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Attention is drawn to John Rowlinson’s idea that the repulsive portion of the intermolecular interaction
may be replaced by a temperature-dependent hard sphere diameter. It is this approximation that made the
development of perturbation theory possible for realistic fluids whose intermolecular interactions have a
steep, but finite, repulsion at short separations.

Perturbation theory1-4 is one of the important developments in
the theory of the properties of simple liquids. In fact, perturba-
tion theory was the first successful method for what previously
had been an intractable theoretical problem. In perturbation
theory, the fluid is considered to be similar to a reference fluid
with known correlation functions and thermodynamic properties,
and the functions and properties of the fluid of interest may be
calculated by means of a rapidly convergent expansion.

Three steps contributed to the development and utility of
perturbation theory. First, a convenient and accurate theory
became available for the radial distribution function and
thermodynamics of a useful unperturbed or reference fluid, the
hard sphere fluid, whose intermolecular or pair potential is zero
until the spheres come into contact at a distance, d, the hard
sphere diameter, which then is positive and infinite. Secondly,
convenient expressions have been formulated for the second-
and higher-order perturbation terms in a perturbation expansion.
However, without the third step, perturbation theory would have
been restricted to fluids whose molecules had an infinitely hard
repulsive core and, thus, would be limited in usefulness. The
third contribution was the idea that the steep, but not infinitely
steep, repulsive force between realistic molecules at short
separations can be approximated by an effective temperature-
dependent hard sphere potential. It is this third step that is the
subject of this paper.

The pair potential is the potential energy of a pair of
molecules in the fluid and is important because this function,
when added together with the pair potentials of all of the pairs
of molecules in the fluid, gives the dominant contribution to
the potential energy of the system that is being considered (the
entire contribution if the potential energy is pairwise additive).
The thermodynamic properties are obtained from an integral,
the partition function, of the Boltzmann term, the exponential
of the negative of the potential energy, divided by kT, where k
is the Boltzmann constant and T is the temperature.

Prior to the perturbation theories cited above, Frisch et al.5

formulated a first-order perturbation theory for a Lennard-Jones
12-6 (LJ) fluid whose intermolecular potential is given by

u(R) ) 4ε{(σ
R)12

- (σ
R)6} (1)

where R is the separation of the molecules, ε is the maximum
strength of the attractive interaction, and σ is the value of R at

which u(R) changes from negative to positive values. The LJ
potential mimicks a realistic fluid, such as argon. However, their
theory was limited in usefulness by the fact that the unperturbed
fluid was a hard sphere fluid and, to a lesser extent, by the lack
of higher order terms in the expansion. The repulsion between
LJ molecules is not infinitely hard. Later, Barker and Henderson1

(BH) developed a simple approximation for the second-order
term, which they called the compressibility approximation, and
successfully applied their approach to a fluid whose molecules
interact by means of a square well potential (which does have
a hard repulsion), and so separated the question of whether the
repulsive core can be approximated as hard from the utility of
perturbation theory. They obtained excellent results; this was a
valuable step but, in the absence of a method of dealing with
the finite slope of a repulsive potential, was not directly
applicable to, say, the LJ fluid.

The key to the final step was the earlier work of Rowlinson.6,7

He considered a repulsive, R-n, intermolecular potential,

u(R) ) ε′(σ′
R )n

(2)

ε′ > 0, σ′, and n > 0 are parameters specifying the strength and
steepness of this potential. Rowlinson suggested that if n was
large, this inverse n fluid could be replaced by an equivalent
hard sphere fluid with an effective diameter. He found that n )
12 was large enough for his method to be applicable. Consider
the f-function for a given pair interaction, u(R),

f(R) ) exp{-�u(R)} - 1 (3)

where � ) 1/kT. The f-function is the excess of the Boltzmann
term of a molecular pair over that of a pair of ideal gas
molecules.

We can obtain Rowlinson’s result by defining the f-function
of the equivalent, effective hard sphere potential by setting the
integral of the equivalent hard sphere f-function equal to that
of the R-n fluid. Thus,

∫0

∞
fHS(R) dR ) ∫0

∞
f(R) dR (4)

where fHS(R) is the f-function of a hard sphere fluid of diameter
d and f(R) is the f-function of the fluid of interest, defined by
eqs 2 and 3. Since fHS(R) is -1 for R < d and zero otherwise,
the first integral is just -d. Evaluating the second integral and
expanding to order n-1 gives Rowlinson’s result for the
temperature-dependent effective hard sphere diameter that
represents the n-1 fluid,
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d ) σ(�ε)-n(1 + γ
n ) (5)

where γ ) 0.5772157... is Euler’s constant. Rowlinson found
that an effective diameter given by eq 5 gave good results for
a fluid described by eq 2 with n ) 12.

McQuarrie and Katz8 then applied the theory of Frisch et al.
with the R-6 part of the LJ potential being the perturbation
energy and with the R-12 term being the potential that defines
the unperturbed fluid. They treated the unperturbed system by
Rowlinson’s method. The results were not encouraging. This
is partly due to the fact that the perturbation expansion was
taken only to first order but, as pointed out by Barker and
Henderson,2 is mainly due to the fact that the magnitude of the
maximum value of the perturbation energy in their treatment is
4ε. As a result, because the perturbation parameter enters as
�u(R), the expansion parameter can become as large as 4 (or
even larger near the triple point). Thus, the McQuarrie-Katz
treatment is really a theory of the LJ fluid at high temperatures,
much above the critical temperature.

Barker and Henderson2 proposed another separation of the
LJ potential into the unperturbed energy and the perturbation
energy. They suggested that the unperturbed part of u(R) be
the part for which R < σ and the perturbation energy be the
part for which R > σ. They developed a parametrization of u(R)
for R < σ in terms of an inverse steepness parameter, R, such
that, for R ) 0, the perturbation energy was the hard sphere
energy and, for R ) 1, the R < σ part of the LJ energy was
recovered. Although the approach is seemingly different from
that of Rowlinson, it is interesting that the BH approach led to
eq 4 but with the upper limit in the integral on the right-hand
side (rhs) equal to σ rather that ∞. Thus, the hard sphere fluid
with a temperature-dependent value of d could be used as a
reference fluid. This is very convenient. Values for d(T) can be
computed at the beginning and parametrized. The BH theory,
when taken to second order using the compressibility ap-
proximation, gave accurate results, even for temperatures as low
as the triple-point temperature, where �ε is about 1.4.

Subsequently, Weeks, Chandler, and Andersen developed an
alternative perturbation theory that is based on a different
separation of u(R) into unperturbed and perturbed energies. It

is interesting that their theory also represents the reference fluid
by a hard sphere fluid with a state-dependent diameter. In their
theory, the effective diameter is given by an equation that is
similar to eq 4 but with a hard sphere correlation function inside
the integral on the rhs. This leads to values of d that are
temperature- and density-dependent, which is slightly less
convenient but manageable.

Personal Note

John Rowlinson has made many contributions to the develop-
ment and history of science and to the growth of science in the
U.K. For these contributions he deservedly has been knighted.
A few years ago, I teased John about the fact that a colleague
of mine addressed John in an email as Sir Rowlinson, rather
the more correct Sir John. I trust that John realizes that I was
amused by my colleague’s error and not John’s knighthood,
which I endorse wholeheartedly.
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