Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K

N. Deenadayalu,*^{,†} I. Bahadur,[†] and T. Hofman[‡]

Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa, and Division of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Nowakowskiego 3, 00-664 Warszawa, Poland

The densities of the ternary systems {methyltrioctylammonium bis[(trifluoromethyl)sulfonyl]imide + methanol + methyl acetate or ethyl acetate} have been measured at the temperatures (298.15, 303.15, and 313.15) K. The ternary excess molar volumes, V_{123}^{E} , were calculated from the experimental densities at each temperature. The V_{123}^{E} values are negative for all mole fractions of the ionic liquid (IL). For the system {[MOA]⁺[Tf₂N]⁻ + methanol + methyl acetate}, the minimum ternary excess molar volumes, $V_{123,\min}^{E}$, decrease with decreasing *z* values (increasing the mole fraction of the IL) except at *z* equal to 0.30 at temperatures (298.15 and 313.15) K. The $V_{123,\min}^{E}$ decreases with an increase in the temperature. For the system {[MOA]⁺[Tf₂N]⁻ + methanol + ethyl acetate}, $V_{123,\min}^{E}$ increases with decreasing *z* values at each temperature. The Cibulka equation was used to correlate the ternary excess molar volume data from the Redlich–Kister parameters obtained from the Redlich–Kister equation to the five binary systems obtained from the literature. There is a good correlation between the Cibulka equation and experimental V_{123}^{E} data.

Introduction

Ionic liquids (ILs) have unique physical properties, such as low melting point, high thermal stability, nonflammability, and no measurable vapor pressure, and good dissolution properties for most inorganic and organic compounds,^{1–6} which make them suitable substitutes for volatile organic compounds (VOCs). ILs are organic salts with melting points of less than <373.15 K. ILs belong to a class of neoteric solvents that are constituted of bulky, asymmetric organic cations and inorganic or organic anions to create a nonaqueous solvating medium.^{7,8} There are numerous publications on IL properties or their applications in catalytic reactions, separation processes, membrane technology, chemical analysis, batteries, solar cells, or lubricants.^{9,10}

Thermodynamic properties are used to understand the nature of molecular interactions, e.g., van der Waals interactions in binary or ternary liquid mixtures. Furthermore, thermodynamic properties of binary or ternary mixtures containing components capable of undergoing specific interactions exhibit significant deviations from ideality due to differences in the molecular size, shape, and structure.¹¹

Thermodynamic data for the system (alkanol + alkanoate) are useful in the pharmaceutical, food, and flavor industries¹² and are of interest from a theoretical point of view because alcohols are hydrogen-bonded in the pure state and new hydrogen bonds are formed between the alcohol and ester when mixing occurs.^{13,14} There is a lack of data on ternary excess molar volumes V_{123}^E for IL multicomponent systems.^{15–19} Gómez et al.¹⁵ studied the V_{123}^E for the IL system (ethanol + water + 1,3-dimethylimidazolium methylsulfate) at several temperatures. Deenadayalu et al.¹⁶ used the graph theory to correlate V_{123}^E for

the (1-ethyl-3-methylimidazolium diethylene glycol monomethyl ether sulfate + methanol + water) ternary IL system. González et al.¹⁷ studied V_{123}^{E} for the ternary IL system (ethanol + water + 1-butyl-3-methylimidazolium methyl sulfate) at several temperatures. Andreatta et al.¹⁸ studied V_{123}^{E} for the IL system {methyl acetate + methanol + 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide} at temperature 298.15 K and atmospheric pressure. Deenadayalu et al.¹⁹ studied V_{123}^{E} for ILs [EMIM]⁺[BETI]⁻ or ([EMIM]⁺[CH₃(OCH₂CH₂)₂OSO₃]⁻ + methanol or acetone) at temperatures (298.15, 303.15, and 313.15) K.

In this work, ternary V_{123}^{E} values for IL systems have been determined at three temperatures and at atmospheric pressure. The IL methyltrioctylammonium bis[(trifluoromethyl)sulfo-nyl]imide ([MOA]⁺[Tf₂N]⁻) was used. The experimental densities were determined for the ternary system ([MOA]⁺[Tf₂N]⁻ + methanol + methyl acetate or ethyl acetate) over the entire composition range at temperatures (298.15, 303.15, and 313.15) K and at atmospheric pressure.

This work is a continuation of our research group's work on the thermodynamic properties of ILs. $^{16,19-24}$

Experimental Section

The solvents were purchased from Aldrich and Fluka with mass purity >99.0 % for methanol, methyl acetate, and ethyl acetate and mass purity >98.0 % for the IL. The IL, methanol, methyl acetate, and ethyl acetate were used without any further purification. The water content in the IL was determined by using a Karl Fischer coulometer (model Metrohm 797), and the mass percent of water content was found to be <0.04 %. The purities of the solvents were assessed by a comparison of the experimental density values with the literature density values where available.^{9,24,25}

The experimental technique was tested by determination of the excess molar volumes of the test system (octane + toluene)²⁶

^{*} Corresponding author. E-mail: NirmalaD@dut.ac.za (N.D.), hof@ ch.pw.edu.pl (T.H.). Telephone: +2731 3732781. Fax: +2731 2022671. [†] Durban University of Technology.

[‡] Warsaw University of Technology.

Table 1. Literature and Experimental Densities of the Pure Compounds at T = (298.15, 303.15, and 303.15) K

		$\rho/g \cdot cm^{-3}$				
		lit.		ex	ptl	
compound	% mass purity	T/K = 298.15	T/K = 298.15	T/K = 303.15	T/K = 313.15	
[MOA] ⁺ [Tf ₂ N] ⁻ methanol methyl acetate ethyl acetate	98.0 99.8 99.0 99.7	1.1093^a 0.7864^b 0.9270^c 0.8944^c	1.1069 0.7860 0.9271 0.8947	1.1032 0.7834 0.9205 0.8885	1.0957 0.7746 0.9079 0.8751	

^a Reference 24. ^b Reference 9. ^c Reference 25.

Figure 1. Structure of the IL {methyltrioctylammonium bis[(trifluorom-ethyl)sulfonyl]imide}.

Table 2. Densities and Excess Molar Volumes for IL (x_1) + Methyl Acetate (x_2) at T = (298.15, 303.15, and 313.15) K

x_1	$\rho/g \cdot cm^{-3}$	$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	x_1	$ ho/g \cdot cm^{-3}$	$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$
		T = 29	8.15 K		
0.0577	0.9836	-0.088	0.5029	1.0905	-1.397
0.1318	1.0245	-0.368	0.6690	1.0994	-1.376
0.2042	1.0490	-0.747	0.7587	1.1028	-1.224
0.2502	1.0600	-0.975	0.8076	1.1042	-1.099
0.2939	1.0685	-1.213	0.8382	1.1048	-0.927
0.4075	1.0826	-1.345	0.8902	1.1059	-0.713
0.4564	1.0870	-1.385	0.9534	1.1079	-0.405
		T = 30	3.15 K		
0.0577	0.9809	-0.480	0.6106	1.0884	-2.223
0.1318	1.0218	-0.802	0.6690	1.0963	-1.879
0.2042	1.0462	-1.208	0.7587	1.0992	-1.624
0.2502	1.0571	-1.438	0.8076	1.1004	-1.417
0.2939	1.0657	-1.719	0.8382	1.1009	-1.200
0.4075	1.0800	-1.961	0.8902	1.1019	-0.936
0.4564	1.0841	-1.945	0.9534	1.1028	-0.520
		T = 31	3.15 K		
0.0577	0.9699	-0.571	0.6106	1.0894	-3.333
0.1318	1.0114	-0.842	0.6690	1.0917	-3.231
0.2042	1.0366	-1.270	0.7587	1.0927	-2.239
0.2502	1.0494	-1.819	0.8076	1.0931	-1.662
0.2939	1.0577	-2.015	0.8382	1.0938	-1.531
0.4075	1.0725	-2.317	0.8902	1.0942	-0.956
0.4564	1.0769	-2.365	0.9534	1.0951	-0.499
0.5029	1.0809	-2.538			

at temperature 298.15 K and comparison with literature values. The difference between the experimental and literature $V_{\rm m}^{\rm E}$ values for the test system was within experimental error. The experimental uncertainty in $V_{123}^{\rm E}$ is ± 0.01 cm³·mol⁻¹. The ternary mixtures were prepared by the transfer by syringe of the pure liquids into stoppered bottles to prevent evaporation. The IL was first filled into the airtight glass-stoppered 5 cm³ glass vial and weighed. An OHAUS mass balance was used to determine of the mass of each component of the mixture. The mass balance has a precision of 0.0001 g. The uncertainty in the mole fraction was estimated to be 0.0006.

The ternary mixtures were prepared to obtained a constant ratio of $z = x_3/x_1$, where x_1 is the mole fraction of the IL and x_3 is the mole fraction of methyl acetate or ethyl acetate, with varying mole fraction of methanol x_2 . The densities were measured by an Anton Paar DMA 38 vibrating U-tube densimeter. Ultrapure water supplied by SH Calibration Service GmbH Graz and dried air were used for calibration of the

Table 3. Densities and Excess Molar Volumes for IL (x_1) + Ethyl Acetate (x_2) at T = (298.15, 303.15, and 313.15) K

x_1	$\rho/g \cdot cm^{-3}$	$V_{\rm m}^{\rm E}/{ m cm}^3 \cdot { m mol}^{-1}$	x_1	$\rho/g \cdot cm^{-3}$	$V_{\rm m}^{\rm E}/{ m cm}^3 \cdot { m mol}^{-1}$		
		T = 29	98.15 K				
0.0985	0.9792	-0.187	0.4848	1.0797	-1.458		
0.1414	1.0018	-0.387	0.5450	1.0858	-1.579		
0.1935	1.0229	-0.669	0.5859	1.0891	-1.552		
0.2468	1.0394	-0.939	0.6761	1.0954	-1.537		
0.2837	1.0483	-1.034	0.7589	1.0999	-1.422		
0.3472	1.0612	-1.296	0.8319	1.1030	-1.197		
0.3967	1.0688	-1.343	0.8859	1.1049	-0.975		
0.4484	1.0756	-1.425					
	T = 303.15 K						
0.0985	0.9737	-0.201	0.4848	1.0750	-1.483		
0.1414	0.9977	-0.613	0.5450	1.0810	-1.551		
0.1935	1.0182	-0.780	0.5859	1.0843	-1.508		
0.2468	1.0341	-0.901	0.6761	1.0906	-1.460		
0.2837	1.0433	-1.052	0.7589	1.0950	-1.270		
0.3472	1.0559	-1.212	0.8319	1.0983	-1.104		
0.3967	1.0640	-1.368	0.8859	1.1002	-0.861		
0.4484	1.0710	-1.491					
		T = 31	3.15 K				
0.0985	0.9836	-0.286	0.4848	1.0675	-1.792		
0.1414	1.0245	-0.595	0.5450	1.0735	-1.834		
0.1935	1.0490	-0.898	0.5859	1.0769	-1.808		
0.2468	1.0600	-1.078	0.6761	1.0832	-1.722		
0.2837	1.0685	-1.328	0.7589	1.0875	-1.452		
0.3472	1.0482	-1.578	0.8319	1.0909	-1.297		
0.3967	1.0562	-1.631	0.8859	1.0926	-0.931		
0.4484	1.0634	-1.786					

densimeter at each temperature.²⁴ The temperature maintenance and control were regulated by a built-in thermostat controller with a temperature uncertainty of ± 0.01 K and capable of measuring the density to ± 0.0001 g·cm⁻³. The uncertainty in the density for the ternary system was 0.002 g·cm⁻³. The ternary excess molar volumes V_{123}^{E} were calculated from the experimental density. The literature and experimental densities (ρ) are given in Table 1. The deviation between the reference and experimental density for the IL in Table 1 is due to different suppliers. The structure of the IL is given in Figure 1.

Results and Discussion

In Tables 2 to 5, the densities, ρ , and the excess molar volumes for the binary, V_m^E , and ternary V_{123}^E , systems are given as a function of the composition at the three temperatures. The V_{123}^E values were calculated from the experimental density values using the following equation:

$$V_{123}^{\rm E} = \frac{x_1 M_1 + x_2 M_2 + x_3 M_3}{\rho} - \frac{x_1 M_1}{\rho_1} - \frac{x_2 M_2}{\rho_2} - \frac{x_3 M_3}{\rho_3}$$
(1)

where x_1 , x_2 , and x_3 are mole fractions, M_1 , M_2 , and M_3 are the molecular masses, ρ_1 , ρ_2 , and ρ_3 are the densities of pure components 1 to 3, respectively, where 1 refers to the IL, 2 to methanol, and 3 to methyl acetate or ethyl acetate and ρ is the density of the mixture.

Table 4.	Densities and Excess Molar Volumes for IL (x_1) +
Methanol	(x_2) + Methyl Acetate (x_3) at $T = (298.15, 303.15, and$
313.15) K	

Table 4. Continued

Methanol (x ₂)	+ Methyl Ac	cetate (x_3) at $T = (2)$	98.15, 303.15, and			. 2	- F (2) 1
313.15) K		(2	, , , , , , , , , , , , , , , , , , ,	<i>x</i> ₁	x_2	$\rho/g \cdot cm^{-3}$	$V_{123}^{\text{E}}/\text{cm}^3 \cdot \text{mol}^{-1}$
x_1	<i>X</i> ₂	$\rho/g \cdot cm^{-3}$	$V_{123}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	0.1067	0 7572	z = 0.30	1.07
		T 200 15 V		0.1867	0.7573	1.0370	-1.07
		T = 298.15 K		0.3606	0.5313	1.0752	-1.63
		z = 9.00		0.5182	0.3263	1.0898	-1.95
0.0397	0.6030	0.9401	-0.30	0.6259	0.1863	1.0955	-2.00
0.0696	0.3023	0.9866	-0.57	0.7709	0.0000	1.1002	-1.78
0.0899	0.1012	1 0042	-0.49			T = 313.15 K	
0.1000	0.0000	1.0106	-0.37			1 515.15 K	
0.1000	0.0000	1.0100	0.57			z = 9.00	
		z = 4.00		0.0397	0.6030	0.9267	-0.49
0.0596	0.7022	0.9620	-0.67	0.0696	0.3023	0.9750	-1.05
0.1006	0.4969	1.0045	-0.88	0.0899	0.1012	0.9916	-0.92
0.1434	0.2835	1.0298	-1.02	0.1000	0.0000	0.9983	-0.87
0.1637	0.1812	1.0380	-1.03			1.00	
0.1999	0.0000	1.0485	-0.89	0.0506	0.7022	z = 4.00	1.15
		1.50		0.0596	0.7022	0.9526	-1.15
0.1544	0.000	z = 1.50	0.05	0.1006	0.4969	0.9960	-1.60
0.1564	0.6090	1.0295	-0.85	0.1434	0.2835	1.0206	-1.80
0.2382	0.4046	1.0566	-1.08	0.1637	0.1812	1.0278	-1./1
0.2791	0.3018	1.0650	-1.13	0.1999	0.0000	1.0370	-1.43
0.3329	0.1681	1.0735	-1.21			z = 1.50	
0.3995	0.0000	1.0814	-1.33	0.1564	0.6090	1.0210	-1.54
		z = 1.00		0 2382	0 4046	1.0485	-2.01
0.0641	0.8718	0.9545	-0.42	0.2302	0.3018	1.0570	-2.17
0.1195	0.7608	1.0070	-0.62	0.3329	0.1681	1.0570	-2.30
0.2418	0.5164	1.0565	-1.00	0.3005	0.0000	1.0032	-2.27
0.3478	0.3045	1.0754	-1.21	0.5775	0.0000	1.0720	2.21
0.4567	0.0867	1.0865	-1.31			z = 1.00	
0.4507	0.0007	1.0805	_1.31	0.0641	0.8718	0.9433	-0.65
0.5000	0.0000	1.0090	1.58	0.1195	0.7608	0.9970	-1.02
		z = 0.50		0.2418	0.5164	1.0485	-1.88
0.2615	0.6078	1.0605	-1.02	0.3478	0.3045	1.0672	-2.25
0.3983	0.4026	1.0812	-1.20	0.4567	0.0867	1.0778	-2.41
0.5309	0.2037	1.0921	-1.32	0.5000	0.0000	1.0805	-2.35
0.5997	0.1004	1.0960	-1.36			0.50	
0.6659	0.0000	1.0989	-1.34	0.0415	0.0070	z = 0.50	1 70
		0.20		0.2615	0.6078	1.0520	-1./8
0.10/7	0 7570	z = 0.30	0.70	0.3983	0.4026	1.0730	-2.22
0.1867	0.7573	1.0385	-0.78	0.5309	0.2037	1.0840	-2.57
0.3606	0.5313	1.0768	-1.14	0.5997	0.1004	1.0876	-2.61
0.5182	0.3263	1.0914	-1.28	0.6659	0.0000	1.0905	-2.69
0.6259	0.1863	1.0975	-1.35			z = 0.30	
0.7709	0.0000	1.1029	-1.28	0.1867	0.7573	1.0295	-1.33
		T = 303.15 K		0.3606	0.5313	1.0686	-2.07
				0.5182	0.3263	1 0834	-2.48
		z = 9.00		0.6259	0.1863	1.0891	-2.57
0.0397	0.6030	0.9374	-0.44	0 7709	0.0000	1 0932	-2.12
0.0696	0.3023	0.9855	-0.98	017702	0.0000	110702	22
0.0899	0.1012	1.0016	-0.81	The binary	$V_{\rm m}^{\rm E}$ data for (II. \pm methanol). ²⁴	⁴ (methanol + methyl
0.1000	0.0000	1.0069	-0.59	$acatata)^{25}$ an	d (methanol -	⊢ athyl acatata) ²⁵	were published in the
		7 = 4.00		acciaic), all		(cury acctate)	were published in the
0.0596	0 7022	0.9610	-0.93	literature, wh	nile $V_{\rm m}^{\rm L}$ data	for the binary sy	stems (IL + methyl
0.0570	0.7022	1.0040	-1.32	acetate) and ((IL + ethyl ad	etate) are given in	n Tables 2 and 3. The
0.1000	0.4909	1.0280	-1.41	Redlich-Kis	ter equation ²⁷	was fitted to the	binary literature data
0.1434	0.2855	1.0260	-1.40	to obtained t	he Redlich-	Kister parameter	at the temperatures
0.1007	0.1812	1.0303	-1.30	(200 15 202		Kister parameters	
0.1999	0.0000	1.0400	1.50	(298.15, 303)	.15, and 313.	15) K, except for	(methanol + methyl)
		z = 1.50		acetate) and (methanol + e	thyl acetate), which	ch were only obtained
0.1564	0.6090	1.0285	-1.24	for the tempe	eratures (298.)	15 and 303.15) K	because the literature
0.2382	0.4046	1.0556	-1.63	data wara not	available at t	ha tamparatura 31	3 15 K and the binary
0.2791	0.3018	1.0635	-1.66				5.15 K and the officiary
0.3329	0.1681	1.0720	-1.83	$V_{\rm m}^{\rm L}$ data are re	latively small	and do not vary gre	eatly with temperature.
0.3995	0.0000	1.0792	-1.88	The binary pa	arameters calco	ulated from the Re	dlich-Kister equation
		1.00		are given in T	Table 6. The R	edlich–Kister eau	ation is given as
0.0444	0.0710	z = 1.00	0.50	8			8
0.0641	0.8718	0.9530	-0.58			N	
0.1195	0.7608	1.0065	-0.97		$V^{\rm E} = r$	$x_{a} \sum A(1-2x)$	$)^{i-1}$ (2)
0.2418	0.5164	1.0560	-1.60		$m - \lambda_1$	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	(2)
0.3478	0.3045	1.0740	-1.81			<i>l</i> -1	
0.4567	0.0867	1.0845	-1.91	The terna	ry excess mo	lar volumes were	e correlated with the
0.5000	0.0000	1.0875	-1.93	Cibulka equ	ation ²⁸ which	h is given as	
		z = 0.50		Cibuixa equi	wine wine		
0.2615	0.6078	1 0500	-1 /3	Æ	T .E.	11	1 1
0.2013	0.0076	1.0390	_1.43	$V_{123}^{-} =$	$\sum V_{ij}^{L}(x_i, y)$	$(x_j) - x_1 x_2 x_3 (b_0 - b_0)$	$b_1 x_1 - b_2 x_2$ (3)
0.5965	0.4020	1.0/2/	_1./9	i.j=1.2	2;1.3;2.3;		
0.5509	0.2037	1.0902	-1.95	where r. r-	and ra are th	e mole fractions	of the IL methanol
0.5777	0.1004	1.0750	_1.90	where $\lambda_1, \lambda_2,$			Grane IL, methanol,
0.0039	0.0000	1.0705	1.74	metnyl aceta	ate, or ethyl	acetate, respect	uvely. The Cibulka

 x_2

 $ho/g \cdot cm^{-3}$

 $V_{123}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$

-1.46-1.52-1.58-1.62-1.61-1.50-1.38-1.20-0.55

-0.55

-1.39-1.75-2.10-2.18-1.80

-1.29

-2.08-2.39-2.36-2.20

-2.02

-1.99 -2.71 -2.21

-0.67-0.49-0.55-0.55-0.54-0.49-0.41-0.30-0.19

-1.71-1.53-1.35-1.16

-1.09-0.92-0.86-0.70-0.52-0.35

-1.80-1.60-1.45-1.31-1.24

-1.07-0.95-0.78-0.59

-1.47 -1.83

-1.83-2.30-2.43-2.01-1.68

 $-2.43 \\ -2.59$

-2.59-2.58-2.54-2.28

-2.18 -3.01-2.51

Table 5.	Densities	and Exces	s Molar	Volumes f	for IL (x ₁)	+
Methanol	$(x_2) + Et$	hyl Acetat	$e(x_3)$ at	T = (298.1)	15, 303.15	, and
313.15) K	-					

Table 5. Continued

 x_1

010010) 11						
<i>x</i> ₁	<i>X</i> ₂	$\rho/g \cdot cm^{-3}$	$V_{123}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	0.5000	0.0000	z = 1.00
1	-*2	T = 208.15 V	. 12,7	0.5009	0.0000	1.0769
		I = 298.13 K		0.3995	0.1005	1.0754
		z = 0.10		0.3453	0.2022	1.0070
0.9077	0.0000	1 1045	-0.57	0.2937	0.3073	1.0044
0.7075	0.2218	1.0986	-0.72	0.2509	0.5004	1.0370
0.6265	0.3103	1.0955	-0.87	0.1982	0.5004	1.0490
0.0203	0.3103	1.0955	-1.03	0.1962	0.0033	1.0500
0.3123	0.4309	1.0093	1.05	0.1405	0.0071	0.0260
0.4200	0.5581	1.0625	-1.09	0.0484	0.9055	0.9205
0.3364	0.6294	1.0727	-1.09			z = 1.80
0.2604	0.7133	1.0585	-0.86	0.0852	0.7613	0.9799
0.1850	0.7964	1.0371	-0.76	0.1371	0.6161	1.0144
0.0890	0.9021	0.9762	-0.19	0.1918	0.4630	1.0354
		7 = 0.43		0.2564	0.2820	1.0492
0 6097	0.0000	2, -0.+5	1 50	0.3312	0.0727	1.0575
0.0987	0.0000	1.0903	-1.58	0.3571	0.0000	1.0582
0.6273	0.1024	1.0938	-1.61			
0.5613	0.1987	1.0908	-1.64			z = 3.36
0.4837	0.3085	1.0857	-1.51	0.1053	0.5406	0.9978
0.4165	0.4048	1.0808	-1.61	0.1292	0.4363	1.0115
0.3460	0.5047	1.0734	-1.59	0.1534	0.3307	1.0198
0.2786	0.6019	1.0623	-1.34	0.1771	0.2272	1.0255
0.1999	0.7139	1.0429	-1.14	0.2028	0.1153	1.0304
0.1330	0.8099	1.0135	-0.83			7 - 750
0.0864	0.8764	0.9764	-0.45	0.0421	0 6202	2 - 7.50
				0.0421	0.0392	0.9420
		z = 1.00		0.0775	0.3300	0.9820
0.5009	0.0000	1.0815	-1.59	0.1032	0.1156	0.9915
0.4467	0.1065	1.0779	-1.60			T = 313.15 K
0.3995	0.2022	1.0742	-1.62			
0.3453	0.3073	1.0689	-1.67			z = 0.10
0.2937	0.4119	1.0621	-1.64	0.9077	0.0000	1.0933
0.2509	0.5004	1.0547	-1.60	0.7075	0.2218	1.0865
0 1982	0.6035	1 0410	-1 38	0.6265	0.3103	1.0830
0.1762	0.0033	1.0410	-1 17	0.5123	0.4369	1.0762
0.1405	0.0022	0.0212	-0.54	0.4200	0.5381	1.0683
0.0484	0.9055	0.9313	-0.34	0.3364	0.6294	1.0579
		z = 1.80		0.2604	0.7133	1.0438
0.0852	0.7613	0.9825	-1.18	0.1850	0.7964	1.0213
0.1371	0.6161	1.0185	-1.67	0.0890	0.9021	0.9631
0 1918	0.4630	1 0391	-1.96			7 - 0.42
0.2564	0.2820	1.0528	-2.00	0 (007	0.0000	z = 0.43
0.2210	0.2020	1.0520		0.698/	0.0000	1.0848
0.3312	0.0727	1.0013	-1.04	0.02/3	0.1024	1.0813
0.5571	0.0000	1.0027	-1.50	0.5015	0.1987	1.07/8
		z = 3.36		0.485/	0.3085	1.0/23
0.1053	0.5406	1.0018	-1.96	0.4105	0.4048	1.0665
0.1292	0 4363	1.0145	-2.13	0.3460	0.504/	1.0580
0.1534	0.3307	1 0222	-2.13	0.2786	0.6019	1.0472
0.1334	0.3307	1.0252	-2.13	0.1999	0.7139	1.0272
0.1771	0.2272	1.0293	-2.02	0.1330	0.8099	0.9977
0.2028	0.1153	1.0339	-1.//	0.0864	0.8764	0.9620
		z = 7.50				z = 1.00
0.0421	0.6392	0.9450	-1.78	0 5009	0.0000	1 0603
0.0775	0.3360	0.08/0	-2 30	0.3009	0.1065	1.0092
0.0773	0.1156	0.0040	-1.03	0.3005	0.1005	1.0050
0.1052	0.1130	0.7750	1.75	0.3253	0.3073	1.05/3
		T = 303.15 K		0.2027	0.4110	1.0342
		0.10		0.2937	0.4119	1.0470
0.00	A 444-	z = 0.10		0.2309	0.5004	1.0300
0.9077	0.0000	1.1006	-0.50	0.1962	0.0035	1.0245
0.7075	0.2218	1.0943	-0.52	0.1403	0.7071	1.0040
0.6265	0.3103	1.0915	-0.81	0.0464	0.9035	0.918
0.5123	0.4369	1.0859	-1.11			z = 1.80
0.4200	0.5381	1.0781	-1.02	0.0852	0.7613	0.9710
0.3364	0.6294	1.0679	-0.92	0.1371	0.6161	1.0055
0.2604	0.7133	1.0535	-0.69	0.1918	0.4630	1.0271
0.1850	0 7964	1 0291	-0.23	0.2564	0.2820	1.0410
0.0800	0.7204	0.0724	-0.25	0.3312	0.0727	1.0490
0.0090	0.7021	0.7724	0.23	0.3571	0.0000	1.0504
		z = 0.43		0.0071	5.0000	
0.6987	0.0000	1.0921	-1.40			z = 3.36
0.6273	0.1024	1.0895	-1.49	0.1053	0.5406	0.9904
0 5613	0 1987	1 0865	-1 54	0.1292	0.4363	1.0026
0.3013	0.1207	1.0005	-1.59	0.1534	0.3307	1.0109
0.4037	0.3083	1.0019	-1.30	0.1771	0.2272	1.0172
0.4165	0.4048	1.0765	-1.55	0.2028	0.1153	1.0215
0.3460	0.5047	1.0691	-1.55			
0.2786	0.6019	1.0580	-1.32			z = 7.50
0.1999	0.7139	1.0388	-1.16	0.0421	0.6392	0.9330
0.1330	0.8099	1.0095	-0.87	0.0775	0.3360	0.9730
0.0864	0.8764	0.9731	-0.56	0.1032	0.1156	0.9820

Table 6. Redlich-Kister Parameters for the Five Binary Systems at T = (298.15, 303.15, and 313.15) K

T/K	A_0	A_1	A_2	A_3	A_4	$\sigma/cm^3 \cdot mol^{-1}$
		[N	$IOA]^+[Tf_2N]^- + Met$	thanol ^a		
298.15	3.01	-3.91	-0.68	-4.54		0.03
303.15	5.05	-5.47	-6.58	-2.76	3.00	0.03
313.15	4.74	-3.75	0.31	-11.29		0.03
		[MO	A] ⁺ [Tf ₂ N] ⁻ + Methy	Acetate		
298.15	-5.65	-0.17	-2.23	4.65	4.87	0.04
303.15	-8.37	-1.27				0.46
313.15	-11.30	-7.70	2.70	12.23		0.25
		[MO	DA] ⁺ [Tf ₂ N] ⁻ + Ethyl	Acetate		
298.15	-6.00	1.64	-2.33	4.64	3.90	0.03
303.15	-6.01	1.30	-0.29	2.83	0.18	0.06
313.15	-7.25	0.99	-0.21	4.18	1.81	0.04
		Μ	lethanol + Methyl A	cetate ^b		
298.15	-0.29	0.04	0.05	0.05		0.00
303.15	-0.27	0.02	0.06	0.05		0.00
		Ν	Methanol + Ethvl Ac	etate ^b		
298.15	-0.30	-0.04	-0.08			0.00
303.15	-0.27	-0.05	-0.07			0.00

^a Reference 24. ^b Reference 25.

Table 7. Smoothing Coefficients and Standard Deviations for the Cibulka Equation at T = (298.15, 303.15, and 313.15) K

T/K	b_0	b_1	b_2	$\sigma_{\rm s}$
[MOA]	$+[Tf_2N]^-(x_1) +$	• Methanol (x_2) -	+ Methyl Acetate	$e(x_3)$
298.15	17.48	-34.92	-110.91	0.22
303.15	15.59	-43.06	-144.46	0.28
313.15	18.49	-44.98	-172.17	0.37
[MOA	$]^{+}[Tf_2N]^{-}(x_1)^{-}$	+ Methanol (x_2)	+ Ethyl Acetate	(x_3)
298.15	-32.53	57.30	-111.75	0.45
303.15	-48.60	86.45	-113.99	0.50
313.15	-62.20	122.03	-88.56	0.63

Table 8. Minimum Excess Molar Volumes for Five Binary Systems at T = (298.15, 303.15, and 313.15) K Obtained from the Literature

T/K	x_1	<i>x</i> ₂	$V_{\mathrm{m,min}}^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$				
	$[MOA]^+[Tf_2N]^- + Methanol^a$						
298.15	0.8522	0.1478	-0.234				
303.15	0.8522	0.1478	-0.292				
313.15	0.9345	0.0655	-0.344				
	$[MOA]^+[Tf_2N]^- + Methyl Acetate$						
298.15	0.5029	0.4971	-1.397				
303.15	0.6106	0.3894	-2.223				
313.15	0.6106	0.3894	-3.333				
	[MOA] ⁺ [Tf	$[_2N]^-$ + Ethyl A	Acetate				
298.15	0.5450	0.4550	-1.579				
303.15	0.5450	0.4550	-1.551				
313.15	0.5450	0.4550	-1.834				
	Methano	l + Ethyl Acet	ate ^b				
298.15	0.5006	0.4994	-0.072				
303.15	0.5006	0.4994	-0.065				
	Methano	1 + Ethyl Acet	ate ^b				
298.15	0.5963	0.4037	-0.077				
303.15	0.5963	0.4037	-0.071				

^a Reference 24. ^b Reference 25.

equation contains three parameters (b_0 , b_1 , and b_2) corrected over the five binary contributions and is included in the last term of eq 3. The values of b_0 , b_1 , and b_2 were adjusted to the experimental ternary excess molar volumes. The distinctive function was in the form of the sum of squares of residuals. The Cibulka equation parameters were adjusted to the differences between the ternary excess volumes and a sum of the binary contributions. The correlation coefficients and the standard deviation (rmsd), σ_s , values are given in Table 7. Table 8 lists all of the binary $V_{m,min}^E$ data.

Figure 2. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2 N] - (x_1) +$ methanol $(x_2) +$ methyl acetate (x_3) at 298.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.

Figure 3. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2N]^-(x_1) +$ methanol $(x_2) +$ methyl acetate (x_3) at 303.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.

From Table 4, for the ternary system $\{[MOA]^+[Tf_2N]^- + methanol + methyl acetate\}$, the minimum ternary excess molar

Figure 4. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2N]^-(x_1) +$ methanol $(x_2) +$ methyl acetate (x_3) at 313.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.

Figure 5. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2N]^-(x_1) + methanol(x_2) + ethyl acetate(x_3) at 298.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.$

volumes, $V_{123,\min}^{E}$, decrease with decreasing *z* values (increasing mole fractions of the IL) except at z = 0.30 at temperatures (298.15 and 313.15) K, where the *z* value is the ratio of the third and first components of the system ($z = x_3/x_1$). The negative values of V_{123}^{E} for (IL + methanol + methyl acetate) show that the (ion-dipole) interactions and packing effect between methanol, methyl acetate, and the IL are dominating over dissociation of the intermolecular hydrogen bonds in methanol and methyl acetate.¹⁹ Figures 2 to 4 are the ternary excess molar volume graphs obtained from using the Cibulka equation parameters for the system {[MOA]⁺[Tf_2N]⁻ + methanol + methyl acetate} at the three temperatures.

From Table 5, it can be seen that for the system $\{[MOA]^+[Tf_2N]^- + \text{methanol} + \text{ethyl acetate}\} V_{123,\min}^E$ increases with decreasing *z* values at each temperature. $V_{123,\min}^E$ decreases with an increase in the temperature in the range of the *z* values from 7.50 to 1.80 and increases with the temperature from the range of the *z* values from 1.00 to 0.10 except at temperature 303.15 K and z = 0.10, where it decreases. The negative values of V_{123}^E for (IL + methanol + ethyl acetate) are due to the same effects that occur in the ternary (IL + methanol + methyl acetate) system.

Figures 5 to 7 are the ternary excess molar volume graphs obtained from using the Cibulka equation parameters for the system

Figure 6. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2N]^-(x_1) + methanol(x_2) + ethyl acetate (x_3) at 303.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.$

Figure 7. Graph of excess molar volumes, V_{123}^{E} , of the ternary mixture for $[MOA]^+[Tf_2N]^-(x_1) + methanol(x_2) + ethyl acetate (x_3) at 313.15 K. The solid lines were calculated by the Cibulka equation with the values of the parameters fitted to the binary and ternary data.$

 ${[MOA]^+[Tf_2N]^- + \text{methanol} + \text{ethyl acetate}}$ at the three temperatures. The V_{123}^E values are more negative for the ${[MOA]^+[Tf_2N]^- + \text{methanol} + \text{ethyl acetate}}$ system than for the ${[MOA]^+[Tf_2N]^- + \text{methanol} + \text{methyl acetate}}$ system at all temperatures and also decrease for both ternary systems with an increase in the temperature. The Cibulka equation indicated that the ternary contribution (three-body effect) is dominant.

Literature Cited

- Zafarani-Moattar, M. T.; Shekaari, H. Application of Prigogine– Flory–Patterson theory to excess molar volume and speed of sound of 1-*n*-butyl-3-methylimidazolium hexafluorophosphate or 1-*n*-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile. *J. Chem. Thermodyn.* 2006, *38*, 1377–1384.
- (2) Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. *Chem. Rev.* 1999, 99, 2071–2083.
- (3) Sheldon, R. Catalytic reactions in ionic liquids. *Chem. Commun.* 2001, 23, 2399–2407.
- (4) Yang, J.-Z.; Lu, X.-M.; Gui, J.-S.; Xu, W.-G.; Li, H.-W. Volumetric properties of room temperature ionic liquid. 2. The concentrated aqueous solutions of {1-methyl-3-ethylimidazolium ethyl sulfate + water} in a temperature range of 278.2 to 338.2 K. J. Chem. Thermodyn. 2005, 37, 1250–1255.
- (5) Earle, M.; Seddon, K. R. Ionic liquids. Green solvents for the future. *Pure Appl. Chem.* 2000, 72, 1391–1398.

- (6) Wang, H.; Liu, W.; Huang, J. Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K. J. Chem. Thermodyn. 2004, 36, 743–752.
- (7) Smith, G. P.; Dworkin, A. S.; Pagni, R. M.; Zingg, S. P. Broensted superacidity of hydrochloric acid in a liquid chloroaluminate. Aluminum chloride–1-ethyl-3-methyl-1*H*-imidazolium chloride (55.0 m/o AlCl₃). J. Am. Chem. Soc. **1989**, 111, 525–530.
- (8) Wasserscheid, P.; Keim, W. Catalysis with polymer-stabilized colloids in biphasic systems. Angew. Chem. 2000, 112, 3926–3945.
- (9) González, E. J.; González, B.; Calvar, N.; Domínguez, Á. Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at *T* = (298.15, 313.15, and 328.15) K and Atmospheric Pressure. *J. Chem. Eng. Data* **2007**, *52*, 1641–1648.
- (10) Seddon, K.; Stark, A.; Torrez, M.-J. In *Clean Solvents: Alternative Media for Chemical Reactions and Processing*; ACS Symposium Series 819; Abraham, M. A., Moens, L., Eds.; American Chemical Society: Washington, DC, 2002; p 34.
- (11) Abdulagatov, I. M.; Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. Densities and Excess, Apparent, and Partial Molar Volumes of Binary Mixtures of BMIMBF₄ + Ethanol as a Function of Temperature, Pressure, and Concentration. *Int. J. Thermophys.* 2008, 29, 505– 533.
- (12) Pires, R. M.; Costa, H. F.; Ferreira, A. G. M.; Fonseca, I. M. A. Viscosity and Density of Water + Ethyl Acetate + Ethanol Mixtures at 298.15 and 318.15 K and Atmospheric Pressure. J. Chem. Eng. Data 2007, 52, 1240–1245.
- (13) Venkatesu, P.; Sekhar, G. C.; Rao, M. V. P.; Hofman, T. Excess molar volumes of *N*,*N*-dimethylformamide + 2-pentanone + alkan-1-ols mixed solvent systems at 303.15 K. *Thermochim. Acta* **2006**, *443*, 62–71.
- (14) Oswal, S. L.; Putta, S. S. R. Excess molar volumes of binary mixtures of alkanols with ethyl acetate from 298.15 to 323.15 K. *Thermochim. Acta* 2001, 373, 141–152.
- (15) Gómez, E.; González, B.; Calvar, N.; Domínguez, Á. Excess molar properties of ternary system (ethanol + water + 1, 3-dimethylimidazolium methylsulphate) and its binary mixtures at several temperatures. *J. Chem. Thermodyn.* **2008**, *40*, 1208–1216.
- (16) Deenadayalu, N.; Kumar, S.; Bhujrajh, P. Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures. J. Chem. Thermodyn. 2007, 39, 1318–1324.
- (17) González, B.; Calvar, N.; Gómez, E.; Domínguez, Á. Physical properties of the ternary system (ethanol + water + 1-butyl-3methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 2008, 40, 1274–1281.
- (18) Andreatta, A. E.; Arce, A.; Rodil, E.; Soto, A. Physical and excess properties of (methyl acetate + methanol + 1-octyl-3-methylimida-

zolium bis(trifluoromethylsulfonyl)imide) and its binary mixtures at T = 298.15 K and atmospheric pressure. *J. Chem. Thermodyn.* **2009**, *41*, 1317–1323.

- (19) Deenadayalu, N.; Bhujrajh, P. Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM]⁺[BETI]⁻ or ([EMIM]⁺[CH₃(OCH₂CH₂)₂OSO₃]⁻ + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K. J. Chem. Eng. Data 2008, 53, 1098–1102.
- (20) Deenadayalu, N.; Sen, S.; Sibiya, P. N. Application of the PFV EoS correlation to excess molar volumes of (1-ethyl-3-methylimidazolium ethylsulfate + alkanols) at different temperatures. *J. Chem. Thermodyn.* 2009, *41*, 538–548.
- (21) Bhujrajh, P.; Deenadayalu, N. Liquid Densities and Excess Molar Volumes for Binary Systems (Ionic Liquids + Methanol or Water) at 298.15, 303.15 and 313.15 K, and at Atmospheric Pressure. J. Solution Chem. 2007, 36, 631–642.
- (22) Deenadayalu, N.; Ngcongo, K. C.; Letcher, T. M.; Ramjugernath, D. Liquid–Liquid Equilibria for Ternary Mixtures (an Ionic Liquid + Benzene + Heptane or Hexadecane) at *T* = 298.2 K and Atmospheric Pressure. *J. Chem. Eng. Data* **2006**, *51*, 988–991.
- (23) Deenadayalu, N.; Thango, S. H.; Letcher, T. M.; Ramjugernath, D. Measurement of activity coefficients at infinite dilution using polar and non-polar solutes in the ionic liquid 1-methyl-3-octyl-imidazolium diethyleneglycolmonomethylethersulfate at T = (288.15, 298.15, and 313.15) K. J. Chem. Thermodyn. **2006**, *38*, 542–546.
- (24) Sibiya, P. N.; Deenadayalu, N. Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures. J. Chem. Thermodyn. 2008, 40, 1041–1045.
- (25) González, B.; Calvar, N.; Gómez, E.; Domínguez, Á. Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at *T* = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. **2007**, *39*, 1578–1588.
- (26) Morávková, L.; Linek, J. Excess molar volumes of (octane + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures between (298.15 and 328.15) K. J. Chem. Thermodyn. 2008, 40, 671– 676.
- (27) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and classification of solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (28) Cibulka, I. Estimation of excess volume and density of ternary liquid mixtures of nonelectrolytes from binary data. *Collect. Czech. Commun.* **1982**, 47, 1414–1419.

Received for review October 28, 2009. Accepted April 28, 2010.

JE900906J