Phase Behavior, Densities, and Isothermal Compressibility of (Carbon Dioxide + Dimethyl Carbonate)

Yucui Hou,^{†,‡} Xiaoting Chen,[‡] Shuhang Ren,[‡] Zhangzuo Song,[‡] and Weize Wu^{*,‡}

Department of Chemistry, Taiyuan Normal University, Taiyuan 030012, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

The phase behavior and critical parameters of $(CO_2 + CH_3CO_3CH_3)$ have been determined using a highpressure, variable-volume view cell, and their densities have also been measured in sub- or supercritical regions. The isothermal compressibility, K_T , was calculated from the density of the binary mixtures. The transition points, bubble point, dew point, and critical point, have been measured with concentrations of dimethyl carbonate from mole fractions of (0.0242 to 0.1484), temperatures from (308.15 to 337.45) K, and pressures from (6.16 to 16.67) MPa. It is demonstrated that the density and K_T are sensitive to the pressure as the pressure gets close to the critical point of the binary mixtures. K_T also increases sharply when the pressure approaches the dew points or bubble points at other compositions near the critical composition. When the pressure is much higher than the phase transition pressure or the composition is far from the critical composition, K_T is rather small, and the effect of pressure on K_T is fairly limited. The phase boundary data of the binary mixtures can be correlated well by the Peng–Robinson equation of state (PR EoS) with two binary parameters.

Introduction

Dimethyl carbonate (DMC) is a versatile compound that represents an attractive, nontoxic, and environmentally friendly alternative (1) to substitute phosgene in the synthesis of polycarbonates and iso-cyanates and (2) to replace phosgene in carbonylation reactions or dimethyl sulfate and methyl halide in methylation and alquilation reactions.¹⁻³ In addition, because of its high octane number and miscibility with hydrocarbons, DMC is an excellent additive for fuels, replacing methyl tertbutyl ether (MTBE).⁴ Currently, DMC is produced mainly by the phosgene route and catalytic oxidative carbonylation of methanol.⁵ Other ways to synthesize DMC were also developed, such as transesterification between cyclic carbonate and methanol, urea methanolysis, and the direct carbonation of methanol. Because of the use of highly toxic chemicals or ineffectiveness in the present ways, an environmentally benign solvent, supercritical carbon dioxide (scCO₂), has been employed as a solvent to reduce the problems, especially for the direct carbonation of methanol.6-9

Phase behavior is of great importance for many chemical processes and separations that are conducted at high pressures and high temperatures, especially for supercritical fluid processes, where phase behavior can significantly influence the reaction rate, selectivity, mass transfer properties, and so forth.^{10–12} Hou et al.¹³ studied the synthesis of DMC using carbon dioxide (CO₂) and methanol and found that the phase behavior affected the equilibrium conversion of methanol significantly and the conversion reached a maximum in the critical regions of the reaction system. The phase behavior for the direct synthesis of DMC from CO₂ and methanol at supercritical or near critical conditions had been measured and

modeled by Piňero et al.¹⁴ They measured the phase equilibria of CO_2 and DMC at (310, 320, and 330) K. Camy et al.¹⁵ also

Table 1. Pure Component Parameters and Binary Parameters Used in the PR EoS and the Average Absolute Relative Deviation (AARD) for the $CO_2 + DMC$ System

	$T_{\rm C}$	$P_{\rm C}$				AARD
components	K	MPa	ω	k_{12}	l_{12}	%
DMC CO ₂	557.0^{a} 304.3 ^b	$\frac{4.80^{a}}{7.38^{b}}$	0.337^{a} 0.225^{b}	0.001	-0.068	2.3

^a Reported by Poling et al.^{25 b} From NIST.

Table 2. Experimental Bubble Points, Critical Points, and Dew Points of the $CO_2(1) + DMC$ (2) Binary Mixtures at Fixed Molar Compositions^{*a*}

Т	Р		Т	Р	
K	MPa	phase transition	K	MPa	phase transition
	$x_2 = 0$	0.0242		$x_2 = 0$	0.0481
308.15	7.52	b	308.15	7.16	b
313.15	8.22	b	313.15	7.85	b
317.85	8.66	ср	318.15	8.55	b
323.15	9.02	d	323.15	9.18	b
327.95	9.15	d	327.95	9.64	cp
332.85	9.04	d	332.85	10.09	d
337.45	8.22	d	337.45	10.45	d
	$x_2 = 0$).0860		$x_2 = 0$	0.1180
308.15	6.75	b	308.15	6.42	b
313.15	7.34	b	313.15	7.02	b
318.15	8.02	b	318.15	7.63	b
323.15	8.69	b	323.15	8.29	b
327.95	9.32	b	327.95	8.92	b
332.85	9.96	b	332.85	9.62	b
337.45	10.45	b	337.45	10.18	b
	$x_2 = 0$).1484			
308.15	6.16	b			
313.15	6.78	b			
318.15	7.34	b			
323.15	7.96	b			
327.95	8.54	b			
332.85	9.18	b			
337.45	9.76	b			

^{*a*} b: bubble point; cp: critical point; d: dew point.

^{*} To whom correspondence should be addressed. E-mail: wzwu@ mail.buct.edu.cn. Tel./Fax: +86 10 64427603.

[†] Taiyuan Normal University.

[‡] Beijing University of Chemical Technology.

Figure 1. Phase behavior for the CO₂ (1) + DMC (2) binary mixture: \bullet , T = 322.65 K, by Camy et al.;¹⁵ \Box , T = 323.15 K, by this work.

studied the fluid-phase equilibria of the reacting mixture of synthesis of DMC in supercritical CO₂, and they measured the phase behavior of (carbon dioxide + DMC) at (322.65, 348.15, and 373.55) K. Isothermal phase equilibria of CO₂ and DMC had been studied at temperatures from (273 to 340) K by several research groups.^{16,17} Guo et al.¹⁸ measured the critical points of the reacting mixture at temperatures from (277.7 to 469.7) K. Supercritical or near critical conditions of pressure and temperature may be needed to enhance the kinetics and the mass transfer properties.

The knowledge of density is greatly important especially in single-phase regions in the supercritical region. In the present study, we have determined the phase behaviors, critical parameters, and densities of $(CO_2 + CH_3CO_3CH_3)$ binary systems at elevated pressures up to 16.7 MPa. The compressibility of the mixtures was then studied systematically in different phase regions. We also investigated the effects of phase behavior, composition, and pressure on the density and isothermal compressibility, especially in the critical region. The measured

Figure 2. Phase boundary of the CO₂ (1) + DMC (2) binary mixture with different compositions: (A) $x_2 = 0.0242$; (B) $x_2 = 0.0481$; (C) $x_2 = 0.0860$; (D) $x_2 = 0.1180$; (E) $x_2 = 0.1484$, experimental data (in symbols); calculated results by PR-EoS (in lines); *, critical points measured).

Table 3. Densities ρ of CO₂(1) and DMC (2) Binary Mixtures under Different Conditions

Р	ρ	Р	ρ	Р	ρ	Р	ρ
MPa	$\overline{g \cdot cm^{-3}}$	MPa	$g \cdot cm^{-3}$	MPa	g·cm ⁻³	MPa	g·cm ⁻³
<i>T</i> /K =	= 308.15	<i>T</i> /K =	= 313.15	<i>T</i> /K =	317.85	<i>T</i> /K =	323.15
r. =	0.0242	r. =	r = 0.0242		r = 0.0242		0.0242
7.52^{a}	0.697 ^a	8.22 ^a	0.606 ^a	8.66 ^b	0.476 ^b	9.02^{c}	0.394 ^c
7.63	0.705	8.25	0.613	8.71	0.485	9.08	0.401
7.78	0.718	8.29	0.622	8.72	0.490	9.12	0.408
7.99	0.731	8.38	0.636	8.75	0.498	9.17	0.417
8.23	0.744	8.49	0.650	8.78	0.506	9.23	0.427
8.40 8.87	0.733	8.39	0.681	8.88	0.529	9.20	0.430
9.18	0.780	8.92	0.692	8.93	0.542	9.41	0.458
9.64	0.792	9.11	0.705	9.00	0.555	9.48	0.470
9.92	0.799	9.42	0.721	9.07	0.569	9.55	0.482
10.18	0.800	9.05	0.744	9.15	0.599	9.02	0.495
11.01	0.822	10.28	0.755	9.35	0.611	9.80	0.523
11.29	0.828	10.58	0.765	9.50	0.628	9.90	0.536
11.75	0.836	10.98	0.775	9.71	0.646	9.93	0.541
12.02	0.839	11.40	0.783	9.91	0.005		
12.78	0.852	12.08	0.801				
		12.52	0.809				
		12.90	0.816				
		13.27	0.823				
		13.96	0.833				
		14.14	0.836				
		14.56	0.842				
		14.95	0.847				
	225.05	15.25	0.651	m (* *	007.15		200.15
I/K =	= 327.95	I/K =	= 332.85	I/K =	= 337.45	I/K =	308.15
$x_2 =$	0.0242	$x_2 =$	0.0242	$x_2 =$	0.0242	$x_2 =$	0.0481
9.15	0.333	9.04 ^c	0.282	8.22	0.212	7.16 ^a	0.787"
9.18	0.337	9.11	0.287	8.34 8.44	0.217	7.02 8.23	0.800
9.32	0.352	9.20	0.292	8.53	0.226	8.74	0.827
9.40	0.359	9.35	0.305	8.64	0.231	9.25	0.837
9.47	0.369	9.43	0.311	8.73	0.236	9.69	0.844
9.54	0.378	9.52	0.318	8.82	0.242	10.12	0.852
9.69	0.397	9.72	0.336	9.03	0.253	11.08	0.865
9.77	0.407	9.81	0.344	9.13	0.259	11.50	0.871
9.86	0.418	9.91	0.353	9.24	0.266	12.04	0.878
9.95	0.430	10.01	0.362	9.35	0.272	12.53	0.883
10.04	0.453	10.11	0.381	9.57	0.279	13.66	0.895
		10.30	0.391	9.69	0.295	14.46	0.903
		10.38	0.399	9.81	0.304	15.24	0.911
		10.49	0.410	9.93	0.311		
T/V –	- 212 15	10.58 T/V -	- 219 15	T/V –	- 202 15	T/V —	229.15
1/K -	- 515.15	1/K =	- 516.15	1/K =	- 525.15	1/K —	526.15
$x_2 = 7.85^a$	0.0481	$x_2 = x_2 = x_2$	0.0481	$x_2 = 0.18^a$	0.0481	$x_2 = 0.64^{b}$	0.0481
8.05	0.748	8.70	0.693	9.26	0.617	9.71	0.543
8.26	0.757	8.88	0.706	9.41	0.638	9.80	0.556
8.51	0.767	9.14	0.721	9.57	0.650	9.91	0.570
8.93	0.780	9.45	0.735	9.75	0.666	10.03	0.585
9.96	0.807	10.20	0.758	10.01	0.700	10.18	0.615
10.42	0.816	10.74	0.777	10.78	0.719	10.54	0.632
11.01	0.827	11.25	0.789	11.36	0.739	10.72	0.645
11.43	0.834	11.77	0.800	11.87	0.754	10.94	0.659
12.45	0.842	12.24	0.809	12.39	0.780	11.19	0.681
12.95	0.856	13.28	0.826	13.55	0.792	11.00	01001
13.45	0.863	13.73	0.833				
13.98	0.869	14.24	0.841				
14.62	0.877	14.71	0.847				
15.90	0.890	16.25	0.865				
T/K = 332.85		<i>T</i> /K =	= 337.45	T/K = 308.15		T/K = 313.15	
$r_2 =$	0 0481	$r_2 =$	0.0481	$r_2 =$	0.0860	$r_2 =$	0.0860
10.09^{a}	0.484a	10.45^{a}	0.450 ^a	6.75 ^{<i>a</i>}	0.864 ^a	7.34 ^{<i>a</i>}	0.834 ^a
10.25	0.506	10.67	0.470	7.94	0.881	8.35	0.852
10.35	0.517	10.78	0.481	8.73	0.890	8.79	0.859
10.42	0.525	10.89	0.492	9.63	0.900	9.25	0.865
10.64	0.550	11.16	0.517	10.93	0.913	10.13	0.876
10.74	0.560	11.31	0.530	11.34	0.917	10.87	0.885
10.89	0.574	11.48	0.543	11.80	0.921	11.12	0.888
11.00	V	11.0.)	0	14.41	U.724	11./1	U.07.)

Laste of Contine							
Р	ρ	Р	ρ	Р	ρ	Р	ρ
MPa	g·cm ⁻³						
11.26	0.603	11.85	0.573	12.85	0.929	12.13	0.898
11.50	0.619	12.10	0.589	13.85	0.934 0.937	12.70	0.903
11.99	0.650			14.14	0.939	14.12	0.915
12.28	0.663			14.76	0.944 0.946	14.75	0.920
				15.49	0.949	15.93	0.930
				16.01	0.953	16.40	0.933
T/K =	318.15	<i>T</i> /K =	= 323.15	T/K =	= 327.95	T/K =	= 332.85
$x_2 = 8.02^a$	0.0860 0.802 ^a	$x_2 = 8.60^a$	0.0860 0.762 ^a	$x_2 = 0.32^a$	0.0860 0.724 ^a	$x_2 = 0.06^a$	0.0860 0.682 ^a
8.41	0.802	8.88	0.769	9.72	0.724	10.03	0.686
8.83	0.820	9.22	0.779	9.99	0.750	10.20	0.695
9.81	0.838	10.28	0.803	10.40	0.762	10.58	0.704
10.26	0.845	10.74	0.813	11.18	0.782	10.86	0.724
10.82	0.853	11.23	0.822 0.829	11.65	0.792 0.802	11.27 11.75	0.738 0.751
11.74	0.865	12.31	0.839	12.75	0.812	12.27	0.765
12.23	0.871	12.74	0.844 0.851	13.20	0.819	12.75	0.775 0.784
13.27	0.882	13.74	0.857	14.17	0.833	13.76	0.794
13.84 14 29	0.888	14.23 14.73	0.863	14.71 15.16	0.840	14.29 14.72	0.803
14.83	0.898	15.22	0.873	15.66	0.852	15.33	0.819
15.28	0.902	15.66	0.878	16.18	0.858	15.76	0.825
16.30	0.910	10.15	0.865			10.20	0.051
T/K =	337.45	T/K =	= 308.15	T/K =	313.15	T/K =	318.15
$x_2 =$	0.0860	$x_2 =$	0.1180	$x_2 =$	0.1180	$x_2 =$	0.1180
10.45^{a}	0.631^{a}	6.42^{a}	0.904^{a}	7.02^{a}	0.880^{a}	7.63 ^a	0.856 ^a
10.48	0.640	7.68	0.909	8.05	0.893	8.19	0.859
10.63	0.644	8.20	0.922	9.00	0.903	8.61	0.870
11.08	0.669	9.67	0.929	10.30	0.910	9.13	0.870
11.38	0.684	10.60	0.942	11.01	0.922	10.18	0.889
12.27	0.700	12.30	0.940	12.03	0.927	11.28	0.893
12.80	0.732			12.70	0.935	11.80	0.905
13.77	0.742			13.23	0.940	12.28	0.909
14.22	0.766			14.27	0.947	13.29	0.918
14.71 15.15	0.775					13.75	0.922
15.74	0.792					14.72	0.929
16.25	0.801					15.25	0.933 0.937
						16.26	0.940
T/K =	323.15	<i>T</i> /K =	= 327.95	T/K =	= 332.85	T/K =	= 337.45
$x_2 =$	0.1180	$x_2 =$	0.1180	$x_2 = 0$	0.1180	$x_2 =$	0.1180
8.29	0.829	8.92 9.16	0.801	9.82	0.768	10.18	0.737
8.96	0.840	9.47	0.812	10.04	0.780	10.62	0.751
9.31 9.74	0.845	9.76	0.818	10.35	0.788	10.94	0.760
10.22	0.859	10.74	0.835	11.20	0.805	11.70	0.779
10.74	0.866 0.872	11.22 11.72	0.842 0.849	11.74 12.16	0.815 0.822	12.19	0.789 0.798
11.75	0.878	12.20	0.855	12.70	0.830	13.22	0.807
12.27	0.883	12.68	0.861	13.19 13.70	0.837	13.64 14.17	0.814
13.31	0.894	13.78	0.873	14.23	0.850	14.73	0.829
13.83 14.27	0.898	14.31	0.879	14.76	0.856	15.28	0.836
14.75	0.907	15.26	0.888	15.74	0.866	16.40	0.849
15.25	0.911	15.74	0.892	16.37	0.872		
16.43	0.920	10.55	0.877				
T/K =	308.15	<i>T</i> /K =	= 313.15	T/K =	318.15	T/K =	323.15
$x_2 =$	0.1484	$x_2 =$	0.1484	$x_2 = 0.1484$		$x_2 = 0.1484$	
6.16 ^a 6.76	0.926^{a}	6.78 ^a 7.28	0.905^{a}	7.34 ^a 7.82	0.884^{a}	7.96 ^a 8 31	0.862^{a}
7.26	0.936	7.78	0.909	8.27	0.894	8.77	0.872
7.73	0.939	8.29 8.76	0.918	8.78	0.899	9.25	0.877
0.25 8.78	0.945	8.76 9.25	0.922	9.80	0.904	10.28	0.888
9.26	0.950	9.77	0.930	10.27	0.912	10.74	0.893
9.74	0.953	10.24	0.934	10.72	0.916	11.23	0.897

Table 3. Continued

Table	3.	Continued

Р	ρ	Р	ρ	Р	ρ	Р	ρ
MPa	g•cm ⁻³	MPa	g•cm ⁻³	MPa	g·cm ⁻³	MPa	g•cm ⁻³
10.23	0.956	10.74	0.937	11.23	0.920	11.76	0.901
10.77	0.960	11.28	0.941	11.72	0.924	12.24	0.905
11.23	0.962	11.77	0.944	12.26	0.928	12.77	0.910
11.74	0.966	12.33	0.948	12.82	0.932	13.26	0.913
12.23	0.969	12.79	0.951	13.41	0.936	13.76	0.918
12.74	0.971	13.31	0.955	13.90	0.939	14.33	0.922
13.27	0.975	13.79	0.957	14.39	0.942	14.82	0.925
13.82	0.978	14.43	0.961	15.14	0.947	15.51	0.930
14.27	0.980	15.10	0.965	15.77	0.950	16.42	0.936
15.03	0.984	15.65	0.968	16.42	0.955		
15.69	0.987	16.47	0.972				
16.35	0.990						
T/K =	= 327.95	T/K =	= 332.85	T/K =	= 337.45		
$x_2 =$	0.1484	$x_2 =$	0.1484	$x_2 =$	0.1484		
8.54 ^a	0.839^{a}	9.18 ^a	0.814^{a}	9.76^{a}	0.790^{a}		
8.84	0.844	9.62	0.821	10.06	0.795		
9.29	0.850	9.92	0.826	10.53	0.804		
9.75	0.856	10.29	0.832	10.82	0.809		
10.24	0.862	10.72	0.839	11.23	0.816		
10.77	0.868	11.25	0.846	11.72	0.823		
11.26	0.873	11.73	0.851	12.24	0.830		
11.76	0.878	12.26	0.858	12.74	0.838		
12.26	0.883	12.75	0.863	13.24	0.843		
12.80	0.888	13.27	0.869	13.73	0.849		
13.31	0.893	13.80	0.874	14.27	0.855		
13.80	0.897	14.52	0.881	14.78	0.861		
14.24	0.901	15.02	0.885	15.35	0.866		
14.78	0.905	15.46	0.889	15.80	0.870		
15.30	0.909	15.94	0.893	16.60	0.881		
15.86	0.913	16.67	0.899				
16.56	0.918						

^a Bubble point. ^b Critical point. ^c Dew point.

phase boundary data of the system were modeled using the Peng-Robinson equation of state (PR EoS) with two binary parameters.

Experimental Section

Materials. CO_2 with a mass fraction purity of 0.99995 was purchased from the Beijing Haipu Company. DMC (analytical reagent grade) was purchased from Alfa Aesar with a mass fraction purity of more than 0.995 as determined by gas chromatography.

Apparatus and Procedure. The phase behavior and the densities of the mixtures were determined using a high-pressure, variable-volume view cell, and the apparatus and procedures were similar to those used in the previous papers.^{19,20} The volume of the view cell could be changed in the range from (23 to 50) cm³ by moving the piston. The constant-temperature water bath was controlled by a temperature controller (A2, Beijing Changliu Scientific Instrument Co.), and the temperature was monitored by a Pt resistance thermometer with the accuracy of \pm 0.1 K. The pressure gauge was composed of a pressure transducer and an indicator (Beijing Tianchen Instrument Co.). Its uncertainty was \pm 0.025 MPa in the pressure range of (0 to 20) MPa.

In a typical experiment, a known mass of DMC was charged first using a syringe, and then the air in the system was flushed with CO_2 . CO_2 was then added using the sample bomb. The mass of the chemicals in the system was calculated from the mass difference of the sample bomb before and after charging the system. The cell was placed into the water bath at the desired temperature. After thermal equilibration, the piston in the view cell was moved up and down to change the volume and the pressure of the system, and the phase separation could be observed directly. At the critical point, very strong opalescence was observed, and the meniscus appeared at half volume after a slight pressure reduction. The volume of the system was known from the position of the piston, which was calibrated accurately using water as a medium. The composition and density of the mixture could easily be calculated from the masses of the components and the volume of the system.

It is estimated that the uncertainty of the density data is \pm 0.002 g·cm⁻³, and the uncertainty in the compositions of samples is better than \pm 0.5 %. To calculate the compressibility (*K*_T), we used a B-spline method to smooth the measured density data, and *K*_T was obtained by a differential calculation. It is estimated that the uncertainty of the *K*_T data is better than \pm 3 %.

Correlation

The phase behaviors of CO_2 -containing binary mixtures over wide ranges of temperatures and pressures have been correlated satisfactorily by PR EoS^{21} with van der Waals mixing rules, ^{16,17,22–24} because the PR EoS requires comparatively little input information and many of the parameters (such as interaction parameters for mixtures) are always available in the literature for PR EoS. Therefore, in the present work, the PR EoS with the van der Waals mixing rules²¹ was selected to correlate the phase behavior of the CO_2 + DMC binary mixtures.

The explicit form for this equation is expressed as follows.

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b) + b(v - b)}$$
(1)

The constants a and b can be obtained from the related parameters of pure components. For a mixture, the van der Waals mixing rules are presented:

$$a = \sum_{i} \sum_{j} x_i x_j \sqrt{a_i a_j} (1 - k_{ij})$$
⁽²⁾

$$b = \sum_{i} \sum_{j} 0.5 x_{i} x_{j} (b_{i} + b_{j}) (1 - l_{ij})$$
(3)

where a_i and b_i are parameters of pure components, k_{ij} and l_{ij} are the binary parameters for the (i, j) pair, and x_i is the mole fraction of the *i*th component.

The physical property information ($T_{\rm C}$, $P_{\rm C}$, and ω) used for the pure components CO₂ and DMC is taken from the literature (see Table 1).

Binary parameters are empirical parameters that can be regressed from the binary data by minimizing the average absolute deviation for bubble and dew point pressures. The k_{ij} and l_{ij} values for these binary mixtures involved in this work are shown in Table 1; they were obtained by minimizing the following objective function (OF).

$$OF = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\xi^{\text{exptl}} - \xi^{\text{calcd}}}{\xi^{\text{exptl}}} \right|$$
(4)

where *n* is the number of experimental points and ξ^{exptl} and ξ^{calcd} are the experimental and the calculated pressure at each phase transition point, respectively.

The average absolute relative deviation (AARD) of this calculation was defined as follows:

$$AARD = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\xi^{\text{exptl}} - \xi^{\text{calcd}}}{\xi^{\text{exptl}}} \right| \times 100 \%$$
(5)

The corresponding values of AARD are also shown in Table 1.

Results and Discussion

Critical Points and Phase Behavior of the Mixtures. First, to verify the reliability of the apparatus, our results are compared

Figure 3. Dependence of the density of the CO₂ (1) + DMC (2) binary mixture on temperature and pressure in the critical region with different compositions: (A) $x_2 = 0.0242$; (B) $x_2 = 0.0481$; (C) $x_2 = 0.0860$; (D) $x_2 = 0.1180$; (E) $x_2 = 0.1484$. Temperatures are labeled as follows: \blacksquare , T = 308.15 K; \Box , T = 313.15 K; \bigstar , T = 317.85 K; \blacktriangle , T = 317.85 K; \bigstar , T = 318.15 K; \bigtriangleup , T = 323.15 K; \clubsuit , T = 327.95 K; \doteqdot , 328.15 K; \bigcirc , T = 332.85 K; \blacktriangle , T = 337.45 K. b, bubble point; d, dew point; c, critical point.

Figure 4. Dependence of the isothermal compressibility (K_T) of the CO₂ (1) + DMC (2) binary mixture on temperature and pressure with different compositions: (A) $x_2 = 0.0242$; (B) $x_2 = 0.0481$; (C) $x_2 = 0.0860$; (D) $x_2 = 0.1180$; (E) $x_2 = 0.1484$. Temperatures are labeled as follows: \blacksquare , T = 308.15 K; \square , T = 313.15 K; \bigstar , T = 317.85 K; \blacktriangle , T = 318.15 K; \triangle , T = 323.15 K; \clubsuit , T = 327.95 K; \Leftrightarrow , 328.15 K; \bigcirc , T = 332.85 K; \blacktriangle , T = 337.45 K. b, bubble point; d, dew point; c, critical point.

with the data reported by Camy et al.,¹⁵ which is shown in Figure 1. The figure indicates that our results about $CO_2 + DMC$ are in a good agreement with the literature.

Table 2 summarizes the bubble point, critical point, and dew point temperatures and pressures for the binary system with DMC concentrations from (0.0242 to 0.1484) mole fraction. The critical point is located between the bubble point and the dew point if there is no critical point shown at the composition. Figure 2 gives a graphical representation of the experimentally determined phase boundaries. There is a two-phase region below or inside lines of fixed composition, while the one phase region is above or outside of these lines.

Density and Isothermal Compressibility. The densities of the mixture at temperatures from (308.15 to 337.45) K and at

pressures from (6.16 to 16.67) MPa were measured using the high-pressure, variable-volume view cell. The data determined at different conditions are listed in Table 3. Figure 3 illustrates the dependence of the density of the binary mixtures on pressure and temperature. It can be seen from Figure 3 that the similar tendency was observed for different compositions. Obviously, at fixed composition and fixed temperature, the density increases with increasing pressure, and at fixed composition and fixed pressure, the density decreases with increasing temperature. When the concentration of DMC increases, the density also increases, which reason is probably that the molecular weight of DMC is greater than that of CO_2 .

As pressures approach the phase boundary, especially near the critical point, the density of the mixture changes greatly. boundary, the density has no obvious change. The results in Figure 3 demonstrate that the sensitivity of density to pressure depends on both the composition and the pressure at a fixed temperature. The isothermal compressibility (K_T) of a fluid is a quantitative expression of the sensitivity of density to pressure, which is closely related with the structure of fluids. K_T values of the mixture can be calculated by the following equation:

greatly when the pressure decreases to the critical point.

However, when the pressure is far away from the phase

$$K_{\rm T} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T \tag{6}$$

where ρ is the density of fluid and *P* is the pressure.

Figure 4 shows the effect of the pressure on K_T for mixtures of different compositions. As can be seen from the figures, K_T is large and sensitive to the pressure as the pressure approaches the critical point of a mixture; that is, K_T increases sharply as the pressure approaches the critical pressure. It also can be seen that K_T increases significantly as the pressure approaches the values at the dew and bubble points. However, K_T is very small and not sensitive to the pressure when the pressure is far away from the phase separation pressure.

The data in Figure 4 also illustrate that, when the temperature is far from the critical temperature, the effect of pressure on $K_{\rm T}$ is limited, even near the phase separation point, especially in the Figures 4D,E.

Modeling. For modeling the phase behavior of the CO_2 and DMC binary system using PR EoS, the two binary parameters need to be regressed from the experimental data. The two binary parameters regressed are shown in Table 1.

On the basis of the physical properties and the two binary parameters, the PR EoS was used to correlate the phase behavior of the $CO_2 + DMC$ binary mixture. The correlation results are also shown in Figure 2 (see lines). It can be seen from the figure that the PR EoS can correlate the phase boundary of three binary systems to a satisfactory degree at DMC concentrations from (0.0242 to 0.1484) mole fraction with AARD = 2.3 %.

Conclusions

The phase behavior and densities for the system $CO_2 + DMC$ were measured at pressures from (2.76 to 12.83) MPa with concentrations from (0.0242 to 0.1484) of DMC mole fraction. The effect of pressure on the density, ρ , and isothermal compressibility, K_T , has been studied, and these properties are sensitive to the pressure approaching phase transition points, especially close to the critical points. The PR EoS with two binary parameters can correlate the binary phase behavior to a satisfied degree.

Acknowledgment

We thank Prof. C. Li, Prof. Z. Liu, and Dr. Q. Liu for their help.

Literature Cited

- (1) Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. 2002, 35, 706–716.
- (2) Tundo, P.; Memoli, S.; Hérault, D.; Hill, K. Synthesis of Methylethers by Reaction of Alcohols with Dimethyl Carbonate. *Green Chem.* 2004, *6*, 609–612.
- (3) Tundo, P.; Selva, M.; Perosa, A.; Memoli, S. Selective Mono-Cmethylations of Arylacetonitriles and Arylacetates with Dimethylcarbonate: A Mechanistic Investigation. J. Org. Chem. 2002, 67, 1071– 1077.

- (4) Pacheco, M. A.; Marshall, C. L. Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. *Energy Fuels* 1997, 11, 2–29.
- (5) Delledonne, D.; Rivetti, F.; Romano, U. Developments in the Production and Application of Dimethyl Carbonate. *Appl. Catal.*, A 2001, 221, 241–251.
- (6) Ballivet-Tkatchenko, D.; Chambrey, S.; Keiski, R.; Ligabue, R.; Plasseraud, L.; Richard, P.; Turunen, H. Direct Synthesis of Dimethyl Carbonate with Supercritical Carbon Dioxide: Characterization of a Key Organotin Oxide Intermediate. *Catal. Today* **2006**, *115*, 80–87.
- (7) Bian, J.; Xiao, M.; Wang, S.; Wang, X.; Lu, Y.; Meng, Y. Highly Effective Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Using a Novel Copper-Nickel/Graphite Bimetallic Nanocomposite Catalyst. *Chem. Eng. J. (Amsterdam, Neth.)* 2009, 147, 287– 296.
- (8) Yoshida, Y.; Arai, Y.; Kado, S.; Kunimori, K.; Tomishige, K. Direct Synthesis of Organic Carbonates from the Reaction of CO₂ with Methanol and Ethanol over CeO₂ Catalysts. *Catal. Today* **2006**, *115*, 95–101.
- (9) Wu, X. L.; Xiao, M.; Meng, Y. Z.; Lu, Y. X. Direct Synthesis of Dimethyl Carbonate on H₃PO₄ Modified V₂O₅. J. Mol. Catal. A: Chem. 2005, 238, 158–162.
- (10) Brennecke, J. F.; Chateauneuf, J. E. Homogeneous Organic Reactions as Mechanistic Probes in Supercritical Fluids. *Chem. Rev.* 1999, 99, 433–452.
- (11) Pereda, S.; Bottini, S. B.; Brignole, E. A. Supercritical Fluids and Phase Behavior in Heterogeneous Gas-Liquid Catalytic Reactions. *Appl. Catal.*, A 2005, 281, 129–137.
- (12) Chouchi, D.; Gourgouillon, D.; Courel, M.; Vital, J.; Nunes da Ponte, M. The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene. *Ind. Eng. Chem. Res.* 2001, 40, 2551–2554.
- (13) Hou, Z. S.; Han, B. X.; Liu, Z. M.; Jiang, T.; Yang, G. Y. Synthesis of Dimethyl Carbonate Using CO₂ and Methanol: Enhancing the Conversion by Controlling the Phase Behavior. *Green Chem.* 2002, 4, 467–471.
- (14) Piňero, R.; García, J.; Sokolova, M.; Cocero, M. J. Modelling of the Phase Behaviour for the Direct Synthesis of Dimethyl Carbonate from CO₂ and Methanol at Supercritical or near Critical Conditions. *J. Chem. Thermodyn.* **2007**, *39*, 536–549.
- (15) Camy, S.; Pic, J.-S.; Badens, E.; Condoret, J.-S. Fluid Phase Equilibria of the Reacting Mixture in the Dimethyl Carbonate Synthesis from Supercritical CO₂. J. Supercrit. Fluids **2003**, 25, 19–32.
- (16) Im, J.; Kim, M.; Lee, J.; Kim, H. Vapor-Liquid Equilibria of Binary Carbon Dioxide + Alkyl Carbonate Mixture Systems. J. Chem. Eng. Data 2004, 49, 243–245.
- (17) Lu, C.; Tian, Y.; Xu, W.; Li, D.; Zhu, R. High-Pressure Phase Equilibrium for the Binary Systems of {Carbon Dioxide (1) + Dimethyl Carbonate (2)} and {Carbon Dioxide (1) + Diethyl Carbonate (2)} at Temperatures of 273 K, 283 K, and 293 K. J. Chem. Thermodyn. 2008, 40, 321–329.
- (18) Guo, X. C.; Qin, Z. F.; Wang, G. F.; Wang, J. G. Critical Temperatures and Pressures of Reacting Mixture in Synthesis of Dimethyl Carbonate with Methanol and Carbon Dioxide. *Chin. Chem. Let.* **2008**, *19*, 249– 252.
- (19) Chen, J. W.; Wu, W. Z.; Han, B. X.; Gao, L.; Mu, T. C.; Liu, Z. M.; Jiang, T.; Du, J. M. Phase Behavior, Densities, and Isothermal Compressibility of CO₂ + Pentane and CO₂ + Acetone Systems in Various Phase Regions. J. Chem. Eng. Data **2003**, 48, 1544–1548.
- (20) Hou, Y. C.; Wu, W. Z.; Poliakoff, M. The Phase Behavior, Densities, and Isothermal Compressibility of CO₂ + γ-valerolactone Systems in Various Phase Regions. J. Chem. Eng. Data 2009, 54, 118–126.
- (21) Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Res. 1976, 15, 59–64.
- (22) Ndiaye, P. M.; Franceschi, E.; Oliveira, D.; Dariva, C.; Tavares, F. W.; Vladimir Oliveira, J. Phase Behavior of Soybean Oil, Castor Oil and Their Fatty Acid Ethyl Esters in Carbon Dioxide at High Pressures. *J. Supercrit. Fluids* **2006**, *37*, 29–37.
- (23) Lazzaroni, M. J.; Bush, D.; Brown, J. S.; Eckert, C. A. High-Pressure Vapor-Liquid Equilbria of Some Carbon Dioxide + Organic Binary Systems. J. Chem. Eng. Data 2005, 50, 60–65.
- (24) Schwinghammer, S.; Siebenhofer, M.; Marr, R. Determination and Modelling of the High-Pressure Vapour-Liquid Equilibrium Carbon Dioxide-Methyl Acetate. J. Supercrit. Fluids 2006, 38, 1–6.
- (25) Poling, B.; Prausnitz, J.; O'Connel, J. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, 2001.

Received for review August 20, 2009. Accepted September 16, 2009. This work was supported by the National Natural Science Foundation of China (20776004), Beijing Natural Science Foundation (2082017), and Program for New Century Excellent Talents in University.