Vapor Pressures and Liquid Densities of Ammonium Iodide + Ammonia Mixtures

Daisuke Tomida,* Kousuke Suzuki, and Chiaki Yokoyama

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

Vapor pressures and liquid densities for ammonium iodide (NH₄I) + ammonia (NH₃) mixtures were measured over a wide range of temperatures and molalities. Vapor pressures of the NH₄I + NH₃ mixtures were measured at temperatures ranging from (303.12 to 373.16) K and molalities ranging up to 19.314 mol·kg⁻¹ of NH₄I. Vapor pressures were measured with a static method. The experimental values were correlated with Antoine's equation. Liquid densities of the NH₄I + NH₃ mixtures were measured at temperatures ranging from (303.15 to 373.15) K, pressure ranging from (10.0 to 30.0) MPa, and molalities ranging up to 16.465 mol·kg⁻¹ of NH₄I. Liquid densities were measured with a piezometer. The experimental values were correlated with a Tait form equation.

Introduction

Gallium nitride (GaN) has attracted considerable attention as a material for optoelectronic devices such as blue, green, and white light-emitting diodes and high-frequency, high-power transistors. To realize these devices, high-quality and large diameter bulk GaN is required. Several methods have been proposed and tested for the GaN crystal growth.¹⁻³ The ammonothermal method, which is a solvothermal method, is one of the most promising techniques for achieving this purpose.^{2,4–6} In the acidic ammonothermal method, ammonia and ammonium halide are used as a solvent and mineralizer, respectively.^{6,7} However, there are few data regarding the thermophysical properties of ammonium halide + ammonia mixtures. The vapor pressures of ammonium bromide + ammonia and ammonium iodide + ammonia solutions over a wide temperature range and at various concentrations were reported by Yamamoto et al.8 They also reported the liquid densities of these solutions at saturated vapor pressure.⁹ However, there are no literature values for liquid densities of these solutions above saturated vapor pressure.

In our previous studies, we measured the vapor pressures and liquid densities of ammonium chloride + ammonia and ammonium bromide + ammonia mixtures.^{10,11} The present paper describes continuing work on the experimental determination of the vapor pressures and liquid densities consisting of ammonium halide + ammonia mixtures. In this paper, vapor pressures and liquid densities for ammonium iodide (NH₄I) + ammonia (NH₃) were measured. Vapor pressures of NH₄I + NH₃ mixture were measured at temperatures ranging from (303.12 to 373.16) K and molalities ranging up to 19.314 mol·kg⁻¹ of NH₄I. Liquid densities of NH₄I + NH₃ mixture were measured at temperatures ranging up to 19.315 K, pressure ranging from (10.0 to 30.0) MPa, and molalities ranging up to 16.465 mol·kg⁻¹ of NH₄I.

Experimental Section

Materials. NH₄I, which had minimum purities of 99.5 mass %, was purchased from Wako Pure Chemical Industries. It was dried at 373.15 K for 12 h before measurement. The NH₃ of 99.999 mol % purity was supplied by Japan Fine Products Co. Ltd. The samples were used without further purification.

Apparatus and Procedure. The vapor pressure was measured with a static method. The experimental apparatus and procedures were the same as those described in our previous study.¹⁰ Temperature and pressure values have an uncertainty of ± 0.02 K and \pm 0.001 MPa, respectively. The composition of the sample mixtures were determined by weighting. The uncertainty of the composition determination was estimated to be less than 0.05 mass %. On the basis of the uncertainties of these properties, the uncertainty of the vapor pressure data is estimated to be within \pm 0.5 %. The stainless steel pressure-resistant cell was dried at 373.15 K under vacuum for 2 h to remove moisture. Then, weighed amounts of the NH₄I and stirring bar are charged in the cell. The valve and transducer were attached with the cell. After degassing for about 5 min, the NH₃ was introduced into the cell with a plunger pump. The amount of NH₃ charged in the cell was determined by weighing the cell with the electrical balance, accurate to within 0.01 g, before and after loading NH₃. After introducing NH₃ and weighing the cell, the $NH_4I + NH_3$ mixture was stirred with a magnetic stirring bar for 1 h to dissolve NH₄I in NH₃. Then, the cell was immersed in the oil bath. After it maintained a constant temperature for more than 1 h to achieve equilibrium, the vapor pressure was measured.

In this study, we used a static method for vapor pressure measurement. Therefore, the concentration was changed at each temperature. To obtain the concentration of liquid mixture, two assumptions were adopted: (1) NH_4I does not exist in the vapor phase, and (2) the vapor phase is ideal. The amounts of NH_4I and NH_3 and the volume of the cell were measured experimentally. Therefore, if the density of liquid mixture was known, we can evaluate the volumes of vapor and liquid phase. Therefore, the concentration of the NH_4I in the NH_3 solution is determined by a material balance. It should be mentioned that

^{*} Corresponding author. E-mail address: tomida@tagen.tohoku.ac.jp. Fax: +81-22-217-5647.

Table 1. Experimental Results of the Vapor Pressures for the $\rm NH_4I$ + $\rm NH_3$ Mixtures

Т	m	Р	Т	т	Р						
K	$mol \cdot kg^{-1}$	MPa	K	$mol \cdot kg^{-1}$	MPa						
303.12	0.812	1.154	303.12	1.769	1.142						
313.14	0.815	1.535	313.14	1.776	1.506						
323.16	0.819	2.000	323.16	1.785	1.965						
333.13	0.824	2.569	333.13	1.794	2.525						
343.13	0.830	3.256	343.13	1.805	3.201						
353.13	0.839	4.068	353.13	1.817	4.003						
363.12	0.849	5.029	363.12	1.837	4.950						
373.16	0.862	6.177	373.16	1.862	6.066						
303.12	3.171	1.096	303.12	4.846	1.034						
313.14	3.186	1.448	313.14	4.864	1.346						
323.16	3.204	1.891	323.16	4.884	1.757						
333.13	3.224	2.431	333.13	4.913	2.260						
343.13	3.250	3.081	343.13	4.949	2.864						
353.13	3.278	3.855	353.13	4.996	3.577						
363.12	3.313	4.765	363.12	5.029	4.410						
373.16	3.355	5.893	373.16	5.068	5.364						
303.12	7.373	0.866	303.12	10.345	0.640						
313.14	7.415	1.131	313.14	10.388	0.861						
323.16	7.459	1.473	323.16	10.445	1.135						
333.13	7.510	1.896	333.13	10.488	1.456						
343.13	7.571	2.403	343.13	10.550	1.840						
353.13	7.635	2.982	353.13	10.603	2.303						
363.12	7.709	3.654	363.12	10.643	2.825						
373.16	7.730	4.411	373.16	10.701	3.431						
303.12	11.915	0.524	303.12	16.473	0.300						
313.14	11.967 0.71		313.14	16.504	0.420						
323.16	12.034	0.947	323.16	16.552	0.574						
333.13	12.107 1.228		333.13	16.592	0.771						
343.13	12.197	1.530	343.13	16.640	1.010						
353.13	12.292	1.901	353.13	16.688	1.300						
363.12	12.405	2.341	363.12	16.745	1.622						
373.16	12.541	2.840	373.16	16.802	2.004						
303.12	18.475	0.235									
313.14	18.532	0.336									
323.16	18.616	0.465									
333.13	18.701	0.626									
343.13	18.816	0.826									
353.13	18.951	1.066									
363.12	19.116	1.328									
373.16	19.314	1.620									
Table 2.	able 2. Antoine's Equation Parameters										
a_0	3.5950		b_0	9.5779•	10 ²						
a_1	3.7340 •	10^{-2}	b_1	1.1198 • 10							
a_2	-1.6123	$\cdot 10^{-2}$	b_2	-4.0770)						
a_3	1.4081 •	10^{-3}	b_3	$4.2411 \cdot 10^{-1}$							
a_4	-3.4826	$5 \cdot 10^{-5}$	b_4	$-1.1176 \cdot 10^{-2}$							

the vapor phase should be as small as possible to reduce the effect of ambiguity of assumption 2.

The liquid densities of the NH₄I + NH₃ mixtures were measured with a glass piezometer, which has been described in detail elsewhere.¹² Weighed NH₄I is charged in the glass cell, and the valve was attached with the glass cell. After degassing for about 5 min, NH₃ was introduced into the glass cell from the valve by immersing the glass cell in the methanol which was cooled at about 233 K. The amount of NH₃ charged in the cell was determined by weighing the cell with the electrical balance, accurate to within 0.001 g, before and after loading NH₃. After dissolving NH₄I in NH₃, the glass cell was inserted into the pressure vessel. The sample cell volume was approximately 13 cm³. The estimated uncertainties in the liquid densities are \pm 0.2 %.

Results and Discussion

Vapor Pressure Measurement of $NH_4I + NH_3$ Mixtures. The experimental results of the vapor pressures for $NH_4I + NH_3$ mixtures are given in Table 1. The vapor pressures were

Figure 1. Comparison of the vapor pressure data for the NH₄I + NH₃ mixtures with results from Antoine's equation. \bigcirc , 303.12 K; \square , 313.14 K; \triangle , 323.16 K; \diamond , 333.13 K; \blacklozenge , 343.13 K; \blacksquare , 353.13 K; \bigstar , 363.12 K; \blacklozenge , 373.16 K; solid line indicates correlations.

Figure 2. Deviations of experimental data from Antoine's equation. \bigcirc , this work; \triangle , Yamamoto et al.⁸

correlated with Antoine's equation. The Antoine constants were expressed as the fourth-degree function of molality.

$$\log P/MPa = A - B/(C + T/K - 273.15)$$
(1)

$$A = \sum_{i}^{\prime} a_{i} (m/\text{mol·kg}^{-1})^{i}$$
(2)

$$B = \sum_{i}^{4} b_{i} (m/\text{mol·kg}^{-1})^{i}$$
(3)

$$C = 241.26$$
 (4)

The values of these parameters were determined by using the present experimental results with a least-squares method and are listed in Table 2. Comparisons of the vapor pressure data for the NH₄I + NH₃ mixture with the results from Antoine's equation are shown in Figure 1. The Antoine equation correlated the experimental values of the NH₄I + NH₃ mixture within \pm 2.5 %. Figure 2 shows the deviations of the experimental vapor pressure data in the literature⁸ from the values calculated by eq 1 in our experimental range. The results of Yamamoto et al. are in good agreement with ours except for the high concentration range.

Liquid Density Measurement of $NH_4I + NH_3$ *Mixtures.* The experimental results of the liquid densities of the NH₄I + NH₃ mixture are shown in Table 3. The $P\rho Tm$ relations for the NH₄I + NH₃ mixture were correlated with the Tait equation.¹³

$$\frac{\rho/\text{kg}\cdot\text{m}^{-3} - \rho_0/\text{kg}\cdot\text{m}^{-3}}{\rho/\text{kg}\cdot\text{m}^{-3}} = E\ln\left(\frac{D + P/\text{MPa}}{D + P_0}\right) \quad (5)$$

where ρ and ρ_0 are the densities at *P* and P_0 (= 10.0 MPa), respectively. *E* and *D* are adjustable parameters. The parameters were optimized by minimizing the deviation of the calculated

Table 3. Experimental Results of the Liquid Densities of the $\rm NH_4I$ + $\rm NH_3$ Mixtures

Table 3 Continued

1 1113	VIIAtul CS							Т	т	P	ρ	Т	т	P	ρ
<u> </u>	<i>m</i>	P	ρ	T	m		ρ	K	$mol \cdot kg^{-1}$	MPa	$kg \cdot m^{-3}$	K	$mol \cdot kg^{-1}$	MPa	$kg \cdot m^{-3}$
Κ	$mol \cdot kg^{-1}$	MPa	$kg \cdot m^{-3}$	Κ	$mol \cdot kg^{-1}$	MPa	$kg \cdot m^{-3}$	343.15	0.867	10.0	632	353.15	0.867	10.0	616
303.15	0.867	10.0	698	313.15	0.867	10.0	684			15.0	638			15.0	622
		15.0	702			15.0	688			20.0	644			20.0	628
		20.0	706			20.0	692			25.0	649			25.0	634
		25.0	710			25.0	696		1.027	30.0	655		1.027	30.0	640
	1 0 2 7	30.0	714		1 0 2 7	30.0	700		1.827	10.0	716		1.827	10.0	700
	1.827	10.0	781		1.827	10.0	763			15.0	722			15.0	700
		20.0	784			20.0	707			25.0	732			25.0	717
		25.0	787			25.0	775			30.0	737			30.0	722
		30.0	791			30.0	779		3.103	10.0	815		3.103	10.0	798
	3.103	10.0	871		3.103	10.0	857			15.0	819			15.0	803
		15.0	874			15.0	861			20.0	823			20.0	808
		20.0	878			20.0	865			25.0	828			25.0	814
		25.0	881			25.0	868		1 956	30.0	832		1 956	30.0	819
	4 856	10.0	988		4 856	10.0	975		4.050	15.0	935		4.050	15.0	922
	1.050	15.0	992		1.020	15.0	979			20.0	941			20.0	927
		20.0	996			20.0	982			25.0	945			25.0	931
		25.0	1000			25.0	986			30.0	949			30.0	935
		30.0	1004			30.0	990		7.271	10.0	1062		7.271	10.0	1050
	7.271	10.0	1109		7.271	10.0	1098			15.0	1066			15.0	1054
		15.0	1112			15.0	1101			20.0	1069			20.0	1057
		20.0	1115			20.0	1104			23.0	1072			23.0	1060
		30.0	1120			30.0	11107		11.181	10.0	1189		11.181	10.0	1178
	11.181	10.0	1234		11.181	10.0	1223		111101	15.0	1192		111101	15.0	1181
		15.0	1237			15.0	1226			20.0	1195			20.0	1184
		20.0	1239			20.0	1229			25.0	1197			25.0	1187
		25.0	1241			25.0	1231			30.0	1200			30.0	1189
	16 465	30.0	1244		16 465	30.0	1234		16.465	10.0	1293		16.465	10.0	1285
	10.405	10.0	1330		10.405	10.0	1322			15.0	1290			15.0	1287
		20.0	1332			20.0	1324			25.0	1301			25.0	1290
		25.0	1337			25.0	1329			30.0	1304			30.0	1295
		30.0	1339			30.0	1331	363.15	0.867	10.0	594	373.15	0.867	10.0	580
323.15	0.867	10.0	668	333.15	0.867	10.0	651			15.0	602			15.0	587
		15.0	673			15.0	656			20.0	610			20.0	595
		20.0	677			20.0	661			25.0	617			25.0	603
		25.0	081 686			25.0	000 671		1 827	10.0	620 680		1 827	30.0 10.0	011 667
	1.827	10.0	749		1.827	10.0	733		1.027	15.0	687		1.027	15.0	674
	11027	15.0	753		11027	15.0	737			20.0	694			20.0	681
		20.0	757			20.0	741			25.0	701			25.0	688
		25.0	761			25.0	746			30.0	708			30.0	695
		30.0	765		2 1 0 2	30.0	750		3.103	10.0	781		3.103	10.0	768
	3.103	10.0	844		3.103	10.0	829			15.0	786			15.0	774
		15.0	848			15.0	834			20.0	792			20.0	785
		25.0	856			25.0	842			30.0	803			30.0	785
		30.0	860			30.0	846		4.856	10.0	903		4.856	10.0	900
	4.856	10.0	961		4.856	10.0	948			15.0	908			15.0	894
		15.0	965			15.0	952			20.0	913			20.0	899
		20.0	969			20.0	956			25.0	917			25.0	903
		25.0	973			25.0	959		7 071	30.0	921		7 071	30.0	908
	7 271	30.0 10.0	977		7 271	30.0 10.0	905		1.271	10.0	1037		1.271	10.0	1020
	1.2/1	15.0	1080		1.211	15.0	1070			20.0	1041			20.0	1033
		20.0	1093			20.0	1082			25.0	1047			25.0	1037
		25.0	1096			25.0	1085			30.0	1051			30.0	1040
		30.0	1099			30.0	1087		11.181	10.0	1167		11.181	10.0	1155
	11.181	10.0	1212		11.181	10.0	1200			15.0	1170			15.0	1159
		15.0	1215			15.0	1203			20.0	1173			20.0	1162
		20.0	1217			20.0	1200			25.0 30.0	1170			25.0 30.0	1164 1167
		20.0 30.0	1219			20.0	1208		16.465	10.0	1275		16 465	10.0	1266
	16.465	10.0	1312		16.465	10.0	1303		10.100	15.0	1277		10.100	15.0	1269
		15.0	1315			15.0	1305			20.0	1280			20.0	1271
		20.0	1317			20.0	1308			25.0	1282			25.0	1273
		25.0	1319			25.0	1310			30.0	1284			30.0	1276
		30.0	1322			30.0	1312								

Figure 3. Comparison of the liquid density data for the NH₄I + NH₃ mixtures with results from the Tait form equation at 303.15 K. \bigcirc , m = 0.867; \square , m = 1.827; \triangle , m = 3.103; \diamondsuit , m = 4.856, \times , m = 7.271; $\textcircled{\bullet}$, m = 11.181; \blacksquare , m = 16.465; solid line indicates correlations.

Figure 4. Deviations of the liquid density data from the Tait form equation.

Figure 5. Molality dependence of the apparent molar volume of NH₄ I in NH₃ at 303.15 K. \bigcirc , 10 MPa; \square , 15 MPa; \triangle , 20 MPa; \diamond , 25 MPa; \bullet , 30 MPa.

density from the experimental one. For ammonia according to literature values, ${}^{14}E$ was equal to 0.09761, and *D* was expressed by a linear function of temperature as follows

$$D = 249.27 - 0.66019(T/K)$$
(6)

For the NH₄I + NH₃ mixtures, *E* could be treated as a constant, 0.09761. The parameter *D* could be expressed by the following equation

$$D = D_0 + 16.42(m/\text{mol·kg}^{-1}) - 0.157(m/\text{mol·kg}^{-1})^2$$
(7)

where D_0 is the value of *D* calculated from eq 6 and *m* is the molality. Comparisons of the liquid density data for the NH₄I + NH₃ mixtures with results from the Tait form equation at 303.15 K are shown in Figure 3. Figure 4 shows deviations of

Figure 6. Temperature dependence of the apparent molar volume of NH₄I in NH₃ at m = 0.867. \bigcirc , 10 MPa; \square , 15 MPa; \triangle , 20 MPa; \diamond , 25 MPa; \bullet , 30 MPa.

the experimental data from the Tait form equation. The Tait form equation correlated the experimental values of $NH_4I + NH_3$ mixtures is within 0.4 %.

The apparent molar volumes V_{ϕ} of NH₄I can be expressed as follows

$$V_{\phi}/(\mathrm{m}^{3} \cdot \mathrm{mol}^{-1}) = \frac{(d^{\circ}/(\mathrm{kg} \cdot \mathrm{m}^{-3}) - d/(\mathrm{kg} \cdot \mathrm{m}^{-3}))}{m/(\mathrm{mol}^{\circ} \mathrm{kg}^{-1})d/(\mathrm{kg} \cdot \mathrm{m}^{-3})d^{\circ}/(\mathrm{kg} \cdot \mathrm{m}^{-3})} + \frac{M}{1000(d/\mathrm{kg} \cdot \mathrm{m}^{-3})}$$
(8)

where *M* is the molar mass of the NH₄I, *m* is the molality, *d* is the density of the solution, and d° is the density of the NH₃. Literature values were used for the density of NH₃.¹⁴ No literature values for the apparent molar volumes of NH₄I in NH₃ are available. Figure 5 shows the plot of the apparent molar volumes of NH₄I in NH₃ against molality at 303.15 K. The pressure dependence of the apparent molar volume decreased with increasing molality. Figure 6 shows the plot of the apparent molar volumes of NH₄I in NH₃ against temperature at *m* = 1.143. The pressure dependence of the apparent molar volume increased with increasing temperature.

Literature Cited

- Porowski, S. High pressure growth of GaN new prospects for blue lasers. J. Cryst. Growth 1996, 166, 583.
- (2) Dwiliński, R.; Baranowski, J. M.; Kamińska, M.; Doradziński, R.; Garczyński, J.; Sierzputowski, L. P. On GaN crystallization by ammonothermal method. *Acta Phys. Pol.*, A **1996**, 90, 763–766.
- (3) Yamane, H.; Shimada, M.; Sekiguchi, T.; DiSalvo, F. J. Morphology and characterization of GaN single crystals grown in a Na flux. J. Cryst. Growth 1998, 186, 8–12.
- (4) Hashimoto, T.; Fujito, K.; Wu, F.; Haskell, B. A.; Fini, P. T.; Speck, J. S.; Nakamura, S. Structural characterization of thick GaN films grown on free-standing GaN seeds by the ammonothermal method using basic ammonia. *Jpn. J. Appl. Phys.* **2005**, *44*, L797–L799.
- (5) Wang, B.; Callahan, M. J.; Rakes, K. D.; Bouthillette, L. O.; Wang, S.-Q.; Bliss, D. F.; Kolis, J. W. Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 2006, 287, 376–380.
- (6) Kagamitani, Y.; Ehrentraut, D.; Yoshikawa, A.; Hoshino, N.; Fukuda, T.; Kawabata, S.; Inaba, K. Ammonothermal epitaxy of thick GaN film using NH₄Cl minelalizer. *Jpn. J. Appl. Phys.* 2006, 45, 4018– 4020.
- (7) Ehrentraut, D.; Hoshino, N.; Kagamitani, Y.; Yoshikawa, A.; Fukuda, T.; Itoh, H.; Kawabata, S. Temperature effect of ammonium halogenides as minelalizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions. *J. Mater. Chem.* 2007, 17, 886–893.
- (8) Yamamoto, H.; Sanga, S.; Tokunaga, J. Vapor Pressures of Ammonium Bromide + Ammonia and Ammonium Iodide + Ammonia Solutions. *J. Chem. Eng. Data* **1988**, *33*, 381–385.

- (9) Yamamoto, H.; Tokunaga, J. Densities and Viscosities of NH₄Br-NH₃ and NH₄I-NH₃ Systems. J. Chem. Eng. Data **1991**, 36, 277–280.
- (10) Tomida, D.; Suzuki, K.; Katou, Y.; Yokoyama, C. Vapor Pressures and Liquid Densities of Ammonium Chloride + Ammonia Mixtures. *J. Chem. Eng. Data* **2008**, *53*, 1583–1586.
- (11) Tomida, D.; Suzuki, K.; Katou, Y.; Yokoyama, C. Vapor Pressures and Liquid Densities of Ammonium Bromide + Ammonia Mixtures. *J. Chem. Eng. Data* **2009**, DOI: 10.1021/je900359y.
- (12) Kumagai, A.; Tomida, D.; Yokoyama, C. Measurements of the Liquid Viscosities of Mixtures of *n*-Butane, *n*-Hexane, and *n*-Octane with Squalane to 30 MPa. *Int. J. Thermophys.* **2006**, *27*, 376–393.
- (13) Makita, T.; Kashiwagi, H.; Matsuo, S. In *Interrelations among various* thermophysical properties of fluids, Proceedings of the 10th Interna-

tional Conference on the Properties of Steam, Moscow, USSR, Sept 3–7, 1984; Sytchev, V. V., Aleksandrov, A. A., Eds.; Mir: Moscow, 1986.

(14) Tillner-Roth, R.; Harms-Watzenberg, F.; Baehr, H. D. New fundamental equation for ammonia. *DKV-Tagungsber*. **1993**, 20, 167– 181.

Received for review August 10, 2009. Accepted December 9, 2009. This work was supported in part by NEDO program by the Ministry Economy, Trade and Industry.

JE9006713