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For conventional density functional theories (DFTs), the mean-field perturbation theory was commonly
invoked to evaluate the excess free energy due to attractions in the bulk fluid of an inhomogeneous system.
This simplification caused inaccuracies in the predictions. We develop here a version of the DFT based on
the functional Taylor expansions of the intrinsic free energy functional F[F] and the singlet density F(1)(r)
to arrive at closed-form expressions for these quantities without truncations. This is made possible by
incorporating the bridge functional and a “star function” proposed earlier in J. Chem. Phys. 1992, 97, 8606.
The results are generally applicable to both repulsive and attractive potentials. The new formulation is applied
to the Lennard-Jones molecules adsorbed on a planar hard wall. It is demonstrated that without using the
mean-field approximation, we can obtain accurate density profiles for this system. A “two-way street”
formulation between the uniform fluids and the nonuniform fluids is established via Percus’s concept of the
“source particle” (or the test particle) approach that enables the transference of successful homogeneous
liquid-theory quantities and procedures to the nonuniform systems, such as the zero-separation closure for
the bridge functions. The proposed DFT is formally exact (without approximations), general (applicable to
repulsive as well as attractive pair potentials), and complete (without truncations). A pair of mutually consistent
equations for the free energy F[F] and the singlet density F(1)(r) result from this marriage. Prospects of
application to Yukawa potentials in colloidal chemistry and Coulomb potentials in electrical double layers
of electrochemistry are envisioned.

1. Introduction

Modern density functional theories are based primarily on
the hard sphere fluid adsorbed on hard walls. The most
prominent among these is the fundamental measure theory
(FMT) pioneered by Rosenfeld1 which is based on hard-sphere
geometric measures within a scaled-particle theory2 (SPT)
framework. It is closely linked to the Percus-Yevick (PY)
approximation3 in liquid theory. As for bulk fluids other than
the hard spheres, especially those with attractive potentials, such
as the Lennard-Jones (LJ) potential (ε is the energy parameter
and σ the size parameter)

u(r) ) 4ε[(σr )12
- (σr )6] (1.1)

the FMT is not directly applicable. The common practice is to
divide the pair potential into a repulsive part uR (which is treated
perturbatively with the hard sphere fluid as a reference) and an
attractive part uA:

u(r) ) uR(r) + uA(r) (1.2)

The contribution to the free energy FR from uR can be dealt
within the FMT framework (or with the weighted density
approximation, WDA, theories) in the normal fashion. The
contribution FA from the attractive potential uA is approximated
by a mean-field theory (MFT) expression

�FA = 1
2 ∫ d1d2 Fw

(1)(1) uA(12) Fw
(1)(2) (1.3)

It is this expression that is problematic and is the source of
many inaccuracies for potentials with attraction.4-6 To fix this

problem, different remedies have been proposed.4-6 In this
work, we aim at removing this difficulty by reformulating the
density functional theory (DFT) from an entirely different while
thorough way that naturally extends the applicability to most
classes of simple fluids, attractive or otherwise. To demonstrate
its use, we make a test on the case of LJ fluid adsorbed on a
hard wall.

DFT has been applied to the freezing transition, wetting
phenomena, adsorption at fluid-solid interfaces, and recently
to electric double layers in electrochemistry.4 Historically,
more than a century ago, van der Waals proposed the first
gradient theory7,8 for the nonuniform density distributions.
The modern origin is usually attributed to Hohenberg and
Kohn9 for quantum electron gas from the early 1960s. Many
approaches10 have been developed in the interim. Since the
nonuniformities, in general, are extremely complex, and
nonuniform distributions (such as high-order direct correlation
functions, DCFs) are difficult to evaluate, a majority of DFT
theories undertook the task of simplification (thus introducing
approximations) by “mapping” via various means the non-
uniform distributions onto their uniform counterparts, the
latter being more accessible and easier to handle numerically.
These attempts have generated many WDAs.11,12 (1) For
example, there are formulations based on the weighted density
Fj(r) through various postulations on the weighting functions,
ω(r,r′), so that the nonuniform DCF is made equal (in a
plausible way) to the uniform DCF, namely, instead of using
the physical density value F(1)(r) at r in the argument to the
nonuniform DCF C(n)(r;[F(1)(r)]), one replaces the nonuniform
DCF by a uniform fluid DCF evaluated at a (nonexistent
or nonphysical) weighted density Fj(r), then equating
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C(n)(r;[F(1)(r)]) ) C0
(n)(r;Fj) (where subscript 0 denotes

uniformity). Fj(r) is generated through the weighting function
ω(r,r′) via convolution: Fj(r)′ t ∫ dr′ F(1)(r′) ω(r,r′). For
each and every position r, a C0

(n)(r;Fj) is generated and put
in place of C(n)(r;[F(1)(r)]). This approach is the gist of the
WDAs. The advantage is that one does not have to deal
directly with the inhomogeneous quantities. Only the uniform
correlations need be evaluated. Many different formulations
of the weighting functions have been proposed (e.g., WDA,11

modified weighted density approximation (MWDA),12 sim-
plified weighted density approximation (SWDA), etc.13).
These theories are also called the nonlocal density ap-
proximations (NLDAs). (2) On the other hand, there are
formulations that treat the local density at the spot (at
coordinates r) without averaging, such as the van der Waals
square-gradient theory.7,8 These are called the local density
approximations (LDAs). There are other variants of the
theme, such as those based on the nonuniform Ornstein-
Zernike (OZ) equation.14 We propose here instead a func-
tional Taylor expansion theory that is local (using local
densities), complete (including all high-order correlations),
and formally exact (without weighted densities). The resulting
formulation will be tested on a bulk fluid with attractive
potential, the LJ molecules.

Earlier, Denton and Ashcroft15 noticed a connection
between the nonuniform system and a uniform system based
on the Percus’s intuition.16 When the source of the spatial
inhomogeneity in density is not generated by a planar wall,
but instead by a “test particle”, the external potential w(r)
will metamorphose into the bulk pair potential u0(|r0 - r|).
The nonuniform system now mimics the bulk uniform system,
and the singlet (one-body) density F(1)(r1,[w]) becomes the
uniform pair correlation function F0g0(|r1 - r0|). As a
consequence, all of the theories that are applicable to the
nonuniform case (e.g., the WDAs) can now be transferred
en masse to the uniform case for the benefit of the uniform
fluid theory. In particular, the singlet direct correlation
function (s-DCF) C(1)(r1;[w]) can be expanded in functional
series around the uniform s-DCF C0

(1)(r1;[w ) 0]), and the
closure relation necessary for the solution of the uniform OZ
equation can be obtained gratis from the WDA vantage point.

On the other hand, this procedure can be reversed by
rebrousser chemin, that is, we go the reverse path: from
uniformity to nonuniformity. If we know a good closure or an
accurate bridge function B0(|r1 - r0|) for the uniform fluids,
we can start from the uniform F0g0(|r1 - r0|) and identify it as
the nonuniform singlet density F(1)(r1,[w]) when all of the while
the test particle is going through “contortions” from a test sphere
into a wall, to parallel slit planes, or to a spherical cavity, as
the external potential changes. Meanwhile, the uniform bridge
function B0(|r1 - r0|) can transmute into its nonuniform
counterpart B(r1;[w]). This two-way street has been recognized
and has been actually traversed in a number of studies applied
to nonuniform systems (see, e.g., Zhou and Ruckenstein,17 Kim
et al.,18 and Lu et al.19). This method is known as the bridge
DFT (i.e., DFT based on the bridge functions: such as the PY
closure, the Verlet modified (VM) closure, and the hypernetted
chain (HNC) closure). Reasonably accurate F(1)(r1,[w]) were
obtained.

This bilateral (two-way) relation has been established17-19

for the quantity of the singlet density F(1)(r1,[w]). In DFT,
however, there is one other major quantity: the intrinsic free
energy functional (IFEF), F[F]. Can the same theoretical
reversal be applied to F[F]? An inkling of this possibility

was given in 1992 in a paper20 on the so-called star function
S(r) and the star series S*. These functions have well-defined
cluster diagrams for the uniform systems. S* was constructed
as the “primitive” (in the sense of the calculus of functional
differentiation) of the bridge function. In the present work,
we shall further generalize these quantities to the nonuniform
systems and shall give closed form expressions for both the
density profile F(1)(r1,[w]) and the free energy functional F[F].
The resulting theory will be called the star-function based
density functional theory.

In Section 2, we shall review the DFT. In Section 3, we
make Taylor’s functional expansion of the singlet density
F(1)(r1,[w]). In Section 4, we expand the free energy functional
F[F] into Taylor series and make resummations of the infinite
high-order terms into a single function: the star series. We
delineate the functional relations between the singlet density
and the free energy functional. In Section 5, we perform
numerical calculations on the LJ fluid adsorbed on a hard
wall (LJ/HW). We shall show that the new formulation here
correctly treats the attractive forces in the LJ potential and
corrects the inadequacies of the mean field results.

2. Fundamental Relations

To establish the theoretical framework without ambiguity,
we recapitulate some of the essential tenets of the DFT. The
grand potential Ω is defined for a nonuniform system in general
(not necessarily at equilibrium), subject to an external potential
w(r)

Ω ≡ F[F(1)( rb, [w])] + ∫ d rb F(1)( rb, [w]) {w( rb) - µ}

(2.1)

The notation F[.] indicates that F is a functional. Ω thus defined
is a functional of the singlet density F(1)(r,[w]). The singlet
density F(1)(r,[w]) is a function of the distance r from the origin
and at the same time also a functional of the external potential
w(r). To simplify the notation, we shall write Fw(r) for F(1)(r,[w])
(subscript w denotes nonuniform quantities). µ is the chemical
potential of the bulk fluid. F is the IFEF as mentioned before,
being a functional of Fw(r). When the system attains equilibrium,
the grand potential is minimized with respect to the singlet
density and can thus be equated to the grand canonical partition
function ln �

�Ω ) -�PV ) -ln � (at equilibrium) (2.2)

with the extremum condition

δΩ
δFw(r)

) 0 (at equilibrium) (2.3)

From eqs 2.1 and 2.3, the Euler-Lagrange condition is

-δ�F[F]
δFw( rb)

) �w( rb) - �µ ) C(1)( rb;[w]) - ln[Fw( rb)Λ3]

(2.4)

where we have applied the definition of the singlet direct
correlation, namely,

C(1)( rb;[w]) ≡ ln[Fw( rb)Λ3] + �w( rb) - �µ (2.5)

The s-DCF is a very useful quantity in liquid physics (see, e.g.,
Lee21). The symbol � is the reciprocal temperature 1/(kT), where
k ) Boltzmann constant, T ) absolute temperature; Λ ) de
Broglie wavelength. To simplify, we shall write Cw

(1)(r) for
C(1)(r;[w]). In the limit that the external potential vanishes, w(r)
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) 0, C0
(1)(r) ) C(1)(r;[w ) 0]) becomes the (negative) excess

chemical potential of the uniform fluid:

C(1)( rb;[w] ) 0) ) C0
(1)( rb) ) ln[FΛ3] + 0 - �µ ) -�µex

(2.6)

In view of the potential distribution theorem22 (PDT) (or the
SPT), C(1)(r;[w]) is (the negative of) the work needed to insert
a new particle into a fluid of existing molecules, uniform or
otherwise. Rearrangement gives

Fw( rb) ) F0 exp[-�w( rb) + �µex + Cw
(1)( rb)] (2.7)

Thus, knowledge of the s-DCF will straightforwardly give the
singlet density profile.

3. Functional Expansion of the Singlet Direct
Correlation

Lebowitz and Percus23 have shown earlier that high-order
DCFs can be derived in terms of the s-DCF via functional
differentiation

C(n)(1, 2, 3, ... n) ≡ δn-1 C(1)(1)
δF(2)...δF(n)

(3.1)

for all n > 1. If we consider two states of the same fluid: at the
beginning at state 0 the fluid is uniform (w ) 0), and C0

(1) )
C(1)(r;[w ) 0]) ) -�µex. Upon turning on the external potential
w(r), the fluid reaches a final state w, with the singlet DCF Cw

(1)

) C(1)(r;[w]). The s-DCF at state w * 0 can be related to itself
at w ) 0 by a functional Taylor expansion

C(1)(1;[w]) ) C(1)(1;[w ) 0]) +
1
1! ∫ d2

δC(1)(1;[w ) 0])
δFw(2)

δFw(2) +

1
2! ∫ d2d3

δ2 C(1)(1;[w ) 0])
δFw(2) δFw(3)

δFw(2) δFw(3) +

1
3! ∫ d2d3d4

δ3 C(1)(1;[w ) 0])
δFw(2) δFw(3) δFw(4)

δFw(2) δFw(3) δFw(4) +

1
4! ∫ d2d3d4d5

δ4 C(1)(1;[w ) 0])
δFw(2) δFw(3) δFw(4) δFw(5)

×

δFw(2) δFw(3) δFw(4) δFw(5) + 1
5!

... + 1
6!

+ ... (3.2)

Note that the functional derivatives δnC(1)/(δF...δF) are evaluated
at the initial state 0 where w(r) ) 0 (the uniform bulk fluid).
Thus the functional derivatives of the DCF are uniform fluid
properties. The density difference δFw(r) is defined as

δFw( rb) ≡ Fw( rb) - F0 ≡ F0hw( rb) (3.3)

namely, it is the difference between the nonuniform density (Fw)
and the uniform density (F0). To simplify the notation, we shall
use subscript w (wall) to denote nonuniform quantities, and
subscript 0 (w ) 0) for uniform quantities (no walls). For
example, C0

(2)(|r1 - r2|) ) C(2)(r1, r2;[w ) 0]). We have also
defined a nonuniform total correlation function (tcf) hw(r) in
3.3.

For the uniform fluid, the counterpart of the expansion is (this
happens when we use the test particle at r0 as the source of the
external potential, that is, w(r1) ) u(|r1 - r0|), see Percus16)

C(1)(1;[w ) u(| rb1 - rb0|)]) - C0
(1)(1;[w ) 0]) )

ln y0(| rb1 - rb0|) )
1
1! ∫ drb2 C0

(2)(| rb1 - rb2|) ×

Fh0(| rb2 - rb0|) +
1
2! ∫ drb2drb3 C0

(3)( rb1, rb2, rb3) ×

Fh0(| rb2 - rb0|) Fh0(| rb3 - rb0|) +
1
3! ∫ drb2drb3drb4 C0

(4)( rb1, rb2, rb3, rb4) ×

Fh0(| rb2 - rb0|) Fh0(| rb3 - rb0|)Fh0 (| rb4 - rb0|) +
1
4!

... + 1
5!

... ) γ0(| rb1 - rb0|) + B0(| rb1 - rb0|) (3.4)

where we have identified a uniform bridge function B0(|r1 -
r0|) as the sum of the higher-order terms in the series (n
> 2).

B0(| rb1 - rb0|) ≡ 1
2! ∫ drb2drb3 C(3)( rb1, rb2, rb3) ×

Fh(| rb2 - rb0|) Fh(| rb3 - rb0|) +
1
3! ∫ drb2drb3drb4 C(4)( rb1, r2, rb3, rb4) Fh(| rb2 - rb0|) ×

Fh(| rb3 - rb0|) Fh(| rb4 - rb0|) +
1
4!

... (3.5)

It is noted that in liquid theory, the derivation through functional
derivatives has a similar counterpart in cluster series. Compari-
son of 3.2, 3.4, and 3.5 says, in the language of clusters, that
we can also identify a nonuniform bridge functional Bw(r) with
similar cluster diagrams as the uniform bridge B0(|r1 - r0|) in
eq 3.5. We thus define it as the following.

Nonuniform Bridge Functional Bw(r).

Bw(1) ≡ 1
2! ∫ d2d3 C0

(3)(1, 2, 3) δFw(2) δFw(3) +

1
3! ∫ d2d3d4 C0

(4)(1, 2, 3, 4) δFw(2) δFw(3) δFw(4) +

1
4! ∫ d2d3d4d5 C0

(5)(1, 2, 3, 4, 5) δFw(2) δFw(3) ×

δFw(4) δFw(5) + 1
5!

... + 1
6!

+ ... (3.6)

Equation 3.2 can now be written as the following.
Closed Exact Expression for the s-DCF.

Cw
(1)(1) ) C0

(1) + ∫ d2 C0
(2)(1, 2) δFw(2) + Bw(1)

≡ C0
(1) + γw(1) + Bw(1) (3.7)

This expression has been derived and used earlier.18,19 Since
the exact Bw(r) is not readily amenable to numerical calculation,
some conventional DFT theories chose to truncate the series
(eq 3.4) at the second order, by setting Bw(r) ) 0 (see e.g.
Ramakrishnan and Yussouff24). We instead choose to deal
directly with the bridge function as it stands without truncation,
and retain all orders in the Taylor expansion.

We have defined a nonuniform indirect correlation function
(icf) γw(r) in eq 3.7 by analogy with the uniform case,
namely

γw(1) ≡ ∫ d2 C0
(2)(1, 2) δFw(2) (3.8)

Next, from the definition of the nonuniform singlet DCF
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Cw
(1)( rb) ) C0

(1) + γw( rb) + Bw( rb) ) -�µex + γw( rb) + Bw( rb)
or

Cw
(1)( rb) ) ln[Fw( rb)Λ3] + �w( rb) - �µ ) ln[F0( rb)Λ3] -

�µ + ln[Fw( rb)/F0] + �w( rb)

(3.9)

Nonuniform Singlet Density Formula.

Fw( rb) ) F0 exp[-�w( rb) + ∫ drb′ C0
(2)( rb, rb′) δFw( rb′) + Bw( rb)]

) F0 exp[-�w( rb) + γw( rb) + Bw( rb)] (3.10)

This expression has been used previously in the bridge DFT.17-19

Note that in the hypernetted-chain (HNC) approximation, Bw ) 0
and eq 3.10 simplifies to the Ramakrishnan-Yussouff24 expression.

In this section, we have defined a nonuniform bridge
functional, mirroring the uniform case. We are thus able to give
a complete expression for the singlet direct correlation without
truncation. This bridge functional formally contains all orders
of DCF’s (n > 2). The formulation is theoretically complete. In
contrast, previous approaches (e.g., WDA, MWDA, SWDA)
did not include, as a matter of principle, all higher-order DCF’s
in the Taylor expansion. (They may have included a subset (k
) 0) of the higher order terms, see WDA.11,12) There is no
possibility of amelioration in these latter formulations, since
the correct higher-order terms are missing in their formulations.

4. Functional Expansion of the Free Energy
Functional

In this section we shall carry out a similar expansion for the
IFEF, F[F]. The development shall parallel the s-DCF expansion
above. Given the definition of F[F] in eq 2.1, we functionally
differentiate the IFEF with respect to Fw, the equilibrium singlet
density

δ�Ω
δFw( rb)

) 0 )
δ�F[F]

δFw( rb)
+ [�w( rb) - �µ]

or
δ�F[F]

δFw( rb)
) -[�w( rb) - �µ] ) ln(FwΛ3] - Cw

(1)( rb)

(4.1)

Note that the grand potential is stationary with respect to Fw
(1) at

the equilibrium density (δΩ/δF ) 0). In the second equality
we have applied the definition of s-DCF from eq 2.5. The IFEF
can be split into two parts: one being the ideal gas part, Fid[F]
) ∫dr Fw(r)[ln Fw(r)Λ3 - 1], and the other the excess part,
Fex[F]

�F[F] ) �F[F]
id + �F[F]

ex ) ∫ drb Fw( rb)[ln Fw( rb)Λ3 - 1] +

�F[F]
ex (4.2)

Combining 4.1 and 4.2 results in the following:

δ�F[F]
ex

δFw(1)
) -Cw

(1)(1) (4.3)

In other words, the excess IFEF -�Fex[F] is the primitive of
the singlet DCF, Cw

(1)(r). Utilizing the Lebowitz-Percus23

definition of the nth order DCF’s from eq 3.1, we can expand
the excess IFEF in the Taylor series

-�F[F]
ex ) -�F0

ex + 1
1! ∫ d1 C0

(1)(1) δFw(1) +

1
2! ∫ d1d2 C0

(2)(1, 2) δFw(1) δFw(2) +

1
3! ∫ d1d2d3 C0

(3)(1, 2, 3) δFw(1) δFw(2) δFw(3) +

1
4! ∫ d1d2d3d4 C0

(4)(1, 2, 3, 4) δFw(1) ×

δFw(2) δFw(3) δFw(4) + 1
5!

... + 1
6!

... + ... (4.4)

In a previous study,20 we have defined a star series, S*, for
uniform fluids which has the cluster diagrams

These diagrams express exactly the same terms in eq 4.4 up to
the fifth order. Note that the single-line bonds are defined as
the Fh0 (tcf) bonds; the double-lined polygons forming the outer
frames were the nth-order DCFs, or the C(n) bonds, namely, the
triangle is the C(3)(1,2,3) DCF, and the pentagon is the
C(5)(1,2,3,4,5) DCF, and so forth. The black circles represent
integrals over the indexed position vector: ∫ dri.(.). Now if we
replace each and every Fh0 bonds by the nonuniform δFw

Fh0 f δFw

we shall have defined a new function, say Sw*, with exactly the
same topological clusters as in the uniform case. Since δFw(r)
) Fw(r) - F0 ) F0hw(r) (where hw(r) is the nonuniform total
correlation), the nonuniform star series Sw* is defined as

Sw* ≡ 1
3! ∫ d1d2d3 C0

(3)(1, 2, 3) δFw(1) δFw(2) δFw(3) +

1
4! ∫ d1d2d3d4 C0

(4)(1, 2, 3, 4) δFw(1) δFw(2) δFw(3) δFw(4) +

1
5! ∫ d1d2d3d4d5 C0

(5)(1, 2, 3, 4, 5)δFw(1) δFw(2) δFw(3) ×

δFw(4) δFw
(1)(5) + 1

6!
... + ...

(4.6)
Thus, eq 4.4 becomes the following.

Closed Form Expression for the IFEF.

-�F[F]
ex ) -�F0

ex + ∫ d1 C0
(1)(1) δFw(1) +

1
2 ∫ d1d2 C0

(2)(1, 2) δFw(1) δFw(2) + Sw* (4.7)

We have given a closed form expression for the IFEF in terms
of a star series that has been defined in eq 4.6.

Comparing the IFEF expansion here with the s-DCF expan-
sion in Section 3 and functionally differentiating eq 4.7 (with
respect to the singlet density Fw(r))

Cw
(1)( rb) ) C0

(1)( rb) + ∫ d2 C0
(2)(2, rb) δFw(2) +

δSw*

δFw( rb)
(4.8)

We have shown earlier20 that the star series Sw* is the primitive
of the bridge function Bw(r), that is,
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δSw*

δFw( rb)
) Bw( rb) (4.9)

Thus, eq 4.8 is identical to eq 3.7

Cw
(1)( rb) ) C0

(1)( rb) + ∫ d2 C0
(2)( rb, 2) δFw(2) + Bw( rb)

(4.10)

The development shows that the formula 4.7 for the excess IFEF
is consistent with the s-DCF given earlier in eq 3.7. They are
all complete expressions without truncation. If we know the
bridge functional, we can calculate consistently the free energy.
But, these formal equations would amount to very little if we
did not have means of obtaining the quantities involved, that
is, the star function or the bridge functional. We shall examine
these quantities further.

Reflections on the Star Series and the Bridge Functional.
If a homotopy can be established in the Kirkwood charging
formula for the chemical potentials and the bridge function
satisfies unique functionality conditions, we have shown20 that
the bridge function and the star function are related by (hereby
generalized to the nonuniform case)

Sw* ) ∫ d rb
δFw( rb)

γw( rb) ∫x)γ0

x)γ1 dx B̂(x) (4.11)

This transcription (from the uniform system to the nonuniform
system) is possible on the basis of their cluster expansions. A
similar expression28 has been derived recently.

B(r;[w]) as a bridge functional is dependent, in liquid theory,
on the function w(r′) through the partition function and its
subsequent expansion into cluster series. Other types of cor-
relation functions also admit cluster expansions. Thus, we can
swap the arguments [w] to other surrogate functions (such as
the icf γw(r) or the cavity function yw(r)) where a one-to-one
correspondence can be established

B1( rb;[w]) ) B2( rb;[γw]) ) B3( rb;[ln yw]) (4.12)

The notation B(r;[w]) indicates that B, while itself a function
of r, is further dependent on all values of w(r′) on the entire
domain of r′, that is, a functional of w(r′).

Note that B̂(x) in 4.11 (with a caret) defines B as a function
of x. In general B(r;[w]) should be a functional of w(r′): physics
says that B(r) depends on the function w(r′) through the cluster
integrals. To use 4.11, we need somehow alter the nature of
the function’s dependence.

Renormalization of the Bridge Functional. We call the
procedure of changing the dependence of B(r;[w]) on w(r′) from
a functional to a function B̂(x(r)) (so as to depend on some
target variable x) the renormalization operation. The trick is to
alter the argument w(r′), by mathematical manipulations such
as adding and/or multiplying, integration, or differentiation, with
factors in such a way as to “extract” out all the r′-dependences
that are subversive (misbehaving) toward functionality. The
renormalizing factor will be denoted by γ0(r).

In liquid-state theories, a number of relations called the
“closures” are in common use which are de facto (approximate)
renormalizations. The well-known ones (see ref 27) are the PY
closure and the HNC closure and later the Verlet closure, the
hybrid MSA (HMSA) closure, the Ballone-Pastore-
Galli-Gazillo (BBPG) closure, and the Martynov-Sarkisov
(MS) closure. These closures are all functions where B ) B̂(x).
We list a few of them below.

B̂(γ) ) ln(1 + γ) - γ (PY) (4.13a)

B̂(γ) ) -1
2( γ2

1 + aγ) (Verlet) (4.13b)

where a is a parameter and is equal to 0.8. These closure
relations have so far been used for both uniform21 and
nonuniform17-19 fluids. For the majority of these closures, the
target x is chosen to be the icf γ, namely, the bridge B is
assumed to be a function of γ, that is, B̂(γ). These closures
were derived mostly from truncations of cluster series or from
the consideration of collective coordinates. Thus, the above
closures are more or less different approximations. The few
closures that have made an attempt to address the issue of
renormalization are the HMSA closure of Hansen and Zerah29

and the RY closure of Rogers-Young. These approaches
modify γ to γ* and use the latter as the argument of B̂(γ*)

γ* ) γ - �uatt (4.14)

where uatt is the attractive part of the uniform pair potential.
Other schemes25 are also available. Duh and Haymet26 have
proposed a B-γ* plot (the Duh-Haymet plot) that traces the
variations of the bridge function B(r) versus the original (or
the renormalized) icf γ*(r) at the same r. If the B-γ* curve is
well-behaved, we consider the closure a success. If B-γ* plot
is multivalued, we consider the closure failed to achieve unique
functionality27 (it remains a functional).

One closure that we found quite effective in uniform fluids
for a variety of pair potentials is the zero-separation (ZSEP)
based closure27

B̂(γ*) ) -�
2

γ*2((1 - φ) + φ

1 + Rγ*) (ZSEP)

(4.15)

where γ* is the renormalized target function. The parameters
R, φ, and � are adjustable, in such a fashion as to enforce
thermodynamic consistencies (e.g., the pressure consistency,
Gibbs-Duhem relation, etc.) and structural consistencies (the
contact value theorem, zero-separation theorem, etc.). For
modification of the icf γ, we have in the past used several
choices:25,27 the attractive pair interaction �uatt, the WCA Mayer
factor, fWCA, and a number of other formulations. Tests on hard
spheres, hard sphere mixtures, hard diatomics, LJ molecules,
soft spheres (Gaussian potential), Coulomb interaction, for bulk
systems, and for fluids included in random pores all demon-
strated satisfactory accuracy.27

For nonuniform fluids in the external field w(r), we shall write
the ZSEP closure for Bw(r) as

B̂w(γw*) ) -�
2

γw
*2[(1 - φ) + φ

1 + Rγw*]
(ZSEP, nonuniform) (4.16)

with

γw* ) γw - �uatt (4.17)

and γw being the nonuniform indirect function from eq 3.8. For
this bridge function 4.16, we have derived its primitive, the S*
series,27 where the necessary integration has been preformed.
In the following section we shall apply these formulas to the
system of LJ fluid at a hard wall.

5. LJ Fluid on a Planar Hard Wall

We shall test on an adsorptive system with which the MFT
has been applied to in the past.5 We want to verify if the present
methodology can improve upon the MFT approach.
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Numerical Procedure. The state condition chosen is T*
() kT/ε) ) 1.35, and F* () Fσ3) ) 0.82. ε and σ are parameters
of the LJ potential. We calculate the density profile in eq 3.10.
The steps are the following.

(i) The uniform pair DCF C0
(2)(r) is generated in a separate

calculation for the bulk LJ fluid by using the ZSEP method.27

The pair DCF thus obtained is of high accuracy. It is shown in
Figure 1 together with that obtained from the PY closure. We
can detect some tangible differences between the two closures.
At this high density, the PY is less accurate.

(ii) The indirect correlation is evaluated according to its
definition in eq 3.8.

(iii) For the bridge function, we use the ZSEP closure in eq
4.16 with renormalization as in eq 4.17.

(iv) The parameters in ZSEP are determined by satisfying
the consistency conditions. We shall use the hard wall sum rule
(which expresses the contact density as the result of the linear
momentum transfer from the molecules to the flat wall, i.e.,
the bulk pressure)

Fw(z ) 0) )
P0

kT
(5.1)

where P0 is the bulk pressure. The parameters in the ZSEP
closure R, �, and �, are adjusted so that the sum rule 5.1 is

satisfied. As we have three parameters and only one condition,
we choose to adjust R only and leave � and � to their default
values (� ) 1 and � ) 1). The value of R thus determined is
0.6.

The density profile Fw(z) obtained is shown in Figure 2. We
have also used the HNC closure (namely Bw ) 0) in our
calculations. Its results are plotted together in Figure 2 for
comparison. The squares are the Monte Carlo (MC) data from
Balabanic et al.30 The small empty circles are the MFT results.
We see that the MFT theory is inadequate here. It has
exaggerated oscillations and also the wrong contact value. The
HNC data, being close to MFT, gives a worse comparison, being
too large at contact and oscillating out of phase with respect to
MC. The full line is the present results (ZSEP). It matches the
MC data closely. The oscillations are in-phase with the MC
curve; the contact value Fw(0) ) 2.1 (from ZSEP) compared
well with Fw(0) ) 2.06 (MC) (to within < 2 %). Of course, this
is largely due to the fact that we have fitted the parameters to
satisfy this condition.

EWaluation of the Free Energy Properties. We use eq 4.7
to evaluate the excess free energy �Fex

�F[F]
ex ) �F0

ex + �µ0
ex ∫ d1 F0 hw(1) -

F0
2

2 ∫ d1d2 C0
(2)(1, 2) hw(1) hw(2) - Sw* (5.2)

We need input from the uniform LJ fluid for the quantities �F0
ex

and �µ0
ex. This was done in a separate calculation with the

uniform OZ equation. The rest of terms can be evaluated from
the output obtained from the DFT calculations. The results are
listed in Table 1.

We observe that the star function contributes substantially
to the total excess free energy (-0.2227 versus 0.1868: over
120 %). We can ill-afford to ignore the Sw* term. Traditional
DFT discarded the star series and made up with the altered direct
correlations through the WDAs. In our approach, this detour is
not needed.

6. Conclusions

In this work, the IFEF F[F] acts as a generating functional
in the sense of Lebowitz-Percus.23 Its functional Taylor
expansion leads to an infinite series in the nonuniform density.
By invoking the star series Sw* from an earlier development,20

we are able to terminate the Taylor series without approximation.
The resulting IFEF is formally exact and complete in terms of
all orders of the DCFs. Functionally differentiating this free
energy functional gives the singlet direct correlation in terms
of the familiar bridge functional Bw(r). The two formulations
are mathematically mutually consistent. Since the star series
can be obtained from the bridge function with the aid of an
explicit formula in eq 4.11, we can easily calculate both
quantities once any one of them is known. To obtain the bridge

Figure 1. Bulk DCF C0
(2)(r) of LJ fluid at T* ) 1.35 and F* ) 0.82 as

obtained from the ZSEP closure eq 4.15 (thick line) and the PY closure
(thin line). The parameters of the ZSEP closure in eq 4.15 that give
thermodynamically consistent properties are R ) 0.6, � ) 0.997, and � )
0.7. The PY results are less accurate at this high density.

Figure 2. Comparison of the density profiles Fw(z) derived from theories
and from the Monte Carlo (MC) simulation30 for the (LJ fluid/hard wall)
system. 9, MC; O, MFT; dotted line indicates HNC; solid line indicates
ZSEP, the present theory. State conditions: T* ) 1.35, F* ) 0.82. Both the
MFT and the HNC produce inaccurate predictions. The ZSEP theory in eq
4.16 gives a correct contact value and close agreement with MC data. The
parameters of ZSEP are R ) 0.6, � ) 1, and � )1. The hard wall sum
rule, eq 5.1, has been enforced.

Table 1. Calculations for the Excess Free Energy �Fex of the LJ
Fluid/Hard Wall Systema

term �Fi
ex/a

�F0
ex/a –1.4106

�µ0
ex∫d2 F0hw(2) –0.5817

–(F0
2/2)∫d2d3 c0

(2)(2,3) hw(2) hw(3) 2.4018
–Sw*/a –0.2227
sum 0.1868

a Individual contributions from the terms in eq 5.2 are listed. The
units are specific energy per area a divided by kT, that is, �Fex/a
(conditions: T* ) 1.35, F* ) 0.82).
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functional, parallelism between the uniform and the nonuniform
systems as established by Denton and Ashcroft15 via the Percus
test particle intuition enables us to employ and deploy the liquid
theory closures to the calculation of the density profiles of the
LJ fluid on a hard wall. Use of the ZSEP closure shows that we
can obtain accurate singlet density without the MFT. In fact,
the new approach cures the inaccuracies of the MFT. This opens
the door of applications to other simple attractive-force poten-
tials, such as attractive Yukawa potential (for colloidal systems)
and Coulomb interactions (on electrodes and in electrochem-
istry). We anticipate future work in these directions.
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