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We investigated the influence that eight ionic liquids (ILs) as additives have on the conductivity and
electrochemical stability of lithium salt-based electrolytes. The investigated salts were the well-known lithium
hexafluorophosphate (LiPF6), which is the preferred salt for lithium ion batteries (LIBs), and the new salt
lithium difluoro(oxalato)borate (LiDFOB). Conductivity studies performed over the temperature range (238.15
to 333.15) K showed a temperature-dependent increase in conductivity caused by several IL additives. The
electrochemical stabilities of the solutions were determined at platinum and aluminum electrodes. At the Pt
electrode, LiPF6 is the more stable salt, whereas at the aluminum electrode, LiDFOB exhibits a 0.5 V higher
potential window in comparison with LiPF6-based solutions. An investigation of the influence of added ILs
on the corrosion of aluminum, the current collector material for cathodes of LIBs, did not reveal any adverse
effects.

Introduction

The performance of lithium ion batteries (LIBs) is affected
by many parameters of the electrolyte, including voltage
window, conductivity, diffusion, and lithium ion transference
number. In the battery, the electrolyte determines the corrosion
behavior of the cathodic aluminum current collector. To the
aluminum surface is attached an active cathode material, such
as a layered metal oxide (LixMO2, M ) Co, Ni, Mn), spinel-
structured LixMn2O4, or LixFePO4.

1-5 Aluminum is still in
contact with the electrolyte and may corrode via oxidative
dissolution (pitting corrosion),6-9 entailing the inactivation of
the whole cathode. However, a passivation layer can be formed
on the aluminum surface, protecting the Al from further
corrosion.

The commonly used salt lithium hexafluorophosphate (LiPF6)
shows good properties in forming a stable passivation layer that
prevents further Al corrosion.9,10 This salt exhibits very good
conductivity and electrochemical stability; therefore, it is
preferred in LIBs. However, this salt shows some problems,
including low thermal stability and the formation of the Lewis
acid PF5, which hydrolyzes to HF and POF3 and may polymerize
solvents.11,12 These problems have pushed a continuing search
for better lithium salts.13-17 Synthesized lithium bis(trifluo-
romethylsulfonyl)imide [LiTFSI, Li(CF3SO2)2N] shows good
thermal stability and relatively high conductivity but is poor in
Al protection.18 Lithium bis[oxalato(2-)]borate [LiBOB,
LiB(C2O4)2] was reported to have a very good protecting
property and thermal stability,17,19,20 but it suffers from low
solubility in carbonate solvents and low conductivity.21,22

Lithium difluoro(oxalato)borate (LiDFOB, LiBF2C2O4) com-
bines some positive aspects of LiBOB and LiPF6 and shows
improved performance at low temperatures. LiDFOB is much
more soluble than LiBOB in many organic solvents and blends,
forms a stable solid electrolyte interface (SEI), and provides a
wide operational temperature range.23 Recently, we successfully

synthesized this salt without chloride impurities via a new
synthetic approach.24 Besides the search for new lithium salts
for better performance, compatible additives can be added to
the electrolyte. These additives can improve the properties of
the electrolyte, its conductivity,25,26 and its electrochemical
stability by forming passivation layers on the electrodes,27

preventing corrosion of the Al current collector of the cathode.
In the present work, we studied the potential of ionic liquids

(ILs) that have melting points below 373.15 K as electrolyte
additives for improving the performance of the electrolytes.
These ILs contain unsymmetrical cations or anions in a sterically
demanding form, entailing charge delocalization and subsequent
weak association.

Since ILs exhibit very low vapor pressure and are nonflam-
mable, they also may be a good alternative as the solvent for
LIB electrolytes, which usually are organic carbonates.28,29

Unwelcome disadvantages of ILs mainly are the high production
cost and a rather high viscosity, in comparison with the organic
solvents. By the right choice of the components (i.e., the cations
and anions), the viscosities of ILs can be significantly reduced.
Such ILs are believed to be suitable as additives for electrolytes
to improve the performance of LIBs.

Experimental Section

Lithium Salts. Two different salts, LiPF6 (Stella, high purity)
and LiDFOB, were investigated. LiDFOB was synthesized using
our previously described route.24 NMR analysis showed no
impurities [see Figures S1-S4 in the Supporting Information
(SI)], and the water mass fraction was low (< 5 · 10-5), as
checked by Karl Fischer titration (Mettler Karl Fischer Titrator
DL18). This salt was expected to combine the merits of LiPF6

and LiBOB, namely, wide electrochemical and thermal stability,
high conductivity, good solubility, and ability to form a
passivation layer on aluminum.

ConductiWity Measurements. In order to reach a high
conductivity at low temperatures, a mixture of ethylene carbon-
ate (1) + dimethyl carbonate (2) + ethyl methyl carbonate (3)
(EC + DMC + EMC, with mass fractions w1 ) 0.1, w2 ) 0.25,
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and w3 ) 0.65) was used as the solvent. A series of electrolytes
with salt concentrations ranging from (0.2 to 2.0) mol ·L-1 was
prepared. The exact salt concentrations were calculated by
determining the densities of the solutions at the respective
temperatures with a precision densitometer (Anton Paar DMA
60/DMA 602). For studies of IL additives, the selected ILs were
added (mass fraction w ) 0.1) to a 1.45 mol ·L-1 lithium salt
electrolyte. Table S5 in the SI shows the acronyms, chemical
structures, and names of the cations and anions in the ILs used
in this work.

The conductivity was measured using our capillary cells30

that were filled with the electrolyte in a glovebox and closed
air-tight. Before the measurements, the cells were calibrated with
a 0.1 mol ·L-1 solution of KCl in triply distilled water. The cells
were thermostatted (with a temperature stability of ( 1 mK)
by controlling the temperature with a setup including a cryostat
(Holzwarth HM 90 EW), power supply (EA-PS 3065-10 B),
PID controller, sinus generator, and resistance decade.31,32 The
resistances were recorded at (1.7, 3.2, 5.1, 6.5, 7.7, and 10.1)
kHz. Plotting of the measured resistances against reciprocal
frequency followed by an extrapolation to infinite frequency
enabled the definition of the electrolyte resistance. Therefore,
we were able to evaluate conductivities with an accuracy of
0.01%.

Cyclic Voltammetry Experiments. The cyclic voltammetry
measurements were carried out in a 1 M solution of the lithium
salt in the standard blend of ethylene carbonate (1) + diethyl
carbonate (2) (EC + DEC, w1 ) 0.3, w2 ) 0.7). All of the
solvents were purchased from Merck KGaA Darmstadt (p.a.)
and showed a water mass fraction of less than 1 ·10-5 (Mettler
Karl Fischer Titrator DL18). The electrolyte solutions were all
prepared in a glovebox (Mecaplex GB80) with low mass
fractions of water (< 1 ·10-6) and oxygen (< 5 ·10-6). Addition
of various ILs (Table S5 in the SI) with a mass fraction of w )
0.1 enabled the investigation of the influence of the ILs on the
electrochemical stability.

The electrochemical stability was measured on two working
electrodes: an Al foil (area ) 0.787 cm2) and a Pt electrode
with a surface area of 0.0707 cm2. The Al foil was rinsed with
acetone (p.a.) and the Pt working electrode polished using a
polycrystalline diamond spray before every measurement. A Pt
sheet served as the counter electrode. Comparing measurements
with a Li counter electrode showed no changes. As the reference
electrode for the measurements on Pt, an Ag/Ag+ cryptand
electrode was used. This Izutsu-type electrode consisted of a
solution of 0.1 mol ·L-1 AgNO3 (Carl Roth GmbH+Co., p.a.)
and 0.2 mol ·L-1 Kryptofix 22 (Merck, for synthesis) in
acetonitrile with a silver wire as the current collector and glassy
ceramic Vycor (BAS) as the conductive membrane to separate
the reference electrode and the electrolyte. The potential of the
reference electrode was controlled by adding a small amount
of ferrocene, so the potentials could be exactly converted to
the Li/Li+ scale. A Li pseudoreference electrode was used for
the measurements with Al foil as the working electrode. All
of the cyclic voltammetry experiments were performed on a
Reference 600 potentiostat/galvanostat (Gamry Instruments) at
potential sweep rates (V) of (20 and 5) mV · s-1 respectively.

Results and Discussion

ConductiWity. Figure S6 in the SI shows the dependence of
the specific conductivity (κ) of LiPF6 electrolytes on temperature
and salt concentration. The maximal conductivity κmax is 8.97
mS · cm-1, which was reached at the corresponding molality µ

of 1.50 mol ·kg-1 (equal to 1.41 mol ·L-1) at 303.15 K, as
determined by fitting the data to the Casteel-Amis equation
(eq 1):33

κ ) κmax(mµ )a
exp[b(m - µ)2 - a

µ
(m - µ)] (1)

where m is the molality of the electrolyte and a and b are fit
parameters.

The measured specific conductivities are in good agreement
with those for LiPF6 solutions in the literature. In EC (1) +
DMC (2) (w1 ) 0.5, w2 ) 0.5), a 1 M solution at 298.15 K
shows a conductivity of 10.7 mS · cm-1,34 and in PC (1) + DEC
(2) (w1 ) 0.4, w2 ) 0.6), a 1 mol ·kg-1 solution at 303.15 K
has a conductivity of 5.0 mS · cm-1.35

In comparison with the results for LiDFOB-based electrolytes
(see Figure 1), the conductivities of LiPF6 electrolytes are much
higher. The maximal conductivity for LiDFOB over the tem-
perature range we measured is about 5.24 mS · cm-1, which was
reached at 1.65 mol ·kg-1 (equal to 1.54 mol ·L-1) at 303.15
K; this value is a little more than the half of the highest
conductivity of the LiPF6-based electrolytes. In both cases, the
concentrations corresponding to the highest conductivity de-
crease with decreasing temperature (see Tables S7 and S8 in
the SI) because of an increase in the viscosity at lower
temperatures.

Addition of Ionic Liquids. Figure 2 shows the specific
conductivity of LiPF6 electrolytes with added ILs (w ) 0.1).
The specific conductivities at 298.15 K are in the range (6.35
to 8.25) mS · cm-1. The addition of two ILs (bmpl ntf and bmpl
fap) raises the conductivity of the electrolyte, mainly at high
temperatures above 323.15 K, to a minor degree. Below 313.15
K, the additive effect no longer exists, which can be attributed
to the greatly increased viscosity of the ILs at low temperatures.
With respect to the cations of the ILs, the cyclic-structured
pyrrolidinium and imidazolium cations show the best results
because of the effect of the sizes of these cations relative to the
linear-structured and very large P(h3)t cation. The cyclic-
structured cations are smaller, which results in lower viscosity.
The measurements show further that the ntf and fap anions add
more to the conductivities than the linear P(h3)t cations, while
the smaller otf anion depresses the conductivity tentatively, as
explained by its higher degree of association with Li+ ions.

Figure 1. Dependence of the specific conductivity κ of LiDFOB on the
molal concentration m in EC (1) + DMC (2) + EMC (3) (w1 ) 0.1, w2

) 0.25, w3 ) 0.65) at different temperatures: ], 303.15 K; [, 298.15
K; 4, 288.15 K; 2, 278.15 K; O, 268.15 K; b, 258.15 K; 0, 248.15 K;
9, 238.15 K.
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Similar trends were obtained for LiDFOB electrolytes (see
Figure 3), but here the additive effect is significantly higher.
Whereas the pure LiDFOB electrolyte has a lower specific
conductivity at 298.15 K (4.75 mS · cm-1) than the LiPF6

electrolyte (8.25 mS · cm-1), the improvement due to additives
is much more significant. The enhancement in the conductivity
at higher temperatures is up to 25% and much larger than those
observed with LiPF6 electrolytes. Mainly hmim ntf, bmpl ntf,
and bmpl fap as well as bmpl bob show very good results. Here
the increase in the conductivity at high temperatures is much
more pronounced than at lower temperatures, showing the
stronger temperature dependence of the viscosity because of a
higher melting point. The IL bmpl bob is the only investigated
salt that is not a room-temperature ionic liquid (RTIL), but this
does not affect the conductivity improvement, especially at
higher temperatures. Again, the ILs with P(h3)t cations or otf
anions show less or no improvement.

Electrochemical Stability. Pt Working Electrode. Figure S9
in the SI shows the cyclic voltammogram of the LiPF6

electrolyte at a Pt electrode. At 5.57 V vs Li/Li+, the electrolyte
starts to decompose (Eox), as indicated by the anodic current,

which increases dramatically to a preset value of 2 mA · cm-1.
Near 0.27 V are small reductive currents, which correspond to
the formation of Li-Pt alloy. Mass deposition of lithium metal
occurs at -0.72 V. The potential difference between oxidative
decomposition of the electrolyte and mass deposition of lithium
leads to an electrochemical window of 5.30 V. This value is
comparable to literature data.36,37

The oxidative decomposition of LiDFOB electrolyte occurs
at 5.03 V, resulting in a value of 4.59 V for the electrochemical
window. Table S10 in the SI displays the values of the potential
windows for these IL-added electrolytes, which show that the
addition of ILs does not significantly reduce the electrochemical
window of LiPF6 and LiDFOB electrolytes. Surprisingly,
addition of fap ILs increases the oxidation potential of LiPF6

electrolytes up to 6 V.

Al Working Electrode. The cell for measurements on Al was
assembled in the glovebox, and measurements were performed
in the anodic (positive) direction from 2 V to 8 V at a potential
sweep rate of 5 mV · s-1 and then back to -0.5 V. In the first
cycle for a 1 M solution of LiPF6 (see Figure S11a in the SI),
a sharp increase in the oxidative current occurs at about 3.55
V. At higher potentials, the current reaches a maximum and
remains constant until the end of the anodic potential sweep,
which can be attributed to the passivation of the aluminum
surface. The consecutive cycles show increasing currents that
do not decrease until higher potentials due to newly beginning
passivation, indicating further decomposition of the electrolyte
and dissolution of the aluminum.

The same measurements were carried out on a 1 M solution
of LiDFOB (see Figure S11b in the SI). The first cycle shows
behavior similar to that observed for the LiPF6-based electrolyte.
In this case, the sharp current increase occurs at 4.09 V, about
0.5 V higher than that observed for the LiPF6 electrolyte.
Because of the formation of the passivation layer, consecutive
cycles result in lower currents that remain up to 7 V, which
indicates a stronger passivation layer for LiDFOB than for
LiPF6.

Corrosion BehaWior. For the study of Al corrosion, a current
density of 0.25 µA · cm-2 was set to define the corrosion
potential. Since aluminum foil is used only as a current collector
for the cathode in LIBs, the studied potential range in this work
was narrowed to the region from (2 to 5.5) V.

As shown in Figure 4, the anodic current of the first cycle of
Al foil in 1 M LiPF6 remains very low up to 3.50 V. From that
point on, the current starts to increase dramatically and forms
a peak at 3.94 V. After the peak, the current remains stable at
a level of (5 to 6) µA · cm-2. These phenomena are attributed
to anodic dissolution and resulting passivation of Al.38,39 In the
following scans, the current is decreased while the corrosion
potential moves to higher values with scan number. In the
electrochemically induced oxidation of Al, the resulting Al3+

ions are combined with the decomposition products of the
electrolyte to form a protective passivation layer on the surface
of Al.10,18 It is known that LiTFSI has very poor corrosion-
resistive properties.40 The cyclic voltammogram in Figure 4
shows that the ILs with this anion (ntf) have no influence on
the corrosion of Al. In these cases, the passivation layer already
formed by LiPF6 is stable. Only small changes in the corrosion
potential and the current density are observable.

Cyclic voltammetry results for LiDFOB-based electrolytes
show no major difference in the effect of ILs on Al corrosion
(see Figure 5). Compared with LiPF6-based electrolytes,
LiDFOB electrolytes show later Al corrosion, as indicated
by a 0.45 V higher decomposition potential and lower

Figure 2. Temperature dependence of the specific conductivity κ of 1.45
M LiPF6 in EC (1) + DMC (2) + EMC (3) (w1 ) 0.1, w2 ) 0.25, w3 )
0.65) with IL additives (w ) 0.1): 0, without IL; 4, bmpl fap; ], bmpl
ntf; b, bmpl otf; O, hmim ntf; 2, P(h3)t fap; [, P(h3)t ntf.

Figure 3. Temperature dependence of the specific conductivity κ of 1.45
M LiDFOB in EC (1) + DMC (2) + EMC (3) (w1 ) 0.1, w2 ) 0.25, w3

) 0.65) with IL additives (w ) 0.1): 0, without IL; g, bmpl bob; 4, bmpl
fap; ], bmpl ntf; b, bmpl otf; O, hmim ntf; f, P(h3)t bob; 2, P(h3)t fap;
[, P(h3)t ntf.
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passivation current. The following scans yield 4.96 V for
the decomposition potential, which is 0.1 V higher than that
observed for LiPF6. The results in Figure 5 show that the
highly corrosive ntf anion has no adverse effect on Al
corrosion and that the passivation layer already formed by
DFOB anions is stable.

Conclusions

Conductivity measurements have shown that the addition of
ILs can effectively increase the conductivity of LiPF6- and
LiDFOB-based electrolytes. This feature can be used to improve
the power performance of LIBs. The best improvement in the
ionic conductivity was obtained using ILs with low viscosity,
including hmim ntf, bmpl ntf, and bmpl fap. In addition, bmpl
bob is effective as an additive to increase conductivity. In
LiDFOB-based electrolytes, the enhancement of the conductivity
by additives was up to 25% and much higher than that observed
in the LiPF6-based electrolytes. Therefore, the conductivity gap
between LiPF6 and LiDFOB electrolytes can be reduced by use
of IL additives.

Cyclic voltammetry measurements have shown that the
electrochemical stability of LiPF6 electrolytes on Pt is higher
than that of LiDFOB. This trend is reversed in the case of the
aluminum electrode, i.e., the passivation potential of Al by
LiDFOB-based electrolytes is 0.45 V higher than for LiPF6.
Addition of ILs in electrolytes has no adverse effect on the
passivation and stability of Al. Furthermore, addition of ntf ILs,
in which the anion is highly corrosive to Al, has no influence
on Al corrosion. The passivation layer formed by LiPF6 and
LiDFOB is still stable.

To check the possibility of ILs as solvent alternatives, pure
ILs and their mixtures have to be used. These measurements
give a first overview of the usefulness of several studied ILs.
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