Phase Diagrams for the Ternary Na₂O-Al₂O₃-H₂O System at (150 and 180) °C

Wei Jin,^{†,‡} Shili Zheng,^{*,†} Hao Du,[†] Hongbin Xu,[†] Shaona Wang,[†] and Yi Zhang[†]

National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China, and Graduate School of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

The full alkali concentration range phase diagrams of the Na₂O–Al₂O₃–H₂O system were constructed at (150 and 180) °C. The compositions of the clear liquids and wet solid phases were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the results show that, as the Na₂O concentration increases, the Al₂O₃ solubility initially increases monotonically, to maximum values of 100 *w* (mass fraction) = 33.58 and 35.86 at (150 and 180) °C, respectively, and then decreases. At both temperatures, the solid phases were determined to be Al₂O₃•H₂O, Na₂O•Al₂O₃•2.5H₂O, Na₂O•Al₂O₃, and NaOH by X-ray diffraction coupled with Schreinemaker's method. The phase diagrams indicate that, as the temperature increases, the Na₂O•Al₂O₃•2.5H₂O phase region shrinks, while that of the Na₂O•Al₂O₃ phase expands.

Introduction

Because of a wide application in water treatment¹ and fine chemical manufacturing technologies,² especially the Bayer process which has been used commercially for producing alumina-based compounds from alkali digested bauxite ores since 1897³ in the alumina industry, the physicochemical properties of the Na₂O–Al₂O₃–H₂O system have been investigated substantially over a wide range of concentrations and temperatures.

Owing to its significance, the phase diagrams of the Na₂O-Al₂O₃-H₂O system, which are the fundamental data for the crucial elementary unit operations, have been intensively studied⁴ by various techniques over the last two decades. Fricke and Jucaitis⁵ first investigated the composition of sodium aluminate hydrate in the concentrated alkali region at 30 °C and considered the solid phase as Na₂O·Al₂O₃·2.5H₂O by employing Schreinemaker's method. A subsequent argument from Kuznetsov and Dereogankin⁶ suggested the solid phase to be a mixture of Na₂O·Al₂O₃·2.5H₂O and Na₂O·H₂O using X-ray diffraction. Qiu and Chen⁷ reported another new solid, 4Na₂O·Al₂O₃·12H₂O, besides the crystalline phases mentioned above. Indeed, owing to the complexity of sodium aluminate solutions, many of the most powerful analytical techniques for investigating solution physicochemical properties such as potentiometry,^{8,9} NMR,¹⁰⁻¹² and UV-vis spectroscopy¹³ have limited success in providing useful information about such systems, as evidenced by a striking lack of agreement between analytical results obtained using these methods.¹⁴ Thus, accurate identification of the solid phases in the Na₂O-Al₂O₃-H₂O system is the subject of considerable research effort. Further, the equilibrium solid phases diversify with temperature and concentration. For example, at low concentrations, the equilibrium solid is determined to be $Al_2O_3 \cdot 3H_2O$ at (30, 40, 40, 95, 15)and 110^{15}) °C but becomes Al₂O₃·H₂O at (130,¹⁶ 150,⁴ and 200⁴) °C. In addition, the solid transforms from Na₂O·Al₂O₃·2.5H₂O to a mixture of $4Na_2O\cdotAl_2O_3\cdot12H_2O$ and $6Na_2O\cdotAl_2O_3\cdot12H_2O$ with an increase in the Na₂O concentration at 110 °C.¹⁵ Because of equipment limitation and phase region confinement in the traditional alumina-producing process, phase diagrams at high temperatures and concentrated alkali regions are fragmentary.⁴ For example, the solubility curves and crystalline phases of (150 and 200) °C are not complete, and the absence of phase diagrams between (150 and 200) °C is also an intractable problem for theoretical and practical applications.

Recently, the development of a novel diasporic bauxite digestion process,¹⁷ which operates at about 180 °C and in concentrated alkali regions of the Na₂O-Al₂O₃-H₂O system compared with 60 °C and dilute alkali regions in the traditional alumina-producing process, further addresses necessities of phase diagrams for such regions. Previous work carried out by Zhang et al. was at temperatures of (95¹⁵ and 110¹⁵) °C. Five equilibrium solid phases including Al₂O₃• 3H₂O, Na₂O•Al₂O₃•2.5H₂O, 4Na₂O•Al₂O₃•12H₂O, 6Na₂O• Al₂O₃·12H₂O, and Na₂O·H₂O were reported at 95 °C, and 4Na₂O·Al₂O₃·12H₂O was found to be missing at 110 °C. Ma¹⁶ et al. discovered the solid phases Al₂O₃•H₂O, Na₂O•Al₂O₃• 2.5H₂O, Na₂O·Al₂O₃ and Na₂O·H₂O in different alkali regions at 130 °C. To get further information for the optimization of the digestion and separation procedures in the new process, the phase diagrams at (150 and 180) °C, especially in the concentrated alkali regions, are of significant importance. In this regard, the Na₂O-Al₂O₃-H₂O phase diagrams at the above-mentioned temperatures were studied over the full alkali concentration range by using X-ray diffraction coupled with Schreinemaker's method.18

Experimental Section

Supersaturated sodium aluminate solutions, 25 mL each, were prepared by dissolving aluminum metal (99.98 %, Merck) in hot sodium hydroxide solutions (99.99 %, Aldrich), followed by immediate filtration through a 0.22 μ m pore-size membrane. All solutions were made using high purity Milli-Q water. To avoid contamination from metal containers, the solutions were

^{*} Corresponding author. E-mail: slzheng@home.ipe.ac.cn. Fax: +86-10-62520910.

⁺ National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology.

[‡] Graduate School of Chinese Academy of Sciences.

Table 1.	Equilibrium	Data of 1	the Na ₂ (D-Al ₂ O ₃ -	H ₂ O	System at	150	$^{\circ}C^{a}$
----------	-------------	-----------	-----------------------	------------------------------------	------------------	-----------	-----	-----------------

	composition of liquid phase (100 w)		composition of wet solid phase (100 w)			
sample no.	Na ₂ O	Al ₂ O ₃	Na ₂ O	Al ₂ O ₃	equilibrium crystalline phases	
1	5.47	2.40			$Al_2O_3 \cdot H_2O$ (A)	
2	7.76	3.81			$Al_2O_3 \cdot H_2O(A)$	
3	13.43	7.21			$Al_2O_3 \cdot H_2O(A)$	
4	15.17	10.09			$Al_2O_3 \cdot H_2O(A)$	
5	16.85	13.27			$Al_2O_3 \cdot H_2O(A)$	
6	21.16	21.43			$Al_2O_3 \cdot H_2O(A)$	
7	22.59	27.08			$Al_2O_3 \cdot H_2O(A)$	
8	24.05	33.58 (K)			$Al_2O_3 \cdot H_2O(A) + Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
9	27.67	25.92	28.10	30.96	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
10	30.73	19.03	30.36	29.71	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
11	32.80	316.87	32.28	22.48	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
12	33.78	15.97 (L)	33.59	26.19	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B) + Na_2O \cdot Al_2O_3(C)$	
13	37.18	11.23	37.18	19.86	$Na_2O \cdot Al_2O_3$ (C)	
14	42.22	7.33	41.50	16.50	$Na_2O \cdot Al_2O_3(C)$	
15	48.69	2.94	47.37	10.33	$Na_2O \cdot Al_2O_3(C)$	
16	52.99	0.78	50.12	12.63	$Na_2O \cdot Al_2O_3(C)$	
17	58.58	0.65	56.47	7.52	$Na_2O \cdot Al_2O_3(C)$	
18	61.56	0.43 (M)			$Na_2O \cdot Al_2O_3 (C) + NaOH (D)$	
19	62.38	0.00 (N)			NaOH (D)	

^{*a*} A, B, C, and D represent the solids of AlOOH, $Na_2O \cdot Al_2O_3 \cdot 2.5H_2O$, $Na_2O \cdot Al_2O_3$, and NaOH, respectively. A combination of symbols (such as A + B) means that the compounds coexist.

Table 2. Equilibrium Data of the Na₂O-Al₂O₃-H₂O System at 180 °C^a

	composition of liquid phase (100 w)		composition of wet solid phase (100 w)			
sample no.	Na ₂ O	Al ₂ O ₃	Na ₂ O	Al ₂ O ₃	equilibrium crystalline phases	
1	6.54	4.87			$Al_2O_3 \cdot H_2O(A)$	
2	12.17	9.47			$Al_2O_3 \cdot H_2O(A)$	
3	17.21	14.74			$Al_2O_3 \cdot H_2O(A)$	
4	21.17	19.50			$Al_2O_3 \cdot H_2O(A)$	
5	24.23	28.84			$Al_2O_3 \cdot H_2O(A)$	
6	25.09	35.86 (K)			$Al_2O_3 \cdot H_2O(A) + Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
7	27.35	31.12	28.09	37.29	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
8	29.17	27.23	29.25	30.99	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B)$	
9	30.82	25.82 (L)	31.07	34.31	$Na_2O \cdot Al_2O_3 \cdot 2.5H_2O(B) + Na_2O \cdot Al_2O_3(C)$	
10	31.45	23.73	32.50	30.60	$Na_2O \cdot Al_2O_3$ (C)	
11	35.27	18.14	35.75	29.20	$Na_2O \cdot Al_2O_3(C)$	
12	38.73	12.64	43.41	18.45	$Na_2O \cdot Al_2O_3(C)$	
13	44.95	6.33	48.32	11.58	$Na_2O \cdot Al_2O_3(C)$	
14	50.35	2.29	38.94	17.27	$Na_2O \cdot Al_2O_3(C)$	
15	52.84	0.89	51.42	6.46	$Na_2O \cdot Al_2O_3(C)$	
16	61.96	0.12 (M)			$Na_2O \cdot Al_2O_3$ (C) + NaOH (D)	
17	64.00	0.00 (N)			NaOH (D)	

 a A, B, C, and D represent the solids of AlOOH, Na₂O·Al₂O₃·2.5H₂O, Na₂O·Al₂O₃, and NaOH, respectively. A combination of symbols (such as A + B) means that the compounds coexist.

loaded into airtight stainless steel autoclaves with polytetrafluoroethylene linings. Finally, the autoclaves were placed in a thermostatic shaker (JFX type, Shandong Songling Chemical Equipment Co., Ltd.) with temperature control (precision 0.1 K), and the shaking speed was set to 140 rpm to accelerate the equilibrium of the complexes.

The equilibrium of the system was determined by comparing the composition of the solutions every week. After nearly one month, equilibrium was achieved, and at the experimental temperature, the viscosity of the saturated sodium aluminate solution was still low enough for easy separation of the liquid and solid phases through sedimentation for approximately 24 h. The solids obtained were washed by ethanol and then dried at 100 °C in a thermostatic oven (DHG-900 type, Jiaxing Zhongxin Chemical Equipment Co., Ltd.) for 12 h. Then the clear liquid and wet solid samples were analyzed using inductively coupled atomic plasma emission spectrometry (ICP-AES, 2400 type, Perkin-Elmer). In the Schreinemaker's method,¹⁸ the straight line drawn through the compositions of the liquid phase and the corresponding wet solids passes through the composition of pure solid phase on a phase diagram; thus, the composition of the pure solid phase is obtained from the intersection of lines drawn through several such pairs. Besides, the solid phases were identified by X-ray diffraction (XRD) using diffraction spectrometry (Rigaku D/max-2400 X-ray with a radiation target of Cu K α). All of the samples were scanned from 5° to 90° (2 θ) range, and the results were consistent with that using Schreinemaker's method.

Results and Discussion

The equilibrium composition data of the Na₂O–Al₂O₃–H₂O system at (150 and 180) °C are summarized in Table 1 and 2, and the corresponding phase diagrams are shown in Figure 1 and 2, respectively. In the figures, points A, B, C, and D represent the compositions of the equilibrium solid phases Al₂O₃·H₂O, Na₂O·Al₂O₃·2.5H₂O, Na₂O·Al₂O₃, and Na₂O·H₂O, respectively. Points O, K, L, M, and N are points on the saturated liquid line, while O and N represent the solubility of alumina and Na₂O in pure water, respectively.

Curves OK, KL, LM, and MN show the compositions of saturated ternary solutions with the corresponding solid phases.

Figure 1. Phase diagram for the Na₂O–Al₂O₃–H₂O system at 150 °C. A, AlOOH; B, Na₂O·Al₂O₃•2.5H₂O; C, Na₂O·Al₂O₃; D, NaOH; K, L, M, three-phase points; S, saturated sodium aluminate solution; N, solubility of Na₂O in pure water at 150 °C. A combination of symbols (such as A + S) means the items coexist. OK, KL, LM, and MN indicate the composition of saturated ternary solution that in equilibrium with the solids AlOOH (A), Na₂O·Al₂O₃•2.5H₂O (B), Na₂O·Al₂O₃ (C), and NaOH (D), respectively. Thick solid lines are tie-lines between coexisting phases, and the dashed lines connect the compositions of saturated solution with the corresponding wet solid.

Figure 2. Phase diagram for the Na₂O-Al₂O₃-H₂O system at 180 °C. A, AlOOH; B, Na₂O·Al₂O₃•2.5H₂O; C, Na₂O·Al₂O₃; D, NaOH; K, L, M, three-phase points; S, saturated sodium aluminate solution; N, solubility of Na₂O in pure water at 180 °C. A combination of symbols (such as A + S) means the items coexist. OK, KL, LM, and MN indicate the composition of saturated ternary solution that in equilibrium with the solids AlOOH (A), Na₂O·Al₂O₃•2.5H₂O (B), Na₂O·Al₂O₃ (C), and NaOH (D), respectively. Thick solid lines are tie-lines between coexisting phases, and the dashed lines connect the compositions of saturated solution with the corresponding wet solid.

The data in the low concentration region at 150 °C is consistent with the results reported previously.⁴ Area ABKA is a triplephase region of $Al_2O_3 \cdot H_2O$ (A), $Na_2O \cdot Al_2O_3 \cdot 2.5H_2O$ (B), and saturated solution (K); area BCLB is for $Na_2O \cdot Al_2O_3 \cdot 2.5H_2O$ (B), $Na_2O \cdot Al_2O_3$ (C), and saturated solution (L); area CDMC is for $Na_2O \cdot Al_2O_3$ (C), NaOH (D), and saturated solution (M), while K, L, and M are three invariant points. The area above line ABCD is the all-crystalline phase region, and below the saturated liquid line OKLMN is the unsaturated solution aluminate solution region.

Obviously, the phase diagrams show that, with an increase in the Na₂O concentration, the Al₂O₃ solubility initially increases monotonically, to the maximum values of 100 w (mass fraction) = 33.58 and 35.86 at (150 and 180) °C, respectively, and then decreases.

Similar to the phase diagram for the $Na_2O-Al_2O_3-H_2O$ system observed at 130 °C,¹⁶ the equilibrium solid phases observed in this study were identified to be $Al_2O_3 \cdot H_2O$, $Na_2O \cdot Al_2O_3 \cdot 2.5H_2O$, $Na_2O \cdot Al_2O_3$, and $Na_2O \cdot H_2O$ by X-ray

Figure 3. Solubility diagrams of the Na₂O $-Al_2O_3-H_2O$ system range from (95 to 180) °C. [Experimental data: (95^{4,15} and 130¹⁶) °C; (150 and 180) °C, this study, see Tables 1 and 2].

diffraction coupled with Schreinemaker's method. As expected, the higher the temperature, the smaller the region of the equilibrated Na₂O·Al₂O₃·2.5H₂O solid is and the larger the region of Na₂O·Al₂O₃, which suggests that in the high concentration range, as the temperature increases, the amount of sodium aluminate hydrate decreases and the Na₂O·Al₂O₃ becomes the dominant solid phase. Besides, both Na₂O· Al₂O₃·2.5H₂O (B) and Na₂O·Al₂O₃ (C) decompose in the presence of water as suggested by the phase diagram, and the straight lines connecting the solid to the original point do not intersect with their corresponding saturated lines.

The phase diagrams for the Na₂O–Al₂O₃–H₂O system in the temperature range from (95 to 180) °C^{15,16} are summarized in Figure 3. Clearly, with the increase of the Na₂O concentration, the Al₂O₃ solubility initially increases monotonically to a peak value and then decreases, and as the temperature increases, the maximum solubility slightly increases. Meanwhile, as the temperature increases, the equilibrium solid phase in the low Na₂O concentration region transforms from Al₂O₃•3H₂O to Al₂O₃•H₂O. In the high alkali region, except for Na₂O• Al₂O₃•2.5H₂O, other sodium aluminate hydrates gradually transform to Na₂O•Al₂O₃.

Conclusions

Phase diagrams for the Na₂O-Al₂O₃-H₂O system at (150 and 180) °C were investigated in this study. The diagrams show that, with an increase of the Na₂O concentration, the Al₂O₃ solubility initially increases monotonically, to the maximum values of 100 w = 33.58 and 35.86 at (150 and 180) °C, respectively, followed by a decrease, and this trend is also observed at other temperatures. At both temperatures, the solid phases were identified to be $Al_2O_3 \cdot H_2O$, $Na_2O \cdot Al_2O_3 \cdot 2.5H_2O$, Na₂O·Al₂O₃, and NaOH in different concentration regions by X-ray diffraction coupled with Schreinemaker's method. Three invariant points and their relevant pairs of equilibrium solid phases (Al₂O₃•H₂O/Na₂O•Al₂O₃•2.5H₂O, Na₂O•Al₂O₃•2.5H₂O/ Na₂O·Al₂O₃, and Na₂O·Al₂O₃/NaOH) were determined with their corresponding compositions. The diagrams also indicate that, as the temperature increases, the phase region of Na₂O·Al₂O₃ expands and the region of Na₂O·Al₂O₃·2.5H₂O shrinks. Meanwhile, from a comparison of the phase diagrams at other temperatures, it appears that, as the temperature increases, the equilibrium solid phase in the low Na2O concentration region transforms from $Al_2O_3 \cdot 3H_2O$ to $Al_2O_3 \cdot H_2O$. In the high alkali region, except for Na₂O·Al₂O₃·2.5H₂O, other sodium aluminate hydrates gradually transform to Na₂O·Al₂O₃.

Literature Cited

- Lindsay, F. K.; Ryznar, J. W. Removal of Silica from Water. Ind. Eng. Chem. Res. 1939, 31 (7), 859–861.
- (2) Tong, Y. C. Synthesis of Monolithic Zeolite Beta with Hierarchical Porosity Using Carbon as a Transitional Template. *Chem. Mater.* 2006, 18, 4218–4220.
- (3) Bayer, K. J. Patent DE-PS 43977, 1887.
- (4) Chen, N. Y. Physical Chemistry of Alumina Production; Shanghai Scientific and Technical Publishers: Shanghai, 1962.
- (5) Fricke, R.; Jucaitis, P. Untersuchungen über die Gleichgewichte in den System Al₂O₃ und Al₂O₃·K₂O·H₂O. Z. Anorg. Allg. Chem. 1930, 191, 129–131.
- (6) Kuznetsov, S. I.; Dereogankin, V. A. Physical Chemistry of Alumina Production by Bayer Method; Metallurgy Publishing House: Moscow, 1964.
- (7) Qiu, G. F.; Chen, N. Y. Phase Study of the System Na₂O-Al₂O₃-H₂O. *Can. Metall. Q.* **1997**, *36* (2), 111–114.
- (8) Plumb, R. C.; Swaine, J. W. Oxide-Coated Electrodes. II. Aluminum in Alkaline Solutions and the Nature of the Aluminate Ion. J. Phys. Chem. 1964, 68, 2057–2064.
- (9) Diakonov, I.; Pokrovski, G.; Schott, J.; Castet, S.; Gout, R. An Experimental and computational study of sodium-aluminum complexing in crustal fluids. *Geochim. Cosmochim. Acta* **1996**, *60*, 197–211.
- (10) Akitt, J. W.; Gessner, W.; Weinberger, M. High-field aluminium-27 nuclear magnetic resonance investigations of sodium aluminate solutions. *Magn. Reson. Chem.* **1988**, *26*, 1047–1050.

- (11) Dovbysh, N. G.; Volokhov, Y. A.; Lebedev, V. B.; Sizyakov, V. M.; Mironov, V. E. Distribution of Charges in Aqueous Alkaline Solutions of Boron(III), Aluminum(III), Gallium(III), and Silicon(IV). J. Struct. Chem. 1981, 22, 137–139.
- (12) Bradley, S. M.; Hanna, J. V. Aluminium-27 MAS NMR investigation of sodium aluminates formed from high pH solutions: evidence of a complex polymer containing both four- and six-coordinate aluminium. *J. Chem. Commun.* **1993**, *124*, 9–1251.
- (13) Carreira, L. A.; Maroni, V. A.; Swaine, J. W.; Plumb, R. C. Raman and Infrared Spectra and Structures of Aluminate Ions. *J. Chem. Phys.* 1966, 45, 2216–2219.
- (14) Eremin, N. I.; Volokhov, Y. A.; Mironov, V. E. Structure and Behavior of Aluminate Ions in Solutions. *Russ. Chem. Rev.* 1974, 43, 92–106.
- (15) Zhang, Y. F.; Li, Y. H.; Zhang, Y. Phase diagram for the system Na₂O-Al₂O₃-H₂O at high alkali concentration. *J. Chem. Eng. Data* **2003**, 48, 617–723.
- (16) Ma, S. H.; Zheng, S. L.; Zhang, Y. F.; Zhang, Y. Phase diagram for the system Na₂O-Al₂O₃-H₂O at 130 °C. *J.Chem. Eng. Data* **2007**, *52*, 77–79.
- (17) Zhang, Y.; Li, Z. H. Green Chemistry of Chromate Cleaner Production. *Chin. J. Chem.* **1999**, *17*, 258–266.
- (18) Schott, H. A mathematical extrapolation for the methods of wet residues. J. Chem. Eng. Data **1961**, *6*, 324–324.

Received for review October 20, 2009. Accepted March 5, 2010. Financial support from National Natural Science Foundation of China under Grant No. 50874099, the National Basic Research Development Program of China (973 Program) under Grant No. 2009CB219901 and 2007CB613501, and Chinese Academy of Sciences Knowledge Innovation Program under Grant No. KGCX2-YW-321-2 is gratefully acknowledged.

JE900859N