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In this paper, the Henry law (Philos. Trans. R. Soc. London 1803, 93, 29), the Turkdogan rule (J. Iron Steel
Inst., London 1955, 179, 39, 155), and two extended Turkdogan rules of Wang (Acta Metall. Sin. (Chin.
Ed.) 1980, 16, 195; Ber. Bunsen-Ges. 1998, 102, 1045) are presented in a unified way. Similar to the
Henry law, which was first noted empirically from the solubility measurements of gases in water, the
Turkdogan rule for carbon-saturated Fe-based liquid alloys can be extended to every kind of liquid and
solid solutions such as organic mixtures, aqueous and nonaqueous electrolyte and nonelectrolyte solutions,
liquid and solid alloys, molten salt mixtures, slags, and nonstoichiometric solid solutions, resulting in two
extended Turkdogan rules of Wang. One solution, {B + C + ... + Z}, obeying the Henry law (or the
related classically dilute solution model) may mix with many pure component A to form the solutions {A
+ B + C + ... + Z} following the first extended Turkdogan rule of Wang (or the related partial dilute
solution model) or mix with much more nonideal solutions {A1 + A2 + ... + Aq} to form the solutions
{A1 + A2 + ... + Aq + B + C + ... + Z} obeying the second extended Turkdogan rule of Wang (or the
related dilute-like solution model). This would indicate that the Turkdogan rule and its extended forms are
as important as the Henry law for multicomponent systems.

Introduction

Phase equilibria are required in the design of heterogeneous
chemical reactions and separation processes. In almost all cases,
the desired equilibria are for binary and higher-order systems
rather than for pure components. On the other hand, there are
many types of liquid and solid solutions in nature such as
organic mixtures, aqueous and nonaqueous electrolyte and
nonelectrolyte solutions, alloys, molten salt mixtures, slags, and
nonstoichiometric solid solutions, which are important for
chemistry, biology, geology, materials science, and engineering.
Scientists working with different types of the solutions often
use different concentration units, equations, and formalisms,
which make it difficult for scientists in one field to understand
or benefit from advances in other fields. It is therefore of
considerable interest to search out general simple rules and to
develop corresponding theoretical models with statistical infor-
mation either for every kind of the binary and higher-order
systems related to their pure components or for every kind of
the ternary and higher-order systems related to their binary or
higher-order subsystems.

Recently, we1 presented the relationship among the Raoult
law for every kind of solution {B + C + ... + Z}, the
Zdanovskii-Stokes-Robinson (ZSR) rule2,3 for isopiestic
mixed electrolyte and nonelectrolyte aqueous solutions {water
(A) + B + C + ... + Z}, the first extended ZSR rule of Wang4-8

for every kind of solution {A + B + C + ... + Z} at constant
activity of A, and the second extended ZSR rule of Wang9 for
every kind of solution {A1 + A2 + ... + Aq + B + C + ... +
Z} at constant activities of A1, A2, ..., Aq, where there are zero
interchange energies among B, C, ..., Z. The Henry law10 and
the related classically dilute solution model11 for every kind of

solution are as important as the Raoult law and the related
classically ideal solution model in solution thermodynamics. In
this study, we discuss the thermodynamic and statistical
relationships among the Henry law for every kind of solution,
{B + C + ... + Z}, the Turkdogan rule12,13 for carbon-saturated
Fe-based liquid alloys, {carbon(sat) (A) + iron (B) + alloying
element (C) + ... + alloying element (Z)}, and two extended
Turkdogan rules of Wang4-7,9 for every kind of solution, {A
+ B + C + ... + Z}, at constant activity of A, and {A1 + A2
+ ... + Aq + B + C + ... + Z} at constant activities of A1,
A2, ..., Aq, respectively, which all hold well at constant
temperature and pressure.

Henry Law and the Model

The Henry law was first proposed empirically for the
solubility measurements of sparingly soluble gases in water,
where the solute species is the same in the solution as in the
gas, and may be expressed as

pj ) hjxj (1)

where j ∈ (C, D, · · · , Z) denotes the solutes (and B denotes the
solvent) in the solution {water (B) + solute (C) + solute (D)
+ ... + solute (Z)}; pj and xj are the pressure and mole fraction
of solute j; and hj is the Henry law constant of solute j. Although
scientists often have different opinions on solution models
particularly at the liquid state, one of the first successes for
understanding different kinds of the solutions in a unified way
would be the development of the classically dilute solution
model, which is based on the Henry law and derived from a
quasi-chemical treatment.11 The Henry law is now rewritten as

aj ) kjxj (2)

or it equals within 0 e xj e xj* for every kind of solution {B +
C + ... + Z} with nonzero interchange energies between solvent
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B and every solute C, D, ..., Z, where aj is the activity of solute
j and xj* denotes the boundary value of xj, at which eq 2 holds
well. Since the classically dilute solution model may also be
followed by the solutions where the solute species in the solution
is different from that in the gas (or other phases), the classically
dilute solution model equations may generally be given by

Vm ) xBVm,B
o + ∑

j

xjVm,j
∞ (3a)

Sm ) (xBSm,B
o + ∑

j

xjSm,j
∞ ) - R ∑

i

xi ln zi (3b)

Hm ) xBHm,B
o + ∑

j

xjHm,j
∞ (3c)

Gm ) (xBGm,B
o + ∑

j

xjGm,j
∞ ) + RT ∑

i

xi ln zi (3d)

µB ) µB
o + RT ln zB (3e)

µj ) µj
∞ + RT ln zj (3f)

aB ) zB (3g)

aj ) kjzj (3h)

over xj < 0.01, roughly speaking, where i ∈ (B, C, · · · , Z)
denotes components in the solution {B + C + ... + Z}; Vm is
molar volume; Sm is molar entropy; Hm is molar enthalpy; Gm

is molar Gibbs energy; µi is the chemical potential of component
i; the superscript ° combined with the subscript B denotes a
property of pure component B, so that Vm,B° , Sm,B° , Hm,B° , and Gm,B°
are molar quantities of pure B and µB° is the chemical potential
of pure B; the superscript ∞ combined with the subscript j
denotes a property of the pure component j at a hypothetical
state obtained by extrapolating eqs 2 and 3 to xj ) 1, so that
Vm,j

∞ , Sm,j
∞ , Hm,j

∞ , Gm,j
∞ , and µj

∞ are the properties of pure j at the
hypothetical state; R is gas constant; T is temperature; and zi is
a composition variable of component i, such as zi ) [νi

+ni/(νB
+nB

+ νC
+nC)]νi

+
[νi

-ni/(νB
-nB + νC

-nC)]νi
-

for a molten salt mixture {B
+ C} with no common ion,1 zi ) [νi

-ni/(νB
-nB + νC

-nC)]νi
-

for a
molten salt mixture {B + C} with the same cation,1 zi ) [νi

+ni/
(νB

+nB + νC
+nC)]νi

+
for a molten salt mixture {B + C} with the

same anion,1 zi ) [νini/(νBnB + νCnC)]νi for an alloy {B + C}
with dissociation reactions such as N2(g) ) 2N(in metals), and
zi ) [ni/(nB + nC)] ) xi for a nondissociation and nonpolymer-
ization system {B + C}. Here, ni is mole number of component
i; νi is the stoichiometric coefficient of component i in the
dissociation or ionization reactions, and νi

+ and νi
- are the

stoichiometric coefficients for the cation and anion of component
i in ionization reactions. Equation 3 connects the properties of
the solution {B + C + ... + Z} with those of its pure component
B and those of its pure components C, D, ..., Z at their
hypothetical state.

One pair of dissimilar components, B and C, which may form
the classically dilute solution {B + C}, may mix with various
pure components A or various solutions {A1 + A2 + ... +
Aq} to form numbers of the real solutions, {A + B + C} or
{A1 + A2 + ... + Aq + B + C}. Therefore, the real solutions
{A + B + C + ... + Z} and {A1 + A2 + ... + Aq + B + C
+ ... + Z} formed from the classically dilute solution {B + C
+ ... + Z} are very interesting for both theorists and experi-
mentalists.

Turkdogan Rule

In 1955, Turkdogan and his co-workers reported the linear
relations for carbon-saturated Fe-based liquid alloys: ∆xcarbon

≡ xcarbon - xcarbon
iron ) -0.84xphosphorus for {carbon(sat) (A) + iron

(B) + phosphorus (C)} at about (1290 to 1575) °C and within
about 0 e xphosphorus e 0.045,12 ∆xcarbon ) -0.71xsilicon for
{carbon(sat) (A) + iron (B) + silicon (C)} at about (1290 to
1690) °C and within about 0 e xsilicon e 0.08,12 ∆xcarbon )
0.1xmanganese for {carbon(sat) (A) + iron (B) + manganese (C)}
at about (1290 to 1690) °C and within about 0 e xmanganese ≈
0.6,12 and ∆xcarbon ) -xsulfur for {carbon(sat) (A) + iron (B) +
sulfur (C)} at about (1200 to 1500) °C and within about 0 e
xsulfur e 0.01;13 where xcarbon is the carbon solubility (atomic
fraction) and xcarbon

iron is the carbon solubility in the binary melts
{carbon(sat) (A) + iron (B)}.

Wang4-7 called these relations the Turkdogan rule and
rewrote them as

∆xcarbon ≡ xcarbon - xcarbon
iron ) ∑

j

bjxj (4)

for the carbon-saturated Fe-based liquid alloys {carbon(sat) (A)
+ iron (B) + alloying element (C) + ... + alloying element
(Z)} within 0e xje xj* < 1, where xj denotes the atomic fraction
of the alloying element j and xj* denotes the boundary
concentration of component j, at which eq 4 holds well. Similar
linear solubility phenomena were also found for carbon-saturated
Co- and Ni-based liquid alloys.14

First Extended Turkdogan Rule of Wang and the
Model

Wang4-7 found that eq 4 can be rewritten as

τA ) (τB/τB
1o)τA

1o,B + ∑
j

(τj/τj
1∞)τA

1∞,j ) τA
1o,B + ∑

j

bj
′τj

(5a)

(τB/τB
1o) + ∑

j

(τj/τj
1∞) ) 1 (5b)

ω ) (xB/ ∑
k

xk)ω
1o,B + ∑

j

(xj/ ∑
k

xk)ω
1∞,j (5c)

within 0 e (τj/τj
1∞) e (τj*/τj

1∞) < 1 (or 0 e (τj/∑kτk) e (τj*/
∑kτk*) < 1) and can be extended to every kind of the solution
{A + B + C + ... + Z} with nonzero interchange energy
between B and each C, D, ..., Z at constant activity (or chemical
potential, or partial Gibbs free energy) of A, where k ∈ (B, C,
· · · , Z); hence, ∑i(xi/∑kxk) ) 1; τi may denote either molality
mi, atomic or mole fraction xi, or mass fraction wi of component
i; ω may denote the solubility of solute A in 1 mol of the mixed
solvent [B + C + ... + Z] or the oxygen-to-metal ratio (O/M)
for nonstoichiometric solid mixed-oxide solutions {oxygen (A)
+ metal (B) + metal (C) + ... + metal (Z)}; the superscript
1°,B (or the superscript 1° combined with the subscript B)
denotes a property of the binary subsystem {A + B} so that
τA

1°,B and τB
1° are the concentrations of components A and B,

respectively, in the binary subsystem {A + B}, and ω1°,B is the
property of the binary subsystem {A + B}; the superscript 1∞,j
(or the superscript 1∞ combined with the subscript j) denotes a
property of the binary subsystem {A + j} at the hypothetical
state obtained by extrapolating eq 5 to (τj/τj

1∞) ) 1, so that τA
1∞,j

and τj
1∞ are the concentrations of components A and j,

respectively, in the binary subsystem {A + j} at the hypothetical
state, and ω1∞,j is the property of the hypothetical binary
subsystem {A + j}; and τj* is the boundary concentration of
component j, at which eq 5 holds well. Moreover, Wang4 noted
that eq 5 may hold in a narrower concentration range if the
interchange energies are larger between B and every j or in a
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wider concentration range if the interchange energies are smaller
between B and every j. In addition, similar to the first extended
ZSR rule of Wang,1,4,5 eq 5 may also be valid at a constant
other partial molar quantity,4,5 for example, the {water (A) +
CaCl2 (B) + HCl (C)} system at constant partial molar enthalpy
of water. It would be therefore that eq 5 might be called the
first extended Turkdogan rule of Wang, similar to the first
extended ZSR rule of Wang shown in ref 1. Chinese scientists
called eq 5 the Wang Zhichang’s linear concentration rule at
constant partial molar quantity15 and experimentally verified it
by the solubility measurements of metals in nonferrous liquid
alloys.16

On the basis of eq 5 and its thermodynamic aspect,5 Wang6,7

developed a partial dilute solution model from a modified quasi-
chemical treatment for every kind of the solution {A + B + C
+ ... + Z} with nonzero interchange energy between B and
each C, D, ..., Z at constant activity of A, which may generally
be given by eqs 5 and 6:

Vm ) (xB/xB
1o)Vm,B

1o + ∑
j

(xj/xj
1∞)Vm,j

1∞ (6a)

Sm ) {(xB/xB
1o)Sm,B

1o + ∑
j

(xj/xj
1∞)Sm,j

1∞} - R ∑
i

xi ln zi

(6b)

Hm ) (xB/xB
1o)Hm,B

1o + ∑
j

(xj/xj
1∞)Hm,j

1∞ (6c)

Gm ) {(xB/xB
1o)Gm,B

1o + ∑
j

(xj/xj
1∞)Gm,j

1∞} + RT ∑
i

xi ln zi

(6d)

µB ) µB
1o + RT ln zB (6e)

µj ) µj
1∞ + RT ln zj (6f)

(aB/aB
1o) ) zB (6g)

(aj/aj
1∞) ) zj (6h)

over (xj/∑kxk) < 0.01, roughly speaking, where Vm,B
1° , Sm,B

1° , Hm,B
1° ,

and Gm,B
1° are molar quantities of the binary subsystem {A +

B}; µB
1°, aB

1°, and xB
1° are chemical potential, activity, and mole

fraction of component B in the binary subsystem {A + B};
Vm,j

1∞, Sm,j
1∞, Hm,j

1∞, and Gm,j
1∞ are molar quantities of the binary

subsystem {A + j} at the hypothetical state; and µj
1∞, aj

1∞, and
xj

1∞ are the properties of component j in the binary subsystem
{A + j} at the hypothetical state. Here, the composition variable
zi of component i is given by zi ) [ni/(nB + nC)] for a
nondissociation and nonpolymerization system {A + B + C}
but by different formulas for different kinds of ionic solutions
{A + B + C}, for example, zi ) [νi

+ni/(νB
+nB + νC

+nC)]νi
+

for
molten salt mixtures with the same anion5-9 and zi ) [νini/
(νBnB + νCnC)]νi/[νi

-ni/(νB
-nB + νC

-nC)]νi
-

for aqueous solutions
with the same anion.5-9 Both eqs 5 and 6 connect the properties
of the solution {A + B + C + ... + Z} with those of its binary
subsystem {A + B} and those of its binary subsystems {A +
j} at their hypothetical state under the condition at constant
activity of A. Equation 5 also indicates the identity of the
isoactivity line of A and the mixing line among the binary
subsystems within the concentration ranges. A comparison of
eq 6 with eq 3 shows that the partial dilute solution model may
reduce to the classically dilute solution model at xA ) 0 and
that a pure component A + a classically dilute solution {B +
C + ... + Z} ) a partial dilute solution {A + B + C + ... +
Z}. The Henry law or the classically dilute solution model for

{B + C + ... + Z} may be derived when the first extended
Turkdogan rule of Wang or the partial dilute solution model
for {A + B + C + ... + Z} holds well from infinite dilution of
B, C, ..., Z, where aA ) 1 and all ai ) 0, to infinite dilution of
A, where aA ) 0.

Figure 1a shows that eq 5 fits the isoactivity lines of carbon
very well for the solid alloys {carbon (A) + iron (B) + nickel
(C)}17 at 1000 °C, within 0 e wC e 0.15, and under the carbon
activity values of acarbon ) 0.0138, 0.0352, 0.0676, 0.115, and
0.141, respectively. Figure 1, parts b-d, shows that eq 5 can
fit the solubility measurements of calcium in the liquid nonfer-
rous alloys {calcium(sat) (A) + manganese (B) + aluminum
(C)}16 within about 0 e wC e 0.047 and {calcium(sat) (A) +

Figure 1. Isoactivity concentrations for different kinds of solid and liquid
solutions: (a) isoactivity lines of carbon in the solid solution {carbon (A)
+ iron (B) + nickel (C)}17 at 1000 °C; (b) line 1 for the melts {calcium(sat)
(A) + manganese (B) + aluminum (C)}16 and line 2 for the melts
{calcium(sat) (A) + manganese (B) + chromium (C)}16 at 1350 °C; (c)
the melts {cadmium(sat) (A) + NaCl-KCl (B) + CdCl2 (C)}18 at 700 °C;
and (d) line 1 for {o-nitroaniline(sat) (A) + water (B) + DMF (C)}19 and
line 2 for {p-chlorobenzoic acid(sat) (A) + water (B) + DMF (C)}19 at
303 K. The solid lines are given by eq 5a in a, b, and c and by eq 5c in d.
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manganese (B) + chromium (C)}16 within about 0 e wC e
0.134 at 1350 °C, cadmium in the metal-salt melts {cadmi-
um(sat) (A) + NaCl-KCl (B) + CdCl2 (C)}18 at 700 °C within
about 0 e [xC/(xB + xC)] e 0.1, and chlorobenzoic acid and
nitroaniline in the mixed solvent systems {p-chlorobenzoic
acid(sat) (A) + water (B) + DMF (C)}19 and {o-nitroaniline(sat)
(A) + water (B) + DMF (C)}19 at 303 K within about 0 e
[xC/(xB + xC)] e 0.03, respectively, where DMF ) N,N-
dimethylformamide. Figure 2 shows that eq 5 can also fit the
solubility measurements in aqueous solutions under both the
normal and the supercritical conditions: {NaCl(sat) (A) + water
(B) + mannitol (C)}20 to mannitol saturation, {NaCl(sat) (A)
+ water (B) + urea (C)}21 to a high concentration of urea at
25 °C, and {Al2O3(sat) (A) + water (B) + KOH (C)}22 at 400
°C and under 1 kbar. In addition, in ref 23, Pabalan and Pitzer
presented more than twenty figures for mineral solubilities in
the ternary aqueous solutions {saturated electrolyte (A) + water
(B) + unsaturated electrolyte (C)}, which also fit eq 5a well, at
least in the low concentration ranges of component C.

More importantly, Rard and Platford24 have pointed out the high
accuracy of room temperature isopiestic determinations for aqueous
solutions above 0.1 mol ·kg-1. Figure 3 shows that eq 5b can fit
very closely the room temperature isopiestic measurements for
{water (A) + KCl (B) + mannitol (C)}25 and {water (A) + NaCl
(B) + mannitol (C)}20 up to the concentrations close to the
saturation molality of mannitol, 1.185 mol ·kg-1. Figure 3 also
shows that eq 5b can fit the room temperature isopiestic behavior
of {water (A) + NaPAA (B) + PVP (C)}26 very well, where the
weight average degree of polymerization was 640 for NaPAA
(sodium polyacrylate) and the molecular weight was 24 500 for
PVP (polyvinylpyrrolidone).

Furthermore, Robinson and Stokes25 have derived the equa-
tions for activity coefficients of KCl and mannitol in {water
(A) + KCl (B) + mannitol (C)} from isopiestic measurements
at 298.15 K on the basis of a cross-differential assumption. In
Figure 4, the activity coefficients of KCl and mannitol in {water
(A) + KCl (B) + mannitol (C)} calculated from their equations
are used to check eqs 6g and 6h. The agreement is very good.

In addition, Petot et al.27 experimentally determined the activities
of iron in the {carbon(sat) (A) + iron (B) + manganese (C)}
melts at 1320 °C, which also reasonably fit eq 6g within about
0.95 e zB e 1 (or 0 e zC e 0.05) as shown in Figure 5.

Second Extended Turkdogan Rule of Wang and the Model

Wang9 also developed a dilute-like solution model from
another modified quasi-chemical treatment for every kind of
the solution {A1 + A2 + ... + Aq + B + C + ... + Z} with
nonzero interchange energies between B and each C, D, ..., Z
at constant activities of A1, A2, ..., Aq with the main model
equations being:

τ� ) (τB/τB
qo)τ�

qo,B + ∑
j

(τj/τj
q∞)τ�

q∞,j ) τ�
qo,B + ∑

j

bj
′′τj

(7a)

(τB/τB
qo) + ∑

j

(τj/τj
q∞) ) 1 (7b)

{(mB/m�)/(mB
qo/m�

qo,B)} + ∑
j

{(mj/m�)/(mj
q∞/m�

q∞,j)} ) 1

(7c)

s� ) (xB/ ∑
k

xk)s�
qo,B + ∑

j

(xj/ ∑
k

xk)s�
q∞,j (7d)

Vm ) (xB/xB
qo)Vm,B

qo + ∑
j

(xj/xj
q ∞)Vm,j

q∞ (8a)

Figure 2. Isoactivity concentrations for aqueous solutions under normal or
superscript conditions: (a) line 1 for {NaCl(sat) (A) + water (B) + mannitol
(C)}20 up to mannitol saturation and line 2 {NaCl(sat) (A) + water (B) +
urea (C)}21 at 25 °C and (b) for {Al2O3(sat) (A) + water (B) + KOH (C)}22

at 400 °C and under 1 kbar. The solid lines are given by eq 5a.

Figure 3. Isopiestic concentrations for (a) {water (A) + KCl (B) + mannitol
(C)},25 (b) {water (A) + NaCl (B) + mannitol (C)},20 and (c) {water (A)
+ NaPAA (B) + PVP (C)}26 at 25 °C, at which temperature the solubility
of mannitol in {water (A) + mannitol (C)} is 1.185 mol ·kg-1.20,25 The
solid lines are given by eq 5b.
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Sm ) {(xB/xB
qo)Sm,B

q o + ∑
j

(xj/xj
q∞)Sm,j

q∞} - R ∑
i

xi ln zi

(8b)

Hm ) (xB/xB
qo)Hm,B

qo + ∑
j

(xj/xj
q∞)Hm,j

q∞ (8c)

Gm ) {(xB/xB
qo)Gm,B

qo + ∑
j

(xj/xj
q∞)Gm,j

q∞} + RT ∑
i

xi ln zi

(8d)

µB ) µB
qo + RT ln zB (8e)

µj ) µj
q∞ + RT ln zj (8f)

(aB/aB
qo) ) zB (8g)

(aj/aj
q∞) ) zj (8h)

over (xj/∑kxk) < 0.01 roughly speaking, where � ∈ (A1, A2,
· · · , Aq) denotes components having constant activities in the
solution {A1 + A2 + ... + Aq + B + C + ... + Z} and its (q

+ 1)-component subsystem {A1 + A2 + ... + Aq + B} and
its (q + 1)-component subsystems {A1 + A2 + ... + Aq + j}
at the hypothetical state obtained by extrapolating eqs 7 and 8
to (τj/τj

q∞) ) 1; s�[ ) n�/(nB + nC + · · · + nZ)] denotes the
solubility of solute � in the solution {A1 + A2 + ... + Aq +
B + C + ... + Z} formed from a solute mixture [A1 + A2 +
... + Aq] and a solvent mixture [B + C + ... + Z]; the
superscript q°,B (or the superscript q° combined with the
subscript B) denotes a property of the (q + 1)-component
subsystem {A1 + A2 + ... + Aq + B}, and the superscript
q∞,j (or the superscript q∞ combined with the subscript j)
denotes a property of the (q + 1)-component subsystems {A1
+ A2 + ... + Aq + j} at the hypothetical state, so that Vm,B

q° ,
Sm,B

q° , Hm,B
q° , and Gm,B

q° are molar quantities of the subsystem {A1
+ A2 + ... + Aq + B}; µB

q° and aB
q° are the chemical potential

and activity of component B in the subsystem {A1 + A2 + ...
+ Aq + B}; xB

q°, mB
q°, and τB

q° are the concentrations of
component B in the subsystem {A1 + A2 + ... + Aq + B};
τ�

q°,B and m�
q°,B are the concentrations of component � in the

subsystem {A1 + A2 + ... + Aq + B}; s�
q°,B denotes the

solubility of solute � in the subsystem {A1 + A2 + ... + Aq
+ B}; Vm,j

q∞, Sm,j
q∞, Hm,j

q∞, and Gm,j
q∞ are the properties of the (q +

1)-component subsystems {A1 + A2 + ... + Aq + j} at the
hypothetical state; and µj

q∞, aj
q∞, τj

q∞, mj
q∞, and xj

q∞ are
the properties of component j and τ�

q∞,j, m�
q∞,j, and s�

q∞,j are the
properties of component � in the (q + 1)-component subsystems
{A1 + A2 + ... + Aq + j} at the hypothetical state. In the
special case that τ denotes molality and � ) water, eq 7c reduces
to eq 7b due to m� ) m�

q°,B ) m�
q∞,j ) 55.506 mol ·kg-1. It would

be therefore that eq 7 might be called the second extended
Turkdogan rule of Wang.

Equations 7 and 8 connect the properties of the solution {A1
+ A2 + ... + Aq + B + C + ... + Z} with those of its (q +
1)-component subsystem {A1 + A2 + ... + Aq + B} and those
of its (q + 1)-component subsystems {A1 + A2 + ... + Aq +
j} at the hypothetical state under the condition at constant
activities of A1, A2, ..., Aq. Equation 7 also indicates the identity
of the common isoactivity line of A1, A2, ..., Aq and the mixing
line among the (q + 1)-component subsystems within the
concentration ranges. Comparison of eqs 7 and 8 with eqs 5
and 6 and with eqs 2 and 3 shows that the dilute-like solution
model reduces to the partial dilute solution model at q ) 1 (i.e.,
A1 ) A and xA2 ) xA3 ) · · · ) xAq ) 0) and to the classically
dilute solution model at q ) 0 (i.e., xA1 ) xA2 ) · · · ) xAq )
0) and that a classically nonideal solution {A1 + A2 + ... +
Aq} + a classically dilute solution {B + C + ... + Z} ) a
dilute-like solution {A1 + A2 + ... + Aq + B + C + ... + Z}.
The Henry law or the classically dilute solution model for {B
+ C + ... + Z} may be derived when the second extended
Turkdogan rule of Wang or the dilute-like solution model holds
well from infinite dilution of B, C, ..., Z, where all ai ) 0, to
infinite dilution of A1, A2, ..., Aq, where all a� ) 0, for {A1 +
A2 + ... + Aq + B + C + ... + Z}.

Equations 7 and 8 may be checked either by the isopiestic
measurements for the aqueous solutions {water (A1) + A2 +
... + Aq + B + C + ... + Z} with one or more saturated solutes
or volatile alcohols denoted by A2, A3, ..., Aq and with two or
more unsaturated solutes denoted by B, C, ..., Z or by the joint
solubility measurements of the solute mixtures [A1 + A2 + ...
+ Aq] in the mixed solvents [B + C + ... + Z]. For example,
Wang9 has reported the isopiestic measurements for {water (A1)
+ mannitol(sat) (A2) + KCl (B) + CdCl2 (C)} within 0 e [mC/
(mB + mC)] e 0.1002, for {water (A1) + mannitol(sat) (A2) +
CdCl2 (B) + KCl (C)} within 0 e [mC/(mB + mC)] e 0.0737,

Figure 4. Activities for (a) KCl and (b) mannitol in {water (A) + KCl (B)
+ mannitol (C)} at 25 °C25 along the isopiestic lines of water at aA )
0.8529, 0.9036, and 0.9493, respectively, and with zB ) [2mB/(2mB + mC)]2

and zC ) mC/(2mB + mC). The open triangles at aA ) 0.8529, solid circles
at aA ) 0.9036, and open circles at aA ) 0.9493 were calculated by eqs 2
and 3 in ref 25 for activity coefficients of mannitol and KCl, respectively,
together with the basic equations aB ) mB

2 γB
2 and aC ) mCγC, where γ is

the activity coefficient. The solid lines are given by eq 6g for KCl in Figure
4a and by eq 6h for mannitol in Figure 4b.

Figure 5. Activities for iron in {carbon(sat) (A) + iron (B) + manganese
(C)} at 1773 K. The solid line is given by eq 6g.
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for {water (A1) + NaCl(sat) (A2) + urea (B) + sucrose (C)}
within 0 e [mC/(mB + mC)] e 0.0543, and for {water (A1) +
NaCl(sat) (A2) + sucrose (B) + urea (C)} within 0 e [mC/(mB

+ mC)] e 0.0552, where CdCl2 is a strong complex former with
KCl and the unsaturated ternary subsystem {water (A) + sucrose
(B) + urea (C)} significantly deviates from the ZSR rule.3 All
of the results closely fit eqs 7b and 7c.

Discussion

The Henry law was first discovered empirically for solubility
measurements of gases in water, while the Turkdogan rule was
discovered empirically for solubility measurements of carbon
in Fe-based liquid alloys. The classically dilute solution model
derived from a quasi-chemical treatment makes the Henry law
valid for every kind of the liquid and solid solutions {B + C +
... + Z} such as organic mixtures, aqueous and nonaqueous
electrolyte and nonelectrolyte solutions, alloys, molten salt
mixtures, slags, and nonstoichiometric solid solutions. The
partial dilute solution model and dilute-like solution model
derived from modified quasi-chemical treatments result in two
extended Turkdogan rules of Wang, which are valid for every
kind of the liquid and solid solutions {A + B + C + ... + Z}
at constant activity of A and for every kind of the liquid and
solid solutions {A1 + A2 + ... + Aq + B + C + ... + Z} at
constant activities of A1, A2, ..., Aq, respectively. The classically
dilute solution model, partial dilute solution model, and dilute-
like solution model are all valid over (xj/∑kxk) < 0.01, roughly
speaking, for the systems with nonzero interchange energies
between B and each C, D, ..., Z. The relationship among the
three models might be given by “a pure component A + a
classically dilute solution {B + C + ... + Z} ) a partial dilute
solution {A + B + C + ... + Z}” and “a classically nonideal
solution {A1 + A2 + ... + Aq} + a classically dilute solution
{B + C + ... + Z} ) a dilute-like solution {A1 + A2 + ... +
Aq + B + C + ... + Z}”. In other words, in the case that {B
+ C + ... + Z} follows the classically dilute solution model,
the partial dilute solution model is valid over the whole range
of the activity of A for the classically nonideal solution {A +
B + C + ... + Z} and the dilute-like solution model over the
whole range of the activities of A1, A2, ..., Aq for the classically
nonideal solution {A1 + A2 + ... + Aq + B + C + ... + Z}.
Therefore, after extension, the Turkdogan rule would be as
important as the Henry law in multicomponent systems. In the
case that there are stronger interactions or larger interchange
energies between B and each C, D, ..., Z, the Henry law for {B
+ C + ... + Z} and two extended Turkdogan rules of Wang
for {A + B + C + ... + Z} and {A1 + A2 + ... + Aq + B +
C + ... + Z}, respectively, and their models might be valid
only in a narrower concentration range, that is, 0 e xj e xj* ,
1. In another case where there are weaker interactions or smaller
interchange energies between B and each C, D, ..., Z, these rules
and models might be valid in a wider concentration range, that
is, 0 e xj e xj* < 1 with a larger value of xj*. In the third case
that there are zero interchange energies between B and each C,
D, ..., Z, the Henry law reduces to Raoult law and the two
extended Turkdogan rules of Wang reduce to the two extended
ZSR rules of Wang.1

Furthermore, at constant activities of A1, A2, ..., Aq, the
general concentration relation may be given by9

x� ) (xB/xB
qo)x�

qo,B + (xC/xC
qo)x�

qo,C + [xBxC/(xB + xC)] ×

{bBC
(0) + bBC

(1) [xC/(xB + xC)] + ···} (9a)

for {A1 + A2 + ... + Aq + B + C} within 0 e (xC/xC
q°) e 1

and by

x� ) ∑
i

(xi/xi
qo)x�

qo,i + ∑
i

∑
k

(xixk/ ∑
k

xk) ×

{bik
(0) + bik

(1)[xk/(xi + xk)] + ···} (9b)

for {A1 + A2 + ... + Aq + B + C + ... + Z} within 0 e
(xi/xi

q°) e 1, where bik
(0) and bik

(1) are parameters. For example,
the isopiestic behavior of PbO in the ternary slag {PbO (A) +
SiO2 (B) + B2O3 (C)} at 1273 K28 may be given by bBC

(0) )
-7.30aA + 11.90aA

2 and bBC
(1) ) bBC

(2) ) · · · ) 0 within 0 e (xC/
xC

1°) e 1 and 0 e aA e 1. In one case of bik
(0) ) bik

(1) ) · · · ) 0
or ∑kxk f 0, eq 9 yields the first general linear concentration
rule at constant activities of A1, A2, ..., Aq9 or the second
extended ZSR rule of Wang:1

τ� ) ∑
i

(τi/τi
qo)τ�

qo,i (10a)

∑
i

(τi/τi
qo) ) 1 (10b)

∑
i

{(mi/m�)/(mi
qo/m�

qo,i)} ) 1 (10c)

s� ) ∑
i

(xi/ ∑
k

xk)s�
qo,i (10d)

within 0 e (τi/τi
q°) e 1. For {A + B + C + ... + Z}, eq 10

reduces to the first general linear concentration rule at constant
activities of A or the first extended ZSR rule of Wang:1

τA ) ∑
i

(τi/τi
1o)τA

1o,i (11a)

∑
i

(τi/τi
1o) ) 1 (11b)

sA ) ∑
i

(xi/ ∑
k

xk)sA
1o,i (11c)

within 0 e (τi/τi
1°) e 1. In another case of [xj/(xB + xj)]f 0, eq

9 yields eq 7, the second general linear concentration rule at
constant activities of A1, A2, ..., Aq9 or the second extended
Turkdogan rule of Wang. For {A + B + C + ... + Z}, eq 7
reduces to eq 5, the second general linear concentration rule at
constant activities of A or the first extended Turkdogan rule of
Wang. For unsaturated aqueous solutions, eq 9 may be rewritten
as29

(mB/mB
1o) + (mC/mC

1o) ) 1 + [mBmC/(mB + mC)] ×

{cBC
(0) + cBC

(1) [mC/(mB + mC)] + cBC
′ aA} (12a)

for {water (A) + solute (B) + solute (C)} within 0 e (mC/mC
1°)

e 1 or as30

∑
i

(mi/mi
1o) ) 1 + ∑

i
∑

k

(mimk/ ∑
k

mk) ×

{cik
(0) + cik

(1)[mk/(mi + mk)] + cik
′ aA} (12b)

for {water (A) + solute (B) + solute (C) + ... + solute (Z)}
within 0 e (mi/mi

1°) e 1, where cik
(0), cik

(1), and cik′ are parameters;
which are equivalent to eqs 4 and 6 in ref 31. For example, it
was found that cBC

(0) ) cBC
(1) ) cBC′ ) 0 at aA g 0.724 and cBC

(0) )
0.2055, cBC

(1) ) 0, and cBC′ ) -0.2839 at aA < 0.724 for {water
(A) + HNO3 (B) + Th(NO3)4 (C)}32 at 25.0 °C, and cBC

(0) ) cBC
(1)

) cBC′ ) 0 at about aA g 0.984 and cBC
(0) * 0 at about aA e

0.941 for {water (A) + NaCl (B) + NaPAA (C)}33 at 25.0 °C.
Therefore, in the case that the solution {B + C + ... + Z}
deviates from the Raoult law and the classically ideal solution
model and obeys the Henry law and the classically dilute
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solution model, the two extended ZSR rules of Wang, eqs 10
and 11, and the partial ideal solution model and ideal-like
solution model may be valid for {A + B + C + ... + Z} and
{A1 + A2 + ... + Aq + B + C + ... + Z}, respectively, in the
B, C, ..., Z poor ranges, while the two extended Turkdogan rules
of Wang, eqs 5 and 7, and the partial dilute solution model and
dilute-like solution model may hold in the A1, A2, ..., Aq poor
ranges.
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