Phase Equilibria in the NaOH-Na₂CrO₄-Na₂CO₃-H₂O System

Yang Zhang,^{†,‡} Shili Zheng,^{*,†} Hao Du,[†] Hongbin Xu,[†] and Yi Zhang[†]

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China

Equilibria data for the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system at (40, 60, and 80) °C were measured, and the phase diagrams at (80 and 40) °C were constructed. Furthermore, the crystallization areas in the phase diagrams are discussed in detail. In addition, the solubility of Na₂CrO₄ in NaOH solutions was compared with that in Na₂CO₃ saturated NaOH solutions, and the solubility of Na₂CO₃ in NaOH solutions was also compared with that in Na₂CrO₄ saturated NaOH solutions. On the basis of the phase diagrams, a strategy for effective separation of Na₂CO₃ from the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system has been proposed.

Introduction

A novel chromite ore treatment process using molten sodium hydroxide as reaction media has been proposed by the Institute of Process Engineering, Chinese Academy of Sciences, and the main reaction involved in the process is the oxidation of chromite ore with oxygen in molten sodium hydroxide. Because of the presence of carbon dioxide in the air (to provide oxygen) and the carbonate impurities in the sodium hydroxide reagent, sodium carbonate usually coexists with sodium hydroxide and sodium chromate. To produce high-purity sodium chromate, it is very important to effectively separate sodium hydroxide, sodium chromate, and sodium carbonate on the basis of their salting-out effect. In this regard, it is necessary to study the phase diagram of the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system to get a separation method.

Some research has been done regarding the phase diagrams of the ternary subsystems of the NaOH–Na₂CrO₄– Na₂CO₃–H₂O quaternary system,^{1–4} but a study of the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system itself has not been reported so far.

Experimental Section

Apparatus and Reagents. A HZQ-type thermostatic vibrator with temperature control (precision of 0.1 °C) was used to prepare the samples to an equilibrium state. The content of sodium and chromium in all samples was determined by inductively coupled plasma/optical emission spectrometry (ICP-OES, PE Optima 5300DV, Perkin-Elmer). The solid-phase analysis was done by X-ray diffraction (XRD, Phillips PW223/ 30).

The chemicals used in the experiments were all of analytical grade, and deionized water was used in all of the experiments.

Experimental Method. The solubility was determined employing an isothermal solution saturation method.⁵ Predetermined amounts of sodium hydroxide, tetrahydrate sodium chromate, and sodium carbonate were mixed homogenously in a given amount of water before putting into sealed polyethylene

[‡] Graduate University of the Chinese Academy of Sciences.

bottles, and then the bottles were placed in the thermostatic vibrator. The experiments were performed at ambient pressure, and the temperature was fixed at three specific values: (40, 60, and 80) °C. The liquid phase of each sample was examined

Figure 1. Phase diagram of the NaOH–Na₂CrO₄–Na₂CO₃–H₂O system at (80 and 40) °C. Point P is the invariant point, and points F_1 , F_2 , and F_3 represent the equilibrium composition of the solid phases at the two extremes of the corresponding side, respectively.

^{*} Corresponding author. E-mail: slzheng@home.ipe.ac.cn. Fax: +86-10-62520910.

[†] Institute of Process Engineering, Chinese Academy of Sciences.

	composition of liquid p			
NaOH	Na ₂ CO ₃	Na ₂ CrO ₄	H ₂ O	equilibrium solid phase
		t = 8	0 °C	
10.40	6.81	82.79	47.27	$Na_2CO_2 + Na_2CrO_4$
22.63	5.77	71.60	48.18	$Na_2CO_2 + Na_2CrO_4$
26.52	5 36	68.12	48.17	$Na_2CO_2 + Na_2CrO_4$
34.83	5.26	59.91	49.32	$Na_2CO_3 + Na_2CrO_4$
47.78	5.10	47 12	49 70	$Na_2CO_3 + Na_2CrO_4$
54 35	3.43	42.22	51.46	$Na_2CO_3 + Na_2CrO_4$
59.38	3 24	37.38	50.62	$Na_2CO_3 + Na_2CrO_4$
68 79	3.10	28.11	49.13	$Na_2CO_3 + Na_2CrO_4$
73.58	2 75	23.67	48 73	$Na_2CO_3 + Na_2CrO_4$
76.88	2.69	20.43	47.09	$Na_2CO_3 + Na_2CrO_4$
78.04	2 44	19 52	45 74	$Na_2CO_3 + Na_2CrO_4$
83.42	2.07	14 51	41 21	$Na_2CO_3 + Na_2CrO_4$
86.08	1.93	11.99	39.50	$Na_{2}CO_{3} + Na_{2}CrO_{4}$
98.02	1 40	0.58	26.64	$Na_2CO_3 + Na_2CrO_4 + NaOH \cdot H_2O$
0	4.62	95 38	97 97	$Na_{2}CO_{3} + Na_{2}CrO_{4} + Nuclei H_{2}O$
98 76	0	1 24	47.92	$N_{a}CrO + N_{a}OH \cdot HO$
97 74	2 26	0	37.84	$N_{2}CO + N_{3}OH \cdot HO$
71.14	2.20	0	57.04	1422003 + 140011 1120
		t = 6	0 °C	
16.21	5.43	78.37	96.93	$Na_2CO_3 + Na_2CrO_4$
25.23	5.03	69.74	99.88	$Na_2CO_3 + Na_2CrO_4$
38.42	4.70	56.88	100.60	$Na_2CO_3 + Na_2CrO_4$
51.85	4.49	43.66	99.55	$Na_2CO_3 + Na_2CrO_4$
58.49	4.25	37.25	101.03	$Na_2CO_3 + Na_2CrO_4$
63.18	3.69	33.14	96.99	$Na_2CO_3 + Na_2CrO_4$
76.90	2.29	20.80	91.90	$Na_2CO_3 + Na_2CrO_4$
79.22	2.00	18.78	89.76	$Na_2CO_3 + Na_2CrO_4$
81.52	1.49	16.99	90.87	$Na_2CO_3 + Na_2CrO_4$
89.59	0.70	9.71	73.89	$Na_2CO_3 + Na_2CrO_4$
91.40	0.62	7.98	65.38	$Na_2CO_3 + Na_2CrO_4$
96.69	0.12	3.19	59.03	$Na_2CO_3 + Na_2CrO_4 + NaOH \cdot H_2O$
0	4.11	95.89	94.05	$Na_2CO_3 + Na_2CrO_4 \cdot 4H_2O$
97.56	0	2.44	58.12	$Na_2CrO_4 + NaOH \cdot H_2O$
97.20	2.80	0	75.10	$Na_2CO_3 + NaOH \cdot H_2O$
		t = 4	0 °C	
15.31	4.56	80.14	102.17	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
22.59	4.33	73.084	104.67	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
26.23	4.29	69.48	100.55	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
33.34	4.31	62.35	103.36	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
40.71	4.22	55.07	104.24	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O_2$
48.19	4.09	47.72	108.24	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
64.20	4.41	31.39	122.40	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
68.63	3.66	27.71	110.97	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
76.75	1.88	21.37	115.39	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
78.83	1.86	19.32	116.35	$Na_2CO_3 + Na_2CrO_4 \cdot 4H_2O$
83.83	1.83	14.34	111.04	$Na_2CO_3 + Na_2CrO_4 \cdot 4H_2O$
93.47	1.82	4.71	67.85	$Na_2CO_3 + Na_2CrO_4 + NaOH \cdot H_2O$
0	11.13	88.87	104.41	$Na_2CO_2 + Na_2CrO_4 \cdot 4H_2O$
93.62	0	6.38	71.10	$Na_2CrO_4 + NaOH \cdot H_2O^2$
95.39	4.61	0	67.59	$Na_2CO_3 + NaOH \cdot H_2O$

Table 1. Solubility Data of the NaOH-Na₂CrO₄-Na₂CO₃-H₂O System

Table 2. Comparison of the Solubility of Na_2CrO_4 in NaOH Solution with That in Na_2CO_3 Saturated NaOH Solution at 80 °C

solubility in NaOH aqueous without Na ₂ CO ₃ coexistence		solubility in NaOH aqueous saturated with Na ₂ CO ₃	
<i>c/g</i>	•L ⁻¹	c/g	g•L ^{−1}
NaOH	Na ₂ CrO ₄	NaOH	Na ₂ CrO ₄
83	775.73	86.16	685.70
98	760.15	180.43	570.74
166	641.77	192.59	553.61
229	538.97	210.83	541.45
276	479.77	266.58	458.58
290	457.97	277.73	459.52
330	408.12	358.81	353.91
417	314.66	361.86	343.00
464	264.81	398.34	309.39
502	234.59	437.87	275.65
570	196.27	530.11	204.74
604	176.02	564.57	181.60
629	164.18	523.02	213.72
642	162.62	610.19	162.12
678	153.28	625.39	156.39

Figure 2. Solubility isotherms of Na₂CrO₄ at 80 °C: ■, in NaOH solution; ●, in Na₂CO₃ saturated NaOH solution.

every two days, and an equilibrium state was believed to be achieved when the liquid-phase components became stable. After equilibrium was attained, the shaking was discontinued, and then the samples were allowed to settle for one day before further treatment and analysis. For each sample, about 5 mL of aqueous phase was filtered, weighed, and diluted into a 100 mL volumetric flask. For the determination of sodium chromate content, 5 mL of the previously diluted solution was further diluted 20 times after addition of 2 mL of concentrated hydrochloric acid, and then the solution was analyzed using ICP-OES. Sodium hydroxide and sodium carbonate were determined by titration using hydrochloric acid solution with phenolphthalein solution and methyl orange solution as indicators. The equilibrium solid phase was dried in a desiccator at room temperature and then analyzed by an XRD analyzer.

Results and Discussion

 $NaOH-Na_2CrO_4-Na_2CO_3-H_2O$ Quaternary System. The solubility data for the NaOH-Na₂CrO₄-Na₂CO₃-H₂O quaternary system at (40, 60, and 80) °C were measured and are presented in Table 1, and the phase diagrams at (80 and 40) °C are plotted in Figure 1. All of the solubility data in Table 1 are the average values of three measurements, with the relative standard deviation (RSD) values of less than 2 %. The phase diagram at 60 °C is similar to those of (80 and 40) °C and therefore is not shown in this paper.

Figure 1 shows that the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system has three crystallization zones, which are the Na₂CO₃ crystallization zone, the Na₂CrO₄ crystallization zone (the Na₂CrO₄·4H₂O crystallization zone at 40 °C), and the NaOH·H₂O crystallization zone. Among the three zones, the crystallization zone of Na₂CO₃ is far larger than that of the other

Figure 3. Solubility isotherms of Na_2CO_3 at 80 °C: \blacksquare , in NaOH aqueous solution; \bullet , in Na_2CrO_4 saturated NaOH aqueous solution.

two. The Na₂CO₃ and Na₂CrO₄•4H₂O crystallization zones at 40 °C are similar to those at 80 °C, but the NaOH•H₂O crystallization zone at 40 °C is larger than that at 80 °C. This suggests that Na₂CO₃ could be easily separated from the system at either (80 or 40) °C through crystallization by adjusting the amount of water in the system. Because of the lower energy consumption during the recycling of NaOH through evaporation at high temperatures, the equilibrium data at 80 °C is more useful to the process. The phase diagram provides a theoretical foundation for the separation of Na₂CO₃ and Na₂CrO₄ from the system.

Comparison of the Solubility of Na₂CrO₄ in NaOH Solution of with That in Na₂CO₃ Saturated NaOH Solution. The solubility data of Na₂CrO₄ in NaOH solutions and in Na₂CO₃ saturated NaOH solutions at 80 °C are presented in Table 2, and the isotherms are plotted in Figure 2. As shown in Table 2 and Figure 2, when compared with NaOH solutions without Na₂CO₃, the concentration of Na₂CrO₄ in Na₂CO₃ saturated NaOH solutions decreases only slightly at 80 °C. On the other hand, the concentration of Na₂CrO₄ decreases significantly with an increase of the NaOH concentration in both the NaOH-Na₂CrO₄-Na₂CO₃-H₂O and the NaOH-Na₂CrO₄-H₂O systems. These results indicate that the salting-out effect of Na₂CO₃ to Na₂CrO₄ is negligible, and Na₂CrO₄ can be separated effectively by evaporation crystallization from the NaOH-Na2CrO4-Na2CO3-H2O system. There are similar results at (60 and 40) °C.

Comparison of the Solubility of Na_2CO_3 in NaOH Solution of with That in Na_2CrO_4 Saturated NaOH Solution. Solubility data of Na_2CO_3 in NaOH solutions and in Na_2CrO_4 saturated NaOH solutions at 80 °C are presented in

Table 3. Comparison of the Solubility of Na₂CO₃ in NaOH Solution with That in Na₂CrO₄ Saturated NaOH Solution at 80 °C

	solubility in NaOH aqueous	without Na ₂ CrO ₄ in coexistence	solubility in NaOH aqueous saturated with Na_2CrO_4		
-	$c/g \cdot L^{-1}$		$c/g \cdot L^{-1}$		
-	NaOH	Na ₂ CO ₃	NaOH	Na ₂ CO ₃	
	95.2	252.8	86.16	56.41	
	121.2	221	180.42	45.98	
	135.8	203.5	192.58	43.40	
	224.6	104.5	210.83	42.60	
	306	52.4	266.58	40.29	
	318.2	35.5	277.73	40.22	
	365.6	31.3	398.34	25.13	
	427.7	28.9	437.88	23.91	
	589.7	19.3	523.02	23.60	
	792	15.7	530.11	21.79	
			564.58	21.14	
			610.19	21.35	
			625 39	19.56	

Table 3, and the isotherms are plotted in Figure 3. It is concluded from Table 3 and Figure 3 that, when compared with NaOH solution without Na₂CrO₄, the concentration of Na₂CO₃ decreases significantly if the alkali solution is saturated with Na₂CrO₄ at 80 °C, which suggests that the salting-out effect of Na₂CrO₄ to Na₂CO₃ is strong. The results indicate that when Na₂CO₃ coexists with Na₂CrO₄ it can be separated easily from the system by evaporation crystallization before the saturation point of Na₂CrO₄.

Conclusion

Phase equilibria for the NaOH–Na₂CrO₄–Na₂CO₃–H₂O quaternary system at (40, 60, and 80) °C was studied. The phase diagrams of the system and the solubility isotherms of Na₂CrO₄ and Na₂CO₃ were plotted. This study provides a theoretical basis for the separation of Na₂CO₃ and Na₂CrO₄ from the NaOH solutions.

Literature Cited

- Xing, Z. Basic chemistry research on phase separation of Al³⁺/Na⁺/ CrO₄²⁻/OH (in Chinese). Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 1998.
- (2) Hostalek, Z. Ternary system H₂O-Na₂CO₃-NaOH. Chem. Listy **1956**, 50, 716–720.
- (3) Linke, W. F. Solubilities, inorganic and metal-organic compounds: a compilation of solubility data from the periodical literature, 4th ed.; Van Nostrand: Princeton, NJ, 1958; Vol. 2, p 65.
- (4) China Soda Industry Association. Soda engineering science (in Chinese); Chemical Industry Press: Beijing, 1990.
- (5) Shu, Y. G.; Lü, B. L.; Wang, X. R. Phase Diagram Analyses of Inorganic Chemical Production: Basic Theory (in Chinese); Chemical Industry Press: Beijing, 1985.

Received for review October 27, 2009. Accepted January 12, 2010. Financial support from the National Basic Research Development Program of China (973 Program) under Grant No. 2007CB613501 and 2009CB219901 and Key Project in the National Science & Technology Pillar Program under Grant No. 2006BAC02A05 are gratefully acknowledged.

JE900900M