speeds of Sound, Viscosities, Dielectric Constants, and Refractive Indices for 1-Heptanol + Hexane and + Heptane at (303.15 and 313.15) K. J. Chem. Eng. Data **1996**, 41, 612–618.

Received for review August 4, 2009. Accepted November 10, 2009. JE9006597