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Mean Activity Coefficient of a Simple Electrolyte, Dissolved in the Presence of an
Arbitrary Number of Cosolute Components’
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An extension of the Gibbs—Duhem equation appropriate for a multicomponent fluid containing a solvent,
a simple electrolyte, and an arbitrary number of cosolute components is proposed. The general formula is
applied to two different systems: (i) a primitive model +1:—1 electrolyte in mixture with a neutral cosolute
component and (ii) a mixture of primitive model +1:—1 and +2:—1 electrolytes (cosolute) with a common
anion. The mean spherical and hypernetted chain integral equation approximations are used to calculate
thermodynamic quantities such as the osmotic coefficient of the solution and the activity coefficients of
various species. The mean activity coefficient of the principal solute, which is in this study the +1:—1
electrolyte, is calculated directly using the mean spherical and hypernetted chain integral equation theories
or via the extended version of the Gibbs—Duhem equation. The calculations utilizing the two different
routes are in agreement, providing a numerical check on the analytical derivations.

I. Introduction

Understanding the thermodynamic properties of electrolyte
solutions is essential for the design and/or simulation of a variety
of important chemical processes in industry and the biological
sciences (see for example, refs 1 to 9). Thermodynamic
properties of such solutions can be expressed either via the
properties of solvent or, alternatively, by properties of solute(s).
Two relevant quantities, essential to characterizing the thermo-
dynamics of charged fluids, are the osmotic coefficient, ¢, which
describes the solvent, and the mean activity coefficient of the
dissolved electrolyte. In a solution containing a single electrolyte
and solvent, the two quantities are connected via the well-known
two-component Gibbs—Duhem equation®

ny,=¢ -1+ [ (¢ - dnm 1)

where m is the molality of solute and y. is its activity
coefficient. Thus, knowing the osmotic coefficient, which is a
property of the solvent, as a function of the electrolyte
concentration, enables us to calculate the mean activity coef-
ficient of the dissolved salt, which is a property of the solute
component.

A great majority of theoretical and experimental studies are
devoted to solutions of a single electrolyte, while studies related
to mixed electrolytes™? are less frequent (see also ref 10 and
the references therein). This is in contrast to the real life
situation; the electrolyte mixtures are far more common than
pure electrolytes. There is thus often the need to calculate the
properties of one electrolyte in a mixture with another electrolyte
or perhaps with a neutral component.

For binary solutions, the determination of the chemical
potential of the solute requires knowledge of the chemical
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potential (osmotic coefficient) of solvent as a function of the
solute concentration. One may therefore expect that for a ternary
system more information is needed. Several procedures have
been suggested in the literature to treat mixtures.>> One method
has been proposed by Darken.** This approach and further
developments by Gocken'? use the properties of exact dif-

ferentials
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If the chemical potential of the component j is known at all
compositions of the s-component system, than each of the
s — 1 partial derivatives of y; can be obtained. Other chemical
potentials can then be obtained by integration of each of the
s — 1 thermodynamic equations of the type of eq 2. For
electrolyte mixtures with the solute components 2, 3, ..., it is
convenient to express concentration on the molality scale,
because by this means the number of moles of solvent (com-
ponent 1) remains constant, and rewrite the relevant equations
in the form*

al al
2[ ny, _ 3[ nys 3)

omy |, om, o

Thus, it is, in principle, possible to calculate the activity
coefficients of all other components in the multicomponent
system from the experimental determination of the activity
coefficient of a single component at all compositions.

In this contribution, we present another approach to thermo-
dynamics of multicomponent systems based on a straightforward
generalization of the two-component Gibbs—Duhem equation,
eq 1. The equation allows, in ternary systems, for example,
calculation of the activity coefficient of the first solute, if the
osmotic coefficient of the solution and the activity coefficients
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of the other solutes present are known as functions of the
concentration of the first solute. We will apply the new
expression to two different systems: (i) calculation of the mean
activity coefficient of a +1:—1 electrolyte in the presence of
hard-sphere particles (treated as cosolute) and (ii) the mean
activity coefficient of a +1:—1 electrolyte in the presence of a
+2:—1 electrolyte, which is now the cosolute. To obtain
numerical results, two different integral equation theories, the
mean spherical approximation (MSA) and hypernetted chain
(HNC) approximation, are utilized. These results will later be
used to numerically confirm the derived extension of the
Gibbs—Duhem equation.

[I. Generalization of the Gibbs—Duhem Equation

A. Binary System: Electrolyte in Solvent. For a two-
component system (1, solvent; 2, solute), the solute and solvent
activities are related as®

0=ndlna + ndlIna, (4)

where n; (i = 1,2) is the number of moles of component i and
a the corresponding activity. According to the definition of the
osmotic coefficient ¢, we also have'?

n
¢=-——Ina (®)
n,
or for a solute being an electrolyte, which dissociates onto v
ions

Ina, = —vmM,¢ (6)
Here m = my, is the molality of the electrolyte defined as
n,
m = M, @)

and M, is the molar mass of solvent. From these equations, the
Gibbs—Duhem equation for the mean activity coefficient, y.,
of the electrolyte in solvent, viz., eq 1, follows immediately. In
the derivation, the following conditions are invoked: for m =
O,y:=¢=1

B. Ternary System. For a ternary system (1, solvent; 2,
electrolyte; 3, cosolute), eq 4 contains another term

0=ndlIna + ndlna, + ndIna, (8)

Here ng is the number of moles of component 3, which for the
moment is assumed to be a neutral molecule. The additional
component will be treated as a cosolute; that is, it does not cross
the semipermeable membrane. The definition of the osmotic
coefficient for a binary system, eq 5, now changes to

n
n, + n,
If we denote the molality of component 3 by m,

¢ == Ina, ©)
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and the activity coefficient of the extra solute by y;, we can

obtain an extension of eq 1 now valid for three components,
viz.

74(m, my)
7+(0, M)

In = g(mmy) — ¢(0,m) + ["[p(mmy) — 1] x
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For ms = 0, we have y.(0, 0) = ¢(0, 0) = 1, and eq 11 reduces
to eq 1. For a given mg > 0, this expression specifies how the

logarithm of the mean activity coefficient, In y.(m, mg), in the
presence of component 3 varies with an increase of the
electrolyte molality, m.

The derivation of eq 11 proceeds as for the earlier simpler
two-component case. From eqgs 8 and 9, we obtain
n, + n,

™ 12
n, n_l na, (12)

n,
—dlIna, = df¢
n

We rewrite this expression as

vmd Ina, = dlvmg + myp] — mydIna, (13)
and thus

d
dlnaizd(—rr::p)+¥—%dlna3 (14)

Notice that mg is the parameter and m the integration variable
as in the two-component situation shown before. This suggests
all integrals should be evaluated at a fixed mg so that

dm, B
dm
Equation 14 now becomes

0 (15)

dlnyi+dlnm=[¢dlnm+d¢]—%n[dln%—dd)]
(16)

and hence

dlnyi=(¢—l)dlnm+d¢—%[dlnaS—dqb]
A7)

The ag term in eq 17 simplifies to

my m,
_md In(y;m,) = _md Iny, (18)

which eventually yields eq 11.

The derivation shown above has been performed for an added
neutral cosolute, but the result can straightforwardly be extended
to the case where the third component is an electrolyte. In the
latter case, ms in eq 11 has to be replaced by vsms, and y3 by
v+ 3. The accuracy of the expression can be verified numerically
by the mean-spherical or hypernetted-chain calculations for the
same model. These theories can estimate all the individual
activities and the osmotic coefficient directly without recourse
to the Gibbs—Duhem equation.

C. Solwvent, Solute, and Arbitrary Number of Cosolutes. We
will now outline a general derivation of the Gibbs—Duhem
equation for a system consisting of solvent (component 1), a
principal solute (component 2), and arbitrary number (3, 4, ...,
s) of the cosolute components. For this, we write eq 4 in a more
general form

S
0=ndina +ndina, + Y,ndlna  (19)
=3

where n; denotes the number of moles of solvent, n, the number
of moles of principal solute, and n; (j = 3, 4, ..., s) is the number
of moles of cosolute component j. Accordingly, &;, is the activity
of the cosolute component j.

Derivation of eq 11 can easily be generalized. We start with
eq 19 and a general form of the definition of the osmotic
coefficient, ¢, where ng is replaced by the sum over all cosolute
components present.



p=——"—1Ina (20)

As before, we have denoted by my the molality of solute

component j.

m=
mM;

The rest of the derivation follows that for the ternary system
in the previous section with the final expression being of the
form

ya(mm,...m) )
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Note that by substituting s= 3, v3 =1, and In y. 3 = In y3,
that is, for one neutral cosolute component only, we recover
eq 11.

I1l. Results and Discussion

Equation 11 has been tested numerically for two different
systems: (i) through calculation of the mean activity coefficient,
In y4, of the +1:—1 electrolyte in the presence of hard-sphere
particles (a neutral cosolute component of diameter d; = 3.25,
4.25, and 5.25 A, respectively) and (ii) through calculation of
the mean activity coefficient of a +1:—1 electrolyte in the
presence of a +2:—1 electrolyte. In the latter case, the cosolute
component is the +2:—1 electrolyte. In keeping with such values
used in theoretical studies of charged fluids in the literature,
we chose the diameters of all ionic species to be 4.25 A. In all
cases, we have utilized the MSA and HNC integral equations
to obtain numerical results. The In . of the principal +1:—1
electrolyte was calculated at a number of concentrations (a)
directly from the individual activity coefficients and (b) from
the extended Gibbs—Duhem equation, eq 11 or eq 21.

A. HNC and MSA Integral Equation Theories. The HNC
and MSA integral equations for primitive model electrolyte
solutions are widely used techniques in the statistical mechanics
of charged fluids.™>*° We will therefore restrict ourselves here
to giving a brief outline of these equations. The theories are
based on the Ornstein—Zernike integral equation (see for
example, ref 13)

hy(re) = cu(re) + X o1 f Calradhe(riddr,  (22)
k

where the summation is performed over all the components.
This equation is merely a definition of the direct correlation
function cg and another relation by, namely, a closure relation
between the total correlation function hg = g4 — 1 and cg. The
second relation reads

In[hst(rst) +1] = _ﬁust(rst) + hst(rst) + Bst(rst) - Cst(rst)
(23)

Here, ug(rs) is the pair potential of species sand t and 8 =
(ksT)™%, where kg is Boltzmann’s constant and T the absolute
temperature. The problem with this expression is that the term
Bq(r), known in the literature as the bridge graph term, cannot
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be written as a closed form. In the absence of a better
approximation, the bridge graph term is set to zero. Thus, Bg(rs)
= 0 defines the HNC approximation, and it has been quite
successful in describing the properties of charged fluids (see
for example, the reviews™*%). Due to the long-range nature of
Coulomb interactions, the set of integral equations given above
is not suitable for numerical work and has to be renormalized
before it can be solved numerically.*® The renormalized form
of the integral equations was solved by direct iteration using
fast Fourier transform routine on a linear grid. For dilute
solutions, a large number of division points (N = 2%7) was
needed to obtain acceptable accuracy in the calculations.

The logarithm of the individual activity coefficient ys of ionic
species s for the HNC approximation was calculated via’

Iny,=— Y, pc0) + 05 Y, p [ drihy(hy — cy)]
t=+,— t=-+,—
(24)

The activity coefficient calculated in this manner has earlier
been found to be in very good agreement with computer
simulations™® for the limited cases treated. Notice that the
expression above is valid only within the HNC approximation
and not generally. The same expression was used for the
calculation of the logarithm of the activity coefficient, In ys, of
a neutral species s, taking into account that all the interactions
with neutral species are short-ranged.

The MSA is obtained simply by linearizing the HNC
approximation. For example, further to the approximation Bg(rs)
= 0, if the left-hand side of eq 23 is linearized, one obtains

Cst(rst) = _ﬁust(rst) (25)

which is the well-known MSA closure. The advantage of the
MSA is that it affords analytic solution®® and yields all
thermodynamic quantities in closed form.2°~23

B. Numerical Solution. Numerical problems in solving the
two-component Gibbs—Duhem equation, eq 1, are well-known.
The problem may be severe for the nonanalytical approaches
such as the HNC. In fact, to minimize numerical errors one
needs to use analytical continuation, for example, DHLL + B2,
for very low electrolyte concentrations.>® There is, however,
no such problem with the MSA theory, which is fully analytical.

Unfortunately, there is no exact analytical continuation
available when an extra component is added to the system.
Equation 11 cannot be treated in an analogous way within
the HNC theory, since only numerical results are available. The
derivatives in eq 11 were calculated numerically from the
concentration dependence of the quantities as obtained from
the HNC equation. In the actual calculation the molalities (m,
ms) were replaced by molarities (c, ¢;). Note that the left- and
right-hand sides of eq 11 (or eq 21) are dimensionless with
cancellation of units occurring in the terms involving the
integrals on the right-hand side. This makes the evaluation of
these terms independent of any units used. Due to numerical
errors, the integration was only reliable above a low concentra-
tion ~0.001 mol-dm~3. The absolute values for In[y.(c, c3)]
were then obtained by adding the value of In[y.(c = 0.001
M, c;] obtained directly by solving the HNC using eq 24.

The results are given in tabular form in Tables 1 to 3. Tables
1 and 2 correspond to case (i) (mixture of +1:—1 electrolyte
and neutral hard spheres), while Table 3 corresponds to case
(it) (mixture of +1:—1 and +2:—1 electrolytes). The calculations
have been done at room temperature (~298 K) for a solvent
modeled as continuum with relative permittivity ~78.5. All
MSA results have been obtained using the energy route, while
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Table 1. In y. as Obtained Using Different Methods for zz = 0
(Addition of a Neutral Component) and d; = 4.25 A2

HNC MSA
Cs c eq 24 eq 11 MSA® eq 11

01M 0.006M  —0.0550 —0.0560 —0.0543 —0.0543
0.01M —0.0811 —0.0820 —0.0801 —0.0801
0.05 M —0.166 —0.167 —0.164 —0.164
0.1M —0.207 —0.208 —0.205 —0.205
05M —0.228 —0.230 —0.223 —0.223
1.0M —0.102 —0.103 —0.0917 —0.0917

05M 0.005M  +0.0244 +0.0240 —0.0254 —0.0254
0.01 M —0.00160  —0.00200 —0.000310 —0.000266
0.05 M —0.0859 —0.0860 —0.0835 —0.0836
0.1M —0.127 —0.127 —0.124 —0.124
05M —0.142 —0.143 —0.136 —0.136
1.0M —0.00590  —0.00700  +0.00436 +0.00447

2The diameters of all ionic species are 4.25 A. The column MSA®
corresponds to the In y.. calculated directly from the individual activity
coefficients in the MSA via the energy route.

Table 2. In yp, as Obtained Using Different Methods for zz = 0
(Addition of a Neutral Component) and ¢z = 0.1 M#

HNC MSA

ds c eq 24 eq 11 MSA® eq 11
325A 0.005 M —0.0611 —0.0620 —0.0617 —0.0617
0.01 M —0.0872 —0.0880 —0.0875 —0.0875

0.05 M —0.172 —0.173 —0.171 —0.171

0.1M —0.213 —0.214 —0.213 —0.213

05M —0.235 —0.236 —0.231 —0.231

1.0M —0.109 —0.111 —0.101 —0.101
425 A 0.005 M —0.0550 —0.0560 —0.0543 —0.0543
0.01 M —0.0811 —0.0820 —0.0801 —0.0801

0.05 M —0.166 —0.167 —0.164 —0.164

0.1M —0.207 —0.208 —0.205 —0.205

05M —0.228 —0.230 —0.223 —0.223
1.0M —0.102 —0.103 —0.0917 —0.0917
5.25A 0.005 M —0.0472 —0.0480 —0.0465 —0.0465
0.01M —0.0733 —0.0740 —0.0722 —0.0722

0.05 M —0.158 —0.159 —0.156 —0.156

0.1M —0.199 —0.200 —0.197 —0.197

05M —0.219 —0.221 —0.214 —0.214
1.0M —0.0918 —0.0930 —0.0817 —0.0817

2The diameters of all ionic species are 4.25 A. The column MSA®
corresponds to the In y. calculated directly from the individual activity
coefficients in the MSA via the energy route.

Table 3. In . as Obtained Using Different Methods for Addition of
a +2:—1 Electrolyte*

HNC MSA
Cs c eq 24 eq 21 MSA® eq 21
01M 0.005M  —0.334 —0.333 —0.324 —0.324
0.01M —0.333 —0.333 —0.324 —0.324
0.05M —0.331 —0.330 —0.323 —0.323
0.1M —0.326 —0.325 —0.320 —0.320
05M —0.250 —0.249 —0.242 —0.242
1.0M —0.0933  —0.0920 —0.0809  —0.0807
05M  0.005M —0.304 —0.303 —0.284 —0.284
0.01M —0.302 —0.301 —0.283 —0.283
0.05 M —0.288 —0.287 —0.268 —0.268
0.1M —0.270 —0.269 —0.250 —0.250
05M —0.115 —0.113 —0.0937  —0.0937
1.0M +0.108 +0.110 +0.131 +0.131

2The diameters of all ionic species are 4.25 A. The column MSA®
corresponds to the In y. calculated directly from the individual activity
coefficients in the MSA via the energy route.

the HNC results are from the virial route (osmotic coefficient)
and from eq 24 (activity coefficient). For the MSA, the energy
route is recognized to be the most accurate and for which the
analytic expressions for the individual activity coefficients are
available,?02223

It is clear from the tables that both the HNC and the MSA
results for In y., obtained via the extended Gibbs—Duhem

equation, are consistent with those calculated directly from the
individual activity coefficients. For the MSA, the associated
numerical errors are minimal. This is not surprising since the
MSA is analytical and the only numerical uncertainties come
from the numerical differentiation and integration in eq 11. With
the HNC, however, one has to contend with additional uncer-
tainty emanating from the numerical solution of the (HNC)
integral equation itself. Such numerics notwithstanding, our
results for the range of physical states studied do seem to
validate the purported extension of the Gibbs—Duhem equation.

It is of interest to note from the three tables that the predicted
thermodynamics from the HNC (virial route for the osmotic
and eq 24 for the activity coefficient) and the MSA energy route
show a reasonably good consistency overall. This is in keeping
with the generally accepted notion that these routes for the
respective theories are the most accurate.

IV. Conclusions

The achievement of this paper has been the formulation of
an extension of the Gibbs—Duhem equation to multicomponent
mixtures. The application of the HNC and MSA integral
equations to some primitive model mixtures and the ensuing
consistency of the predicted thermodynamics with that from the
extended equation have provided the needed numerical support
to establish the equation.

The extended Gibbs—Duhem equation may prove useful in
thermodynamic analysis of electrolyte mixtures in cases where
in addition to the osmotic coefficient the activity coefficient of
the cosolute is known. In such a case, the new expression readily
provides a mechanism to evaluate the activity coefficient of the
principal solute. The extended Gibbs—Duhem equation needs
different input information vis-a-vis the previously known
equations. The two numerical approaches, one based on the
cross-differentiation equations (eq 3) and the version of the
Gibbs—Duhem equation presented here, are complementary.
While eq 3 only needs the chemical potential of the second
component as an input, and consequently looks more efficient
to use, it has to be evaluated at considerably more state points
than the alternative expressions (eqs 11 or 21), presented in
this study. The choice of using one or another approach therefore
depends on the system under study.

The extended equation may be of some use in computer
simulations too since it is well-known that osmotic coefficients
can be calculated more accurately than activity coefficients. For
example, in recent years simulation studies of structure and
thermodynamics of multicomponent electrolyte mixtures have
begun to be available (see, for example, the review® and the
references therein). Very recently, Lamperski and Phuciennnik®®
have published simulation results for the activity coefficient of
a solvent primitive model electrolyte at high densities for the
neutral component. Such a system is an ideal candidate for a
theoretical thermodynamic analysis where the extended Gibbs—
Duhem equation could be very useful. We are presently engaged
in such a study which will be reported in a future publication.
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