Solubility Product of K_2SO_4 in a Mixed Solvent Medium and Ion-Pair Formation at 25 $^{\circ}C^{\dagger}$

Mehran Aghaie^{*,‡} and Saideh Ghafourian[§]

Faculty of Chemistry, North Tehran Branch, Islamic Azad University, P.O. Box 19585-936, Tehran, Iran, and Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran

The solubility of K_2SO_4 in the mixed solvent, (water (1) + ethanol (2)) with mass fraction $w_1 = 0.9$, was determined by using the evaporating method in the presence of various concentrations, (0, 0.100, 0.150, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, and 0.800) mol·L⁻¹, of NaNO₃ at 25 °C. The values of solubility and solubility product constant were evaluated at zero ionic strength for ions in the saturated solution (at a molarity of NaNO₃ = 0 mol·L⁻¹) by using the Van Rysselberghe and Eisenberg model, and the ion-pairing extension was calculated in the considered solution by an extrapolating method that uses the experimental results and estimates the mean activity coefficient at 25 °C.

Introduction

Most physicochemical properties of ionic solutions are influenced by ionic strength and the solvent's dielectric constant. Indeed, in the context of solution chemistry, solvent polarity, the dielectric constant of the solvent, and the ionic strength of the medium are of great interest as a measure of the solvent's ability to stabilize charges or dipoles. As an example, the dissolution of an ionic salt in a solvent or in a mixed solvent depends on the relative permittivity and the polarity of the solvent as well as on the lattice energy of the solute and the ionic strength of the medium. Most of the theories that have been applied to predict changes in solubility with the variation of solvent depend on changes in the electrostatic properties of the solvent and the ionic strength of the medium.

Several relationships between the solubility of electrolytes and the relative permittivity of the solvent, D, could be found in the literature. One relation that has been largely used is

$$\log s = A_1 + \frac{A_2}{D} \tag{1}$$

where *s* is the solubility and A_1 and A_2 are constants.¹ Nevertheless, it is easy to find many exceptions to eq 1. For instance, the solubilities of NaF in water, methanol, and ethanol at 25 °C are (0.973, 0.16, and 0.04) mol·kg⁻¹, respectively, while their relative permittivities are 78.54, 32.6, and 24.3, respectively.^{1,2} It is apparent, however, that the relative permittivity is not the main determinant of solubility, but it rather depends on the ion solvation, which depends on the solvent's base strength as well as the hydrogen-bonding capacity of the solvent and the ionic strength of the medium. Hence, any improvement of this relationship should be based on the Gibbs energy calculation.

To discuss the solubility dependence of a given ionic salt, such as BA, with ionic strength, I, we consider the following equilibrium

$$BA_{(s)} \leftrightarrow B_{(aq)}^{+} + A_{(aq)}^{-} \quad K_{sp(th)} = a_{+}a_{-} \qquad (2)$$

where $K_{\text{sp(th)}}$ denotes the thermodynamic solubility product constant and a_+ and a_- refer to activity of $B_{(aq)}^+$ and $A_{(aq)}^-$ in the solution, respectively. If the solubility of BA at a given temperature is very low, it may replace the activity of each ion by its concentration, s_0 ,

$$K_{\rm sp(th)} = s_0^2 \tag{3}$$

where s_0 represents the molarity of BA in the dilute saturated solution. Now, in the presence of a little additional ionic strength, *I*, it could be inferred that

$$s_0^2 = s^2 f_{\pm}^2 \Longrightarrow s_0 = s f_{\pm} \tag{4}$$

where *s* is the solubility of BA in the presence of an additional ionic strength, *I*, and f_{\pm} is the mean activity coefficient of the respective ions. Applying the Debye–Huckel limiting law³ for f_{\pm} , we conclude that:

$$\log\left(\frac{s}{s_0}\right) = 0.509I^{1/2} \tag{5}$$

This equation is only valid for low ionic strengths. Then it is necessary to find another relation in moderate or high ionic strength. On the other hand the solubility of an ionic compound could decrease when the additional ionic strength is fairly high or very high.

Experimental Section

 K_2SO_4 and other chemicals were purchased from Merck Company with high degree of purity and used without further purification. The mixed solvent, (water (1) + ethanol (2)) with $w_1 = 0.9$, was prepared from deionized water and fairly pure ethanol.

Then, the solubilities, *s*, of K_2SO_4 in the mixed solvent at the presence of various concentrations of NaNO₃, (0.100, 0.150, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, and 0.08) mol·L⁻¹, were determined by the solvent evaporating method at 25 °C (Table 1 and Figure 1).

[†] Part of the "Josef M. G. Barthel Festschrift".

^{*} Corresponding author. E-mail: marmin20042000@yahoo.com.

[‡] North Tehran Branch, Islamic Azad University.

[§] Science and Research Branch, Islamic Azad University.

Table 1. Solubilities of K₂SO₄ in (Water (1) + Ethanol (2)) with $w_1 = 0.9$ at Various Ionic Strengths at 25 °C

$C(NaNO_3) \\ mol \cdot L^{-1}$	$I \mod \cdot L^{-1}$	$s(K_2SO_4)^a$ mol·L ⁻¹
0	0.822	0.2741
0.100	0.977	0.2922
0.150	1.067	0.3056
0.200	1.137	0.3122
0.300	1.293	0.3312
0.400	1.465	0.3551
0.500	1.629	0.3762
0.600	1.770	0.3900
0.700	1.908	0.4028
0.800	1.983	0.3942

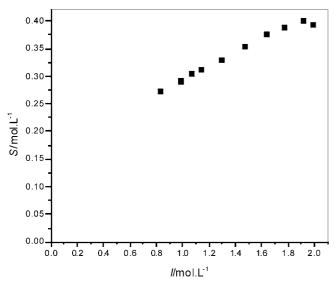
^a Each value of s is an average of five independent measurements.

In general, a plot of ln *s* versus $I^{1/2}$ gives a better insight into the relationship between ln *s* and $I^{1/2}$ (see Figure 2).

Discussion

As we can see from Figure 2, the solubility dependence of K_2SO_4 with $I^{1/2}$ is fairly linear on a wide range of ionic strength. The interception of the line with the *y*-axis for $I^{1/2} \rightarrow 0$ gives:

$$s_0 = 0.1291 \text{ mol} \cdot \text{L}^{-1} (\pm 0.0002) \tag{6}$$


where s_0 is the solubility of K₂SO₄ in the mixed solvent (water (1) + ethanol (2)) with $w_1 = 0.9$ at 25 °C and no additional ionic strength. Obviously the behavior of ions at $I \rightarrow 0$ can be assumed to be ideal, and then $K_{sp(th)} = 4s_0^3$ for an ionic compound with the formula B₂A or BA₂. So,

$$K_{\rm sp(th), K_2 SO_4}/\rm{mol}^3 \cdot L^{-3} = 4s_0^3 = 8.6067 \cdot 10^{-3}$$
 (7)

On the other hand, it can be considered that the concentration solubility product constant $(K_{sp(c)})$ of K_2SO_4 in any saturated solution is:

$$K_{\rm sp(c)} = 4s^3 \tag{8}$$

Thus, the values of $K_{sp(c)}$ for K₂SO₄ were obtained from the solubility values of Table 1. They are presented in Table 2 and were plotted in Figure 3 (ln $K_{sp(c)}$ versus $I^{1/2}$). As it is clear, the plot is linear on a wide range of ionic strength root, $I^{1/2}$. As

Figure 1. Plot of *s* versus *I* for the solubilities of K_2SO_4 in (water (1) + ethanol (2)) with $w_1 = 0.9$ in the presence of various molarities of NaNO₃ at 25 °C.

Table 2. Values of $K_{\text{sp(c)},\text{K}_2\text{SO}_4}$ in the Mixed Solvent, (Water (1) + Ethanol (2)), with $w_1 = 0.9$ at Various Ionic Strengths at 25 °C

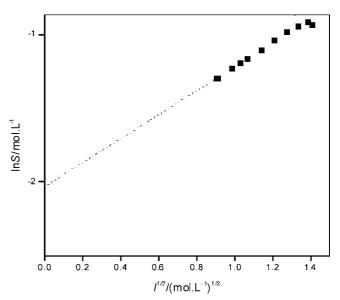
$s(K_2SO_4)$ mol·L ⁻¹	$K_{ m sp(c)}$ mol ³ •L ⁻³	$\ln(K_{\rm sp(c)}/{\rm mol}^3 \cdot {\rm L}^{-3})$	I total mol•L ⁻¹
0.2741	0.0823	-2.497	0.822
0.2922	0.0998	-2.305	0.977
0.3056	0.1142	-2.170	1.067
0.3122	0.1217	-2.106	1.137
0.3312	0.1453	-1.929	1.293
0.3551	0.1791	-1.720	1.465
0.3762	0.2130	-1.546	1.629
0.3900	0.2373	-1.458	1.770
0.4028	0.2614	-1.342	1.908
0.3942	0.2451	-1.406	1.983

before, when $I^{1/2} \rightarrow 0$, the solution would act as an ideal solution, and then it could be concluded that:

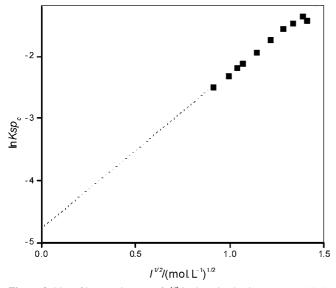
$$K_{\rm sp(c)} = K_{\rm sp(th)} \qquad I \to 0 \tag{9}$$

The resultant value of $K_{\text{sp(th)}}$ at this circumstances agrees with the previous resulted value

$$K_{\rm sp(c)} = K_{\rm sp(th)} = 8.752 \cdot 10^{-3} \qquad I \to 0$$


Estimated Solubility Product Constant, $K_{sp(es)}$. The estimation of the activity coefficient of ions by using a suitable model and the calculation of the solubility product constant, $K_{sp(es)}$, is a very straightforward process

$$K_{\rm sp(es)} = 4s^3 f_{\pm}^{\ 3}$$
 (10)


So we used the Van Rysselberghe and Eisenberg⁴ model to estimate the mean activity coefficient:

$$\log f_{\pm} = -\frac{A\sqrt{c}}{1 + a\sqrt{\frac{c}{3.042}}} + 2.206 \cdot 10^{-3}ca^{3} + 26.27 \cdot 10^{-7}c^{2}a^{6} \quad (11)$$

where A = 0.5059 at 25.0 °C for water as the solvent, *c* is the concentration in mol·L⁻¹, and *a* is a measure of the hydrated ion size.

Figure 2. Plot of ln *s* versus $I^{1/2}$ for the solubilities of K₂SO₄ in (water (1) + ethanol (2)) with $w_1 = 0.9$ in the presence of various molarities of NaNO₃ at 25 °C; slope = 0.8306 ± 0.0134, intercept = -2.0470 ± 0.0156.

Figure 3. Plot of $\ln K_{\text{sp(c)}}$ in term of $I^{1/2}$ in the mixed solvent, (water (1) + ethanol (2)) with $w_1 = 0.9$ at various ionic strengths at 25 °C; slope = 2.4757 \pm 0.0423, intercept = -4.7385 ± 0.0490 .

To apply the above equation for evaluating the mean activity coefficient, f_{\pm} , of the ions in the mixed solvent, we estimate the value of A relative to the mixed solvent as follows:^{5,6}

$$A' = \frac{A(d_{\text{mixed}}/d_{\text{water}})^{1/2}}{\left(D_{\text{mixed}}/D_{\text{water}}\right)^{3/2}}$$
(12)

where d and D represent the density and dielectric constant, respectively. So

$$A' = \frac{0.5059(1.0152/1.00)^{1/2}}{(75.9744/78.54)^{3/2}} = 0.5358 \text{ at } 25 \text{ °C}$$

We replaced c by c_{\pm} in eq 11

$$c_{\pm} = (c_{+}^{2} + c_{-}^{1})^{1/2} = (4s^{3})^{1/3} = 0.4351 \text{ mol} \cdot \text{L}^{-1}$$
(13)

The ion size (7) in eq 11 can be evaluated as follows:

$$a_{\pm} = \frac{1}{2}(a_{+} + a_{-}) = \frac{1}{2}(3.13A^{\circ} + 3.79A^{\circ}) = 3.55A^{\circ}$$
(14)

By substituting the above values in eq 11 the following is obtained

$$f_+$$
 (in mixed solvent) = 0.7818 (15)

and then

$$K_{\rm sp(es)} = K_{\rm sp(c)} f_{\pm}^3 = 0.0823 (0.7818)^3 = 0.0393$$
 (16)

To summarize, the values of $K_{sp(th)}$, $K_{sp(es)}$, and $K_{sp(c)}$ are 8.752 \cdot 10⁻³, 3.930 \cdot 10⁻², and 8.230 \cdot 10⁻², respectively. Why these constants are so different from each other? Indeed in a very dilute electrolyte solution, the ion association phenomenon may be negligible, and so, some theories such as the limiting or extended Debye–Huckel model should be adequate for estimating the activity coefficients of ions in the considered solution.^{7–12} In these circumstances, the thermodynamic and estimated constants may be comparable. But, in a fairly concentrated electrolyte solution, the ion association is an

Table 3. Results of Iteration Calculation for Obtaining a Reasonable Value of x, x = [ion-pair], in the Mixed Solvent (Water (1) + Ethanol (2)) with $w_1 = 0.9$ at Various Ionic Strengths at 25 °C

iteration	$c_{\pm} \mod L^{-1}$	f_{\pm}	$\operatorname{mol}^{X} \cdot L^{-1}$
1	0.4351	0.7818	0.1554
2	0.2636	0.7796	0.1548
3	0.2643	0.7795	0.1547
4	0.2644	0.7795	0.1547
5	0.2644	0.7795	0.1547

important factor of nonideality, and additionally, the models which we use for estimating the activity coefficients of ions may not be adequate.^{13–16} Therefore, there is an appreciable difference between thermodynamic and estimated constants. Finally, $K_{sp(c)}$ differs from $K_{sp(th)}$ and $K_{sp(es)}$ partly due to nonideal behavior of ions in the solution and partly due to the ion association phenomenon.

Estimating the Extension of Ion-Pairing. Now, we assume that the Van Rysselberghe and Eisenberg model is adequate for estimating the mean activity coefficients f_{\pm} , and that the difference between $K_{sp(th)}$ and $K_{sp(es)}$ comes from ion association phenomenon in the studied solution. For simplicity, we consider only the ion-pair formation^{11–24} and neglect the other kinds of ion association. So, if we denote the concentration of K⁺SO₄^{2–} ion-pair in the saturated solution of K₂SO₄ in the mixed solvent, (water (1) + ethanol (2)) with $w_1 = 0.9$, at 25 °C by x (in mol·L⁻¹), then the following equation would be available⁹

$$K_{\rm sp(th)} = (2s - x)^2 (s - x) f_{\pm}^3 \Rightarrow x^3 f_{\pm}^3 - 5s x^2 f_{\pm}^3 + 8s^2 x f_{\pm}^3 - 4s^3 f_{\pm}^3 + K_{\rm sp(th)} = 0 \quad (17)$$

Solving eq 17 by using the relationship (9), a reasonable value is obtained,

$$x = 0.1548 \text{ mol} \cdot \text{L}^{-1} \tag{18}$$

(see Table 3).

Reason for Ion-Pair Formation. It is worthwhile to consider the fact that the nonideality of electrolyte solutions is due partly to the activity coefficient of ions in the solutions and partly to the ion-association phenomenon.^{13–16} Indeed, when two ions of opposite charges approach close enough to one another, an ion-pair species may be formed.^{17–23} For instance, a K⁺ SO₄^{2–} ion-pair may be formed in the saturated solution of K₂SO₄ in the mixed solvent, water + ethanol, as follows:

$$\mathbf{K}_{(\mathrm{aq})}^{+} + \mathbf{SO}_{(\mathrm{aq})}^{2-} \Leftrightarrow \mathbf{K}^{+} \mathbf{SO}_{4}^{2-} \underset{\text{ion-pair(aq)}}{\overset{2-}{\underset{\mathrm{A}}}} \quad K_{\mathrm{A}}$$
(19)

$$K_{\rm A} = \frac{a_{\rm ion-pair}}{a_{+}a_{-}} = \frac{[\rm ion-pair]f_{\rm ion-pair}}{c_{+}f_{+}c_{-}f_{-}}$$
(20)

where *c* represents concentration in molarity. Now, if [ion-pair] = $x \mod \cdot L^{-1}$, then $c_+ = (2s - x)$ and $c_- = (s - x)$, while *s* is the solubility of K₂SO₄ in the mentioned mixed solvent at 25 °C. Now, estimating f_{\pm} upon the Van Rysselberghe and Eisenberg model and inserting it along with the other values in eq 20, we get $K_A = 4.263 \text{ L} \cdot \text{mol}^{-1}$.

A theoretical approach after Fuoss¹⁸ is available for estimating the ion-pair constant, K_A :

$$K_{\rm A} = \frac{4\pi N a^3}{3000} e^{z^2 e^2 / DakT}$$
(21)

where *N* is Avogadro's constant, *D* is the dielectric constant of the solvent, *a* is the size parameter, *e* is the electron charge, *k* is the Boltzmann constant, and *T* is temperature in Kelvin. Equation 21 can be simplified as follows:

$$K_{\rm A} = 2.522 \cdot 10^{21} a^3 \exp(1.674 \cdot 10^{-3} z^2 / a DT) \quad (22)$$

where a is in centimeters. Replacing a by $3.55 \cdot 10^{-8}$ cm⁷ gives

$$K_{\rm A} = 7.25$$
 (23)

As it is clear, the estimated value of K_A is considerably greater than its experimental value. The reason could come from the fact that Fuoss model deals with very dilute ionic solution and contact ion-pairs, while these conditions are not completely obeyed in the saturated solution under our research. In addition there are some uncertainties in Rysselberghe–Eisenberg model: the ion size and other affecting factors.

Conclusion

The solubility of K_2SO_4 in the mixed solvent, (water (1) + ethanol (2)) with $w_1 = 0.9$ increases linearly with the increasing ionic strength in a wide range of NaNO₃ from (0.1 to 0.7) $mol \cdot L^{-1}$ of the background salt concentrations. The value of the thermodynamic solubility product constant of K₂SO₄ in the mentioned mixed solvent could be estimated on the value of the solubility of the considered ionic compound at zero ionic strength upon the extrapolating method. The saturated solution of K_2SO_4 in the mixed solvent with the presence of NaNO₃ is highly nonideal. The nonideality is partly due to the mean activity coefficient of ions in the solution and partly due to the ion association phenomenon. By choosing a suitable model for estimating the activity coefficient and using the iteration calculations, the activity coefficient contribution and ion association contribution to the solubility of the considered ionic compound in the considered solvent and desired temperature are evaluated.

Literature Cited

- Horne, R. A. Water and Aqueous Solution; Wiley Interscience: New York, 1972.
- (2) Stark, J. G.; Wallace, H. G. Chemistry Data Book, 2nd ed.; John Murray: London, 1990.
- (3) Debye, P.; Huckel, E. Zur theorie der electrolyte (On the Theory of Electrolytes). Z. Phys. 1923, 24, 185–206, 305–325.
- (4) Van Rysselberghe, P.; Eisenberg, S. Activity Coefficients in Concentrated Aqueous Solution of Strong Electrolytes Described by a Formula Containing the Mean Ionic Diameter as Single Parameter. I. Theory and Applicant to the Alkali Cholorides, Bromides, and Iodides. J. Am. Chem. Soc. 1939, 61, 3030–3037.
- (5) Aghaie, M.; Aghaie, H.; Ebrahimi, A. Thermodynamics of the Solubility of Barium Nitrate in the Mixed Solvent Ethanol + Water, and the Related Ion-Association. J. Mol. Liq. 2007, 135, 72–74.
- (6) Aghaie, M.; Ghafoorian, S.; Broojeni, B. S.; Aghaie, H. The Effect of Dielectric Constant and Ionic Strength on the Solubility of Lithium

Carbonate at 25°C in Thermodynamic View. J. Phys. Theor. Chem. 2009, 5, 223–227.

- (7) Aghaie, M.; Broojeni, B. S. Non Ideality and Ion-Pairing in Saturated Aqueous Solution of Lithium Carbonate at 25 °C. J. Phys. Theor. Chem. 2007, 3, 249–253.
- (8) Aghaie, M.; Samaie, E. Non-Ideality and Ion-Pairing in Saturated Aqueous Solution of Sodium Fluoride at 25 °C. J. Mol. Liq. 2006, 126, 72–74.
- (9) Aghaie, H.; Aghaie, M.; Ebrahimi, A. Thermodynamics of Non-Ideality and Ion-Association in Saturated Aqueous Solution of Barium Nitrate at 25 °C. J. Phys. Theor. Chem. 2005, 2, 151–154.
- (10) Aghaie, M.; Ghaemi, A. F.; Giahi, M. Thermodynamics of the Solubility of Potasium Nitrate in the Mixed Solvent Ethanol + Water, and the Related Ion-Association. J. Phys. Theor. Chem. 2005, 2, 33– 37.
- (11) Aghaie, H.; AliAbadi, A.; Sohrabi, B.; Aghaie, M.; Sohrabi, M. R. Thermodynamic Study of Ion Pairing in Aqueous Solution of BaF₂ by ¹⁹F NMR. J. Phys. Theor. Chem. **2004**, 1, 143–148.
- (12) Wright, M. R.; Patterson, I. L. L. J.; Harris, K. D. M. Non-Ideality and Ion Association in Aqueous Electrolyte Solutions: Overview and a Simple Experimental Approach. J. Chem. Educ. 1998, 75930, 352– 357.
- (13) Zhong, E. C.; Friedman, H. L. Self Difussion and Distinct Diffusion of Ions in Solution. J. Phys. Chem. 1988, 92, 1685–1692.
- (14) Smith, D. E.; Kalyuzhnyi, Y. V.; Haymet, A. D. J. Computer Simulation of a Model 2–2 Electrolyte: Multiple Time-Step molecular dynamics. J. Chem. Phys. **1991**, 95, 9165–9171.
- (15) Davies, C. W. Ion Association; Butterworths: London, 1962.
- (16) Bjerrum, N. Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association. *Mat. Fys. Medd. K. Dan. Vidensk. Selsk.* **1926**, *7*, 1–48.
- (17) Guggenheim, E. A. Ion Distribution in Dilute Aqueous Solutions of Single Binary Electrolytes. *Discuss. Faraday Soc.* **1957**, 53–65.
- (18) Fuoss, R. M. Ionic Association. III. The Equilibrium Between Ion Pairs and Free Ions. J. Am. Chem. Soc. 1958, 80, 5059–5061.
- (19) Zhang, Z.; Duan, Z. Lithium Chloride ionic Association in Dilute Aqueous Solution: A Constrained Molcular Dynamics Study. *Chem. Phys.* **2004**, *297*, 221–33.
- (20) Yokoyama, H.; Yamatera, H. A Theory of Ion Association as a Complement of the Debye-Huckel Theory. *Bull. Chem. Soc. Jpn.* 1975, 48, 1770–1776.
- (21) Takayanagi, T. Analysis of Ion-Association Reaction in Aqueous Solution and Its Utilization by Capillary Zone Electrophoresis. *Jpn. Soc. Anal. Chem.* 2004, 20, 255–265.
- (22) Kalhori, S.; Thomas, R.; Al-Khalili, A.; Ehlerding, A.; Hellbery, F.; Neau, A.; Larsson, M. Resonant Ion-Pair Formation in Electron Collisions with Rovibrationally Cold H₃⁺. *Phys. Rev.* 2004, A69, 022713.
- (23) Pettit, L. D.; Bruckenstein, S. The Termodynamics of Ion Association in Solution. I. An Extention of the Denison-Ramsey Equation. J. Am. Chem. Soc. 1966, 88, 4783–4789.
- (24) Fuoss, R. M. Distribution of Ions in Electrolytic Solutions. *Trans. Faraday Soc.* **1934**, *30*, 967–980.

Received for review October 25, 2009. Accepted March 18, 2010.

JE9008816