
Thermal Motion in Water + Electrolyte Solutions According to Quasi-Elastic
Incoherent Neutron Scattering Data†

Tatjana V. Lokotosh,‡ Nikolay P. Malomuzh,‡ and Kirill N. Pankratov*,§

Department of Theoretical Physics, Odessa National University, 2 Dvoryanskaja str., Odessa 65026, Ukraine, and Odessa
National Polytechnic University, 1 Shevchenko av., Odessa 65044, Ukraine

The main attention of this article is focused on the study of the physical mechanisms of thermal motion in
water and water + electrolyte solutions that lead to the broadening of the incoherent neutron scattering
peak. It is taken into account that the neutron peak has a diffusion nature and is described by a Lorentzian
line shape only for wave vectors k having magnitudes |k| ≡ k , 1/a, where a is the interparticle spacing.
A modified version of the theory developed by Singwi and Sjolander (Phys. ReV. 1960, 119, 863) for the
description of the Lorentzian half-width is proposed. It is shown that for k > 1/a, the neutron peak is
described by a Gaussian line shape whose half-width is proportional to the average thermal velocity of the
Lagrange particles. The relevant theoretical parameters can be determined by fitting experimental data for
the half-width of the neutron peak. In such a way, the self-diffusion coefficients of water molecules, their
collective parts, and the residence times as well as the radii of the Lagrange particles for the pure water and
water + electrolyte solutions were determined. It is established that the specificity of the self-diffusion
process in water + electrolyte solutions is mainly determined by the relation between a and the radius rI+

of the cations I+. The hydrated shell becomes more stable as the inequality rI+ < a/2 becomes stronger. In
the opposite case, its stability decreases. It is shown that the sizes of the Lagrange particles determined by
different independent methods are consistent with each other. This fact is very important, since it testifies
to the self-consistency of the obtained results.

Introduction

The investigation of the character of the thermal motion in
water + electrolyte solutions has a long history. The circum-
stantial description of numerical experimental results and
theoretical concepts is presented in the remarkable monograph
by Barthel, Krienke, and Kunz.1

The goal of this paper is to complete our knowledge of this
problem by the careful analysis of experimental data2-12

obtained with the help of quasi-elastic incoherent neutron
scattering. Our main attention is focused on the careful study
of the temperature and concentration dependences of the
following characteristics of the thermal motion in water +
electrolyte solutions: the self-diffusion coefficient Ds of water
molecules, its collective part Dc, and the residence time τ0 for
water molecules. These parameters have been determined by
fitting the experimental data on the half-width of the neutron
scattering peak to theoretical expressions.

In connection with this, we note that a theoretical model
involving the parameters Ds and τ0 was first developed by
Singwi and Sjolander.13 More definitely, in ref 13 it was
supposed that the thermal motion in water and water +
electrolyte solutions has crystal-like character, i.e., that a
molecule oscillates near the temporary equilibrium position
during the residence time, after which it shifts during a transition
time τ1 , τ0 to another temporary equilibrium position. The
theoretical model developed in ref 13 also includes an additional
diffusion coefficient D1 describing the random shift of a

molecule during the transition time. The results of this work
were used in refs 3-5 for the determination of Ds and τ0.

The representations stated in ref 13 were generalized in ref
14, where it was noted that in addition to having relative motion
with respect to its nearest neighbors, a molecule randomly drifts
together with them in the field of thermal hydrodynamic
fluctuations. It is necessary to emphasize that the notion of the
collective transport is only applicable for liquids, in which
fluctuation microflows arise. In particular, they are responsible
for the stochastic drift of Brownian particles. According to ref
14, this process is characterized by the collective self-diffusion
coefficient Dc. Thus, the full self-diffusion coefficient of a
molecule should be considered as the sum of the relative (i.e.,
one-particle) and collective parts. The concept of collective
transport in liquids was developed in detail in refs 15-18. The
first attempt to determine the key theoretical parameters Ds, Dc,
and τ0 was undertaken in refs 8 and 9. It is necessary to note
that Ds and τ0 are also the key parameters for a model involving
jumplike diffusion.19

Unfortunately, the results presented in refs 8, 9, and 11 and
numerous other works are not quite reliable. This problem is
caused by the circumstance that the experimental data for the
half-width of the neutron peak have been fitted using theoretical
formulas from refs 13 and 14 over the interval 0 < k2 < 10 Å-2,
where k ) |k| is the magnitude of the wave vector k; this interval
is too large, since such fits are correct only for 0 < k2 , (Dsτ0)-1

≈ 1 Å-2, as noted in refs 18, 20, and 21. This is obvious because
the use of the diffusion concept on spatial scales smaller than
the interparticle spacing [(1 to 3) Å] is meaningless from a
physical point of view. Ignoring this circumstance leads to
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considerable inaccuracies in the numerical values of the key
theoretical parameters.20,21

In the present work, we present numerical values of Ds, Dc,
and τ0 obtained for water molecules in pure water and several
water + electrolyte solutions, discuss the role of different ion
parameters in the formation of the temperature and concentration
dependences of the enumerated transport coefficients, and
compare estimates of the size of the Lagrange particles obtained
using several independent methods. The paper ends with a
discussion of the results obtained, in which the main attention
is focused on the physical nature of the self-diffusion in water
+ electrolyte solutions and the peculiarities of the hydration
effects.

All of our calculations are based on the theoretical methods
presented in two appendixes. In Appendix 1, we develop the
consecutive diffusion model for the half-width of the quasi-
elastic incoherent neutron scattering peak, which corresponds
to crystal-like representations of the character of the thermal
motion in water and water + electrolyte solutions. In Appendix
2, we derive a model for the half-width of the neutron peak
outside region of applicability of the diffusion approximation
[i.e., for k2 > (Dsτ0)-1 ≈ 1 Å-2].

Results

QualitatiWe Analysis of the Thermal Motion in Water. The
character of the thermal motion in water is different in an
essential way from that in argon and other simple liquids. This
distinction is caused by the formation of H bonds. Because of
them, as was established long ago,22,23 the local structure of
water near its melting point as well as in supercooled states is
close to the regular structure in the hexagonal ice. There is also
a similarity in the thermal motion: the oscillation motion of
molecules is observed during the lifetime of local molecular
configurations in liquid water.

Let τ0 be the characteristic time for small oscillations of a
molecule near its temporary equilibrium position. Often (includ-
ing here), this time is called the residence time.24 The
characteristic time τ1 during which a molecule is displaced from
one vibration state to another will be called the transition time.
The character of small oscillations in supercooled water is close
to that in the hexagonal ice, where each molecule is connected
with its nearest neighbors by four H bonds. However, the values
of τ0 in these two media are different: τ0 ) ∞ for hexagonal ice
but has a finite value for supercooled and normal water. One can
say that the thermal motion in water has crystal-like character if
τ0 . τ1. This situation is illustrated in Figure 1. An increase in
temperature leads to a diminution of nH, the average number of H
bonds per molecule. However, till nH > 2, the H-bond network
remains to be ordered in the three-dimensional space.

In accordance with its physical meaning, the transition time
τ1 should be identified with the characteristic time of soft
collisions between molecules: τs ≈ a/VT, where VT is the average

value of the thermal velocity of a molecule. The value of τs

weakly decreases as the temperature increases. In contrast to
this, the residence time varies more considerably. It decreases
as the temperature increases, and its value tends to the transition
time τ1.

The temperature TH defined as the solution of the equation

τ0(TH) ) τ1(TH) (1)

specifies the upper temperature limit for the applicability of
crystal-like representations. In other words, it can be interpreted
as the temperature of the dynamic phase transition from the
crystal-like picture of thermal motion in water to the argon-
like one.

Let us estimate the numerical value of τ ) τ0 + τ1. Within
an order of magnitude, the self-diffusion coefficient is given
by Ds ≈ a2/6τ. Since Ds ≈ 10-5 cm2 · s-1 at room temperature
for water and other usual liquids, it follows that

τ ≈ a2

6Ds
≈ 10-12 s (2)

When the temperature decreases, the number of H bonds per
molecule increases, and random drift of a molecule becomes
more hindered. As a result, Ds decreases with temperature,
leading to the growth of τ. Since τ1 remains practically constant,
we conclude that τ0 should essentially increase as the temper-
ature decreases.

For temperatures T > TH, crystal-like representations of the
thermal motion in water become inapplicable. In this temperature
regime, the character of the thermal motion is similar to that in
simple liquids, which do not form H bonds.

Thermal Motion in Pure Water. To determine the self-
diffusion coefficient Ds, its one-particle part Ds

(1), or its collective
part Dc ) Ds - Ds

(1) along with the residence time τ0, we fit the
experimental data5-7,11,12 for γD, the half-width of the diffusion
peak, using eq A1.24. Since the number of experimental data
points for γD(k2) with k , 1 Å-1 does not exceed 1 to 3, we
used all of the points for which ke 1 Å-1. The numerical values
of Ds, Dc, and τ0 determined for different temperatures T < TH,
where TH ≈ 315 K,20,25,26 are presented in Tables 1 to 3.

The values of Ds in Table 1 are in quite good agreement with
those determined in the cited works, where they were calculated
according to the formula Ds ) [dγD(k2)/dk2]k2f0. In contrast to
this, the values of τ0 presented in ref 12 differ considerably
from our results in Table 1. For example, the following values
of τ0 were found: 2.4 ·10-12 s at 274 K (ref 4) and 3 · 10-12 s at
283 K (ref 5). Such a distinction is connected with the
application of eq A1.21 far away from its applicability region.
In the mentioned works, eq A1.21 was used in fitting experi-
mental data over the range 0 < k2 e 5 Å-2. Attempts to
determine the collective part of the self-diffusion coefficient Dc

were first undertaken in refs 8, 9, and 14. Those values differ
significantly from ours, as they also were obtained using a too-
large interval of wave vectors. This circumstance was first noted
in refs 18 and .

Detailed theoretical analyses of the collective self-diffusion
problem are given in refs 15, 16, and 18. In particular, ref 18
gives the following expression for Dc:

Dc )
kBT

10πη√ντM

(3)

in which kB is the Boltzmann constant, η and ν are the dynamic
and kinematic shear viscosities (ν ) η/F, where F is the density),
and τM is the Maxwell relaxation time for shear tension.

Figure 1. Crystal-like character of thermal motion in water (X is one of
the components of the radius vector; it and the time t are given in arbitrary
units).
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According to refs 18 and 21, the temperature dependence of τM

can be approximated by the formula

τM(T) ) τM(T0)( ν(T)
ν(T0))

3/4
(4)

However, such a simple temperature dependence probably takes
place only for one-component liquids. If a system has two or
more components, its shear viscosity and viscoelastic modulus
change. The framework of the Maxwell construction gives τM

) η/G, which shows that the temperature dependence of τM is
determined by both the shear viscosity and the high-frequency
shear modulus G. In particular, the addition of an electrolyte to
water is accompanied by an increase in its density,27,28 which
would be expected to lead to an increase in G.

It should be noted that H bonds limit the value of the
displacement of a molecule during the elementary diffusion act.
To an order of magnitude, the corresponding mean square
displacement 〈∆r1

2〉1/2 ≈ (6Dsτ)1/2 of a molecule should not
exceed the H-bonding length (i.e., about 1 Å). The estimates
given in Table 4 testify that this condition is satisfied by the
experimental data in refs 5 and 7.

To an order of magnitude, the ratio Ds/Dc is proportional to
the ratio r̃L ) rL/rw of the Lagrange particle radius to the radius
of a molecule. This quantity can be found independently from
the analysis of the half-widths for the neutron peak over the
range k > 1 Å-1 (as discussed in the next section).

Peculiarities in the Thermal Motion of Water Molecules
in Water + Electrolyte Solutions. This section is devoted to a
consideration of peculiarities in the diffusion of water molecules
in water + electrolyte solutions, for which numerous experi-

mental data have been obtained using quasi-elastic incoherent
neutron scattering.

We expect the thermal motion of water molecules in water
+ electrolyte solutions to also have crystal-like character, since,
like H bonds, the electric field of the ions holds water molecules
in the vicinity of the ions. It is necessary to take into account
the fact that the temporary equilibrium position of a water
molecule can be situated in either bulk water (w) or the
hydration shell of an ion (h). In correspondence with this, we
differentiate between the residence times τ0

(w) and τ0
(h), which

depend on the ion concentrations.
It seems evident that for dilute water + electrolyte solutions,

the diffusion peak is mainly formed by molecules from the bulk
water. Therefore the half-width of the diffusion peak is given
by

γD(k2) ≈ Dsk
2 - τ0

(w)Ds
(1)2k4 + τ0

(w)2Ds
(1)3k6 + ... (5)

where all designations are analogous to those in eq A1.24. In
the opposite case, when practically all of water molecules are
in the hydrate shells, eq A1.24 becomes

γD(k2) ≈ Dsk
2 - τ0

(h)Ds
(1)2k4 + τ0

(h)2Ds
(1)3k6 + ... (6)

It seems to be evident that the character of the thermal motion
of water molecules in dilute water + electrolyte solutions should
change insignificantly relative to that in pure water. Therefore,
the values of the main parameters Ds, Ds

(1) [or Dc ) Ds - Ds
(1)],

and τ0
(w) are expected to be close to those for pure water. This

supposition is partially confirmed by values of Ds and τ0
(w)

collected in Table 5 (in this table and elsewhere, the concentra-
tion of electrolyte is expressed in terms of zw, the number of
water molecules per ion). Comparison with the corresponding
parameters for pure water at the close temperature T ) 293 K
(Ds ) 2.2 ·10-5 cm2 · s-1, Dc ) 0.17 ·10-5 cm2 · s-1, and τ0 )
0.8 ·10-12 s) shows that only the values of Dc in water +
electrolyte solutions differ significantly from those in pure water.

The concentration dependences of the enumerated parameters
at another temperature (T ) 274 K) are presented in Table 6.

Table 1. Values of the Self-Diffusion Coefficient Ds Determined from Fits of Experimental Data for the Half-Width of the Incoherent Neutron
Scattering Peak Using Equation A1.24

T/K

255 268 270 278 283 285 293 295 298 308

105 ·Ds/cm2 · s-1 0.97a 1.25a 1.77b 1.45a 2.25b 1.83a 2.25a 2.5c 2.3e 3.65b

1.9c 2.35d 4c

a Data from ref 7. b Data from ref 5. c Data from ref 12. d Data from ref 6. e Data from ref 11.

Table 2. Values of the Collective Part of the Self-Diffusion Coefficient Dc Determined from Fits of Experimental Data for the Half-Width of the
Incoherent Neutron Scattering Peak Using Equation A1.24

T/K

255 268 270 278 283 285 293 295 298 308

105 ·Dc/cm2 · s-1 0.08a 0.08a 0.1b 0.11a 0.12b 0.16a 0.18a 0.13c 0.2e 0.3b

0.1c 0.21d 0.2c

a Data from ref 7. b Data from ref 5. c Data from ref 12. d Data from ref 6. e Data from ref 11.

Table 3. Values of the Residence Time τ0 Determined from Fits of
Experimental Data for the Half-Width of the Incoherent Neutron
Scattering Peak Using Equation A1.24

T/K

255 268 270 278 283 285 293 295 298 308

1012 · τ0/s 7.2a 2.2a 1.3b 1.19a 0.85b 0.69a 0.5a 1.15c 0.7e 0.45b

1.9c 0.45d 1c

a Data from ref 7. b Data from ref 5. c Data from ref 12. d Data from
ref 6. e Data from ref 11.

Table 4. Mean Square Displacement of a Molecule during the
Elementary Diffusion Act and Ratio of the Self-Diffusion Coefficient
to Its Collective Part Calculated According to Reference 7

T/K 268 278 285
6Dsτ ·1016/cm2 1.65 1.04 0.76
Ds/Dc 15.62 13.18 11.44

Table 5. Values of the Parameters for Dilute Water + Electrolyte
Solutions at T ) 298 K Obtained on the Basis of Experimental Data
from Reference 11

rI+ 105 ·Ds 105 ·Dc 1012 · τ0
(w)

electrolyte Å zw cm2 · s-1 cm2 · s-1 s

LiCl 0.78 55.6 2.15 0.95 0.8
27.8 1.95 0.85 1.2

NaCl 0.98 27.8 2 0.45 0.7
13.9 1.75 0.43 0.9

CsCl 1.65 27.8 2.35 0.25 0.7
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Here τ0
(e), the residence time for the electrolyte solution (e),

coincides with τ0
(w) for dilute solutions and τ0

(h) for concentrated
ones. As we can see, the values of Ds and τ0 for very dilute
solutions are close to those for pure water (Ds ) 1.37 ·10-5

cm2 · s-1 and τ0 ) 1.18 ·10-12 s). The distinction between the
values of Dc for pure water (Dc ) 0.1 ·10-5cm2 · s-1) and dilute
water + electrolyte solutions is significantly smaller here than
in Table 5. From a physical point of view, the values of Dc

from Table 6 seem to us more suitable.
It is appropriate to complete our results by examining the

concentration dependences of the self-diffusion coefficients for
water molecules in water + electrolyte solutions that were
presented in ref 29 (see Table 7). The data show a strong
concentration dependence of Ds for the water + LiCl solution,
a significantly weaker dependence for water + NaCl, and a
practically constant value of Ds for water + KCl.

It seems to be natural to connect such behavior of Ds and τ0

with the radius of cations. More definitely, we suppose that the
key role is played by the relation between the cation radius rI+

and rw, defined as half of the interparticle spacing between the
nearest neighbors in pure water, which is approximately equal
to 1.4 Å. As Tables 5 and 8 show, the radius of the K+ cation
is very close to rw, so for it the concentration dependence for
Ds is practically absent. In addition, we can see the following:
(1) Addition of electrolyte (i.e., decreasing zw) leads to a
decrease in the self-diffusion coefficient of water molecules for
all of the water + electrolyte solutions in which the cation radius
is smaller than rw. This effect is more pronounced as the
inequality rI+ < rw becomes stronger. (2) The increase in the
residence times of water molecules with increasing electrolyte
concentration in water + electrolyte solutions for which rI+ <
rw testifies to the stabilization of molecular configurations upon
the addition of electrolyte. (3) The influence of cations for which
rI+ > rw is the opposite. The addition of such electrolytes should
lead to the destruction of molecular configurations. From this
point of view, the concentration dependences of Ds and τ0

(e) for
the water + CsCl solution becomes quite clear.

To clear up the role of the shear viscosity in the self-diffusion
process, let us compare the ratios of the self-diffusion coef-

ficients of water molecules in electrolyte solutions and pure
water with the corresponding ratios of the shear viscosity
coefficients. At T ) 296 K and zw ) 27, we find the following
from refs 28 and 29:

Ds(water + LiCl)

Ds(water)
) 0.94,

Ds(water + NaCl)

Ds(water)
) 0.95,

Ds(water + KCl)

Ds(water)
) 1.02

and

η(water)
η(water + LiCl)

) 0.85,
η(water)

η(water + NaCl)
) 0.92,

η(water)
η(water + KCl)

) 0.99.

Thus, the behavior of the self-diffusion coefficients does not
follow that of the shear viscosities. We see again that the cation
sizes influence the values of these kinetic coefficients in an
essential way. This problem needs the careful study.

The variation of the parameters of the thermal motion with
temperature in concentrated water + electrolyte solutions (zw

) 6.05) is presented in Table 8. The corresponding values of
the same parameters for pure water, taken from Tables 1 to 3,
are collected in Table 9. From Tables 8 and 9, it follows that
the temperature dependences of all of the considered parameters
are more trivial: (1) Ds and Dc increase with temperature, and
(2) τ0

(h) decreases when as the temperature increases. Also, the
temperature dependence of τ0

(h) is significantly weaker than for
pure water. This means that H bonds play a considerably lesser
role in concentrated solutions, where the character of the thermal
motion of the water molecules is determined by the influence
of the electric field of the ions. The close values of Ds for
different water + electrolyte solutions is the most characteristic

Table 6. Concentration Dependences of Ds, Dc, and τ0 for Water
Molecules in Water + Electrolyte Solutions at T ) 274 K Obtained
on the Basis of Experimental Data from Reference 4

105 ·Ds 105 ·Dc 1012 · τ0
(e)

electrolyte zw cm2 · s-1 cm2 · s-1 s

CsCl 55.6 1.2 0.2 1.8
11.1 1.35 0.25 1.6
6.05 1.4 0.3 1.5
2.9 1.5 0.3 1.2

NaCl 5.9 1.2 0.17 1.45
6.05 1 0.15 1.8
4.54 0.85 0.12 2.4

LiCl 55.6 1,1 0.07 1.2
9.27 1 0.16 1.9
6.05 0.9 0.18 2.3
2.78 0.5 0.21 9
1.85 0.27 0.12 24

Table 7. Concentration Dependences of the Self-Diffusion
Coefficients for Water Molecules in Water + Electrolyte Solutions
at 296 K Given in Reference 35

105 ·Ds(LiCl) 105 ·Ds(NaCl) 105 ·Ds(KCl)

zw cm2 · s-1 zw cm2 · s-1 zw cm2 · s-1

49.6 2.27 126.3 2.36 126.3 2.48
24.8 2.18 64.6 2.4 64.7 2.49
9.93 1.75 32.2 2.29 32.3 2.4
4.96 1.13 16 2.14 16.1 2.44
2.48 0.31 8 1.8 8.1 2.38

Table 8. Values of the Self-Diffusion Coefficients, Their Collective
Parts, and the Residence Times for Concentrated Water +
Electrolyte Solutions

T rI+ 105 ·Ds 105 ·Dc 1012 · τ0
(h)

electrolyte K Å zw cm2 · s-1 cm2 · s-1 s ref

LiCl 348 0.78 6.05 4.6 1.05 0.6 3
323 2.5 0.5 0.8
298 1.9 0.37 2
274 0.8 0.15 2.3
298 5.56 1.05 0.90 11

NaCl 348 0.98 6.05 4.6 1.5 1 3
323 2.7 0.75 1.2
298 1.9 0.35 1.6
274 0.9 0.15 1.8

KCl 348 1.33 6.05 4.3 1.1 0.6 3
323 3.4 0.8 0.7
298 2.4 0.3 0.8
274 1 0.1 0.9

CsCl 348 1.65 6.05 4.05 0.8 0.5 3
323 3.4 0.65 0.6
298 2.7 0.3 0.9
274 1.2 0.1 1.1
298 5.56 3.10 0.3 0.2 11
298 3.48 2.80 0.45 0.8

Table 9. Temperature Dependences of Ds, Dc, and τ0 for Pure
Water

105 ·Ds 105 ·Dc 1012 · τ0

T/K cm2 · s-1 cm2 · s-1 s

348 7.3 1.2 -
323 5.4 0.7 0.2
298 2.2 0.18 0.5
274 1.3 0.07 2
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feature of the self-diffusion. It testifies that the peculiarities of
the hydrated shells at zw ) 6 only weakly depend on the cation
radii. In addition, the numerical values of Ds in concentrated
water + electrolyte solutions are approximately two-thirds those
in pure water.

Here it is appropriate to compare the collective parts of the
self-diffusion coefficients for water molecules with those for
cations. The corresponding experimental data for the self-
diffusion coefficient of Li+ are presented in Table 10. Comparing
Tables 6 and 10, we see that the values of Dc for water molecules
in water + LiCl solutions coincide with those of the self-
diffusion coefficient DLi+ for Li+ within experimental error,
which obviously indicates that the collective drift of water
molecules in concentrated water + electrolyte solutions is
immediately connected with movement of ions. At the same
time, it is not correct to speak about the long-lived hydration
shell. Actually, the self-diffusion coefficient of water molecules
is significantly greater than DLi+ (by a factor of 3 to 4; see Table
8). In fact, one speaks about the hydration shell only over a
period close to the residence time τ0 for water molecules.

Let us conclude this discussion of the peculiarities of the
diffusion motion of water molecules in water and water +
electrolyte solutions by considering the neutron peak structure
for k > 1 Å-1. It was noted in ref 5 that for these wave vectors,
the half-width of the neutron peak changes linearly with respect
to the magnitude of the wave vector k. In accordance with eq
A2.4, when k > 1 Å-1, the mass of a Lagrange particle mL is
connected to the half-width of the neutron peak γn through the
relation

mL )
12kBT

(dγn/dk)2
(7)

The radius of the Lagrange particle is trivially determined from
mL and the density as rL ) (3mL/4πF)1/3. The corresponding
estimates of rL for pure water are presented in Table 11.

In accordance with the Lagrange theory of thermal hydro-
dynamic fluctuations (see ref 18), rL ) 2(ντM)1/2. To an order
of magnitude, the value of the Maxwell relaxation time is
expected to be close to the residence time. In accordance with
this and the data in Table 3, we set τM ≈ 4.5 ·10-13 s at T )
308 K. For higher temperatures, the values of the Maxwell
relaxation time can be calculated according to eq 4. Since ν ≈
0.74 ·10-2 cm2 · s-1 at T ) 308 K, we find that r̃L ≈ 8.3. This
number is also consistent with the extrapolated values of Ds/Dc

from Table 4. Thus, full agreement between the predictions of
the Lagrange theory of thermal hydrodynamic fluctuations and
the results given by neutron scattering theory is observed. For
other temperatures, the agreement is also quite satisfactory.

The half-width of the neutron peak in water + electrolyte
solutions is also linear with respect to k for k > 1 Å-1. In this
case, the radius of the Lagrange particle, calculated as rL )
2(ντM)1/2 with the assumption that τM ≈ τ0

(h) for all temperatures,
is also in good agreement with the data collected in Table 12.
In particular, for T ) 274 K, setting τM ) 2.3 ·10-12 s gives a
value of r̃L ) 28.6 for the reduced radius of the Lagrange
particle, which practically coincides with corresponding value
from Table 12.

Here it is necessary to note that the reduced radii of Lagrange
particles in water + electrolyte solutions differ significantly from
the values of RD ) Ds(w + e)/Dc(w + e). The data in Table 8
for concentrated water + electrolyte solutions give RD ≈ 4 to
10, which is approximately half that for pure water. This means
that the collective transport in water + electrolyte solutions has
a more complicated character. Indeed, in such solutions, the
thermal motion of ions leads to an additional mechanism of
collective transport for water molecules, due to which the
collective part of the self-diffusion coefficient of the water
molecules is close to the self-diffusion coefficient of the ions,
as noted above. This question needs separate careful study.

Discussion

In this paper, the main attention has been focused on those
peculiarities of the thermal motion in water + electrolyte
solutions that can be established with the help of quasi-elastic
incoherent neutron scattering. More definitely, by studying the
behavior of the half-width of the neutron peak, we have
determined the temperature and concentration dependences of
the self-diffusion coefficient of water molecules Ds, its collective
part Dc, and the residence time τ0.

For this purpose, we have revised the theory of incoherent
neutron scattering for crystal-like character of the thermal motion
in liquids that was developed in ref 13, taking into account the
fact that the region of applicability of the diffusion approxima-
tion is restricted to wave vectors k for which k , 1/a, where a
is the interparticle spacing. Analyzing the temperature and
concentration dependences of Ds, Dc, and τ0 for water molecules
in water + electrolyte solutions has shown that their behavior
is mainly determined by the size of the cations and changes in
the H-bonding network. In particular, the latter is responsible
for the considerable changes in Ds and Dc over comparatively
narrow temperature intervals. One can show that our estimates
for the average number of H bonds per molecule are in good
agreement with those in ref 31.

We have shown that the diffusion Lorentzian line shape
observed for k , 1/a changes to a Gaussian line shape for k >
1/a. Moreover, the half-width of the Gaussian peak proves to
be proportional to the thermal velocity VL of the Lagrange
particles: γn ≈ VLk. Therefore, using the wave-vector-
dependence of the half-width enables us to determine the
average size of the Lagrange particles. The notion of a Lagrange
particle is very important in the Lagrange theory of thermal
hydrodynamic fluctuations, which was created for the description
of collective transport in liquids. Therefore, the possibility of

Table 10. Self-Diffusion Coefficient of Li+ as a Function of
Temperature and Concentration (Data from Reference 30)

zw

8.18 5.72 4.02

T/K 278 303 281 298 280 293
105 ·DLi+/cm2 · s-1 0.4 0.7 0.3 0.5 0.17 0.25

Table 11. Reduced Radii r̃L ) rL/rw of the Lagrange Particles for
Pure Water as a Function of Temperature (Experimental Data for
γn and the Crossover Wave Vector Magnitude kcr Were Taken from
Reference 5)

T/K 308 329 348 368
10-8 · kcr/cm-1 1.3 1.5 1.5 1.8
10-3 · (dγn/dk)/cm · s-1 11 9.6 12.8 22.9
r̃L 7.2 8 6.7 4.6

Table 12. Reduced Radii r̃L ) rL/rw of Lagrange Particles in Water
+ LiCl Solutions as a Function of Temperature [Experimental Data
for γn and the Crossover Wave Vector kcr Were Taken from
Reference 3 (zw ) 6.05)]

T/K 274 298 323 348
10-8 · kcr/cm-1 1.18 1.18 1.18 1.18
10-3 · (dγn/dk)/cm · s-1 1.13 2.04 2.87 3.17
r̃L 30.14 20.93 17.2 16.57
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scanning Lagrange particles in neutron experiments can be
considered as experimental evidence of their existence.

Such a situation is also characteristic of concentrated water
+ electrolyte solutions. However, the collective drift of
molecules in these solutions is not connected with only the
thermal motion of Lagrange particles. The thermal motion of
ions is accompanied by the additional transport of water
molecules. This fact is obviously certified by the closeness of
the collective part of the self-diffusion coefficient for water
molecules and the self-diffusion coefficient for cations. This
question needs more detailed study.

On the basis of our analysis of the concentration dependences
of Ds, Dc, and τ0 for water molecules in different water +
electrolyte solutions, we have concluded that the size of the
cation renders the key influence on the mobility of water
molecules. More exactly, if the cation radius is smaller than rw,
defined as half the interparticle spacing in pure water (which
happens to be equal to the radius of K+), the stability of the
hydrated complex increases as the inequality rI+ < rw becomes
stronger. In the opposite case, the hydrated complexes become
unstable, and the molecular exchange between different hydrated
shells is essentially forced. It is necessary to emphasize that
the notion of the hydration shell has meaning only for time
scales on the order of τ0.

A similar dependence on the cation radius is inherent in the
hydration energy of ions, as determined by chemical methods.38

The microscopic nature of this effect is discussed in refs 39-42.
The results of refs 41 and 42 seem to us to be especially
successful.
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Appendix 1.

Differential Cross Section for Quasi-Elastic Incoherent
Neutron Scattering.

Here we construct the differential equation for the intermediate
scattering function,37,38

Fs(k, t) ) 〈exp[ik·∆r(t)]〉 (A1.1)

which should correspond to the picture of the thermal motion
described in the main text. In eq A1.1, k is the wave vector of
the neutron and ∆r(t) is the time-dependent displacement vector
of a molecule.

In general, the displacement vector ∆r(t) can be represented
as the sum of two terms

∆r(t) ) ∆r(v)(t) + ∆r(d)(t)

where the first term represents displacements caused by
vibrational modes and the second term corresponds to the
irreversible thermal drift from one temporary equilibrium
position to another. Since these contributions are statistically
independent, the intermediate function given by eq A1.1 can
be transformed into the product

Fs(k, t) ) 〈exp[ik·∆r(v)(t)]〉〈exp[ik·∆r(d)(t)]〉
(A1.2)

In the long-time limit,

τ1 , τ0 , t (A1.3)

the average 〈exp[ik ·∆r(v)(t)]〉 does not depend on time and takes
the form

〈exp[ik·∆r(v)(t)]〉 f exp(-k2

6
〈∆r(v)(t)2〉) ≡ exp(-2W)

(A1.4)

where k ) |k| and ∆r(t) ) |∆r(t)|; in other words, this average
generates the standard Debye-Waller factor.37

In the same limit, the irreversible shifts of a molecule are
characterized by the Gaussian distribution

W[∆r(d)(t)] ) (Rπ)3/2
exp[-R∆r(d)(t)2] (A1.5)

where Ds is the self-diffusion coefficient of a molecule and R
) (4Dst)-1. In this case, it follows from eq A1.5 that

〈exp[ik·∆r(d)(t)]〉 ) exp(-Dsk
2t) (A1.6)

The twice-differential cross section for quasielastic incoherent
(inc) neutron scattering corresponding to eqs A1.2, A1.4, and
A1.6 is proportional to a Lorentzian function:

( d2σ
dΩ dε)

inc
)

binc
2k

πpk0
exp(-2W)

γD

ω2 + γD
2

(A1.7)

where p is Planck’s constant, k0 and k are the magnitudes of
the initial and final wave vectors of the neutron, respectively,
binc is the bound incoherent scattering length, and γD(k2) is the
half-width of the Lorentzian, given by

γD(k2) ≈ Dsk
2 (A1.8)

It should be noted that eq A1.7 correctly describes the influence
of the oscillation motion of molecules on the integral intensity
of the neutron scattering:

( dσ
dΩ)inc

)
binc

2k

pk0
exp(-2W)

It is now relevant to discuss the applicability region of the
diffusion approximation. It follows from eq A1.3 that the
applicability region of the Lorentzian in eq A1.7 is restricted
by the inequality

ω , 1
τ0

(A1.9)

which together with eq A1.8 leads to the following important
restriction on the magnitude of the wave vector:

k , 1

√Dsτ0

(A1.10)

From the definition of Ds, the quantity (Dsτ0)1/2 is proportional
to the shift of a molecule during an elementary diffusion act.
Since such a displacement does not exceed the interparticle
spacing a, the inequality A1.10 can be rewritten in the form:

k , 1
a

≈ 1 Å-1 (A1.11)

Thus, the applicability region of the simplest diffusion ap-
proximation coincides with that for the continuous medium.

To extend the applicability region of the diffusion approach,
i.e., to describe the wings of the diffusion peak in the frequency
range
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ω < 1
τ0

or k < 1

√Dsτ0

(A1.12)

we should include in our consideration effects that reflect the
crystal-like character of the thermal motion in water and water +
electrolyte solutions. More definitely, it is necessary to construct
an expansion of the half-width of the diffusive peak with respect
to powers of the small parameter µ ) τ/[τD(k2)] ≡ τDsk2:

γD(k2) ) Dsk
2[1 + a1µ(k2) + a2µ

2(k2) + ...]
(A1.13)

The method allowing us to realize our intention has been
borrowed from ref 19.

An elementary diffusion act, as described in the main text,
can be introduced into our considerations if we start from the
approximate equation for the intermediate scattering function:

∂Fs(k, t)

∂t
) 1

τ [Fs(k, t + τ) - Fs(k, t)] (A1.14)

Now our efforts will be directed toward the determination of
an explicit expression for the difference Fs(k, t + τ) - Fs(k, t)
as a function of t, τ, and k2.

The displacement ∆r(t) of a molecule in time t can be
represented as the sum:

∆r(t) ) ∆r(t1,2) + ∆r(t2,3) + ... + ∆r(tN-1,N)

where ∆r(ti-1,i) ) r(ti) - r(ti-1) is the displacement during the
ith elementary diffusion act. In accordance with what was said
above, every contribution ∆r(ti-1,i) is split into two terms:

∆r(ti-1,i) ) ∆r(v)(ti-1,i) + ∆r(d)(ti-1,i)

On average, 〈ti-1,i〉 ) 〈ti - ti-1〉 ) τ. Let us suppose that (1)
the typical periods of oscillation satisfy the inequality τv , τ0

and (2) the displacements ∆r(ti-1,i) and ∆r(tj-1,j) for j * i are
statistically independent. On the basis of the first assumption,
〈∆r(v)(ti-1,i)〉 should not depend on the duration of the ith
interval:

〈exp[ik·∆r(v)(ti-1,i)]〉 f exp(-2W)

On the basis of the second assumption, the intermediate function
at time tN ) Nτ can be written as

Fs(k, tN) f exp(-2W)Fd(k, tN) (A1.15)

in which

Fd(k, tN) ) [f1(k2)]N

where

f1(k
2) ) 〈exp[ik·∆r(d)(t1,2)]〉

From this it follows that Fd(k, tj) for 1e je N has the structure:

Fd(k, tj) ) Fd(k, tj-1)f1(k
2) (A1.16)

Substituting eq A1.16 into A1.14, we obtain the following
approximate differential equation for the intermediate scattering
function Fs(k, t):

∂Fd(k, t)

∂t |
t)tj

) -1
τ
Fd(k, tj)[1 - f1(k

2)]

This leads to the solution

Fd(k, t) ) exp(- [1 - f1(k
2)]

τ
t)

which gives the following expression for the half-width of the
diffusion peak:

γD(k2) )
1 - f1(k

2)

τ
(A1.17)

The structure of the twice-differential cross section for the
incoherent neutron scattering (eq A1.7) remains invariant. Thus,
in this step our task reduces to finding the function f1(k2).

In general, the displacement ∆rm
(d)(τ) of a molecule at time τ

is the sum of two independent contributions:

∆rm
(d) ) ∆rm

(c) + ∆rm
(1) (A1.18)

where the first term ∆rm
(c) describes the collective drift of a

molecule in the field of thermal hydrodynamic fluctuations and
the second term ∆rm

(1) the displacement of a molecule with
respect to its nearest neighbors.18 In other words, ∆rm

(d) is the
sum of the collective and one-particle contributions. Because
of this, we can write

f1(k
2) ) f1

(c)(k2)·f1
(1)(k2)

where

f1
(c)(k2) ) 〈exp(ik·∆rm

(c))〉 and f1
(1)(k2) ) 〈exp(ik·∆rm

(1))〉
As shown in refs 15 and 16, the collective transport is caused
by the transverse modes in liquids and has diffusion character.
Therefore, f1(c)(k2) takes the form appropriate for diffusion
behavior:

fm
(c)(k2) ) exp(-6Dck

2τ) (A1.19)

where Dc is the collective part of the self-diffusion coefficient.15,16

In regard to the function f1(1)(k2), averaging it over the angular
variables gives

f1
(1)(k2) ) 〈sin k∆rm

k∆rm
〉

It seems to be natural to model the distribution ∆rm of a
molecule during the typical time of an elementary diffusion act
by the Gaussian distribution

W(∆rm) ) (γ
π)3/2

exp(-γ∆rm
2) (A1.20)

in which γ ) (4l02)-1, where to an order of magnitude, l0 e a.
Then

f1
(1)(k2) ) exp(-k2l0

2)

Since our approach is correct only for kl0 e ka , 1 (see eq
A1.11), practically with the same accuracy we can write:

f1
(1)(k2) ≈ 1

1 + k2l0
2

(A1.21)

Precisely such an expression is obtained from the jump diffusion
model.19 However, the last imposes restrictions on the character
of the thermal motion that are too hard. In particular, the typical
time for a displacement by l0 cannot be smaller than τs.
Therefore, the interpretation of l0 as the average length of a
jump is not satisfactory, and averaging with the Gaussian
distribution A1.20 seems to be preferable.
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The quantity (l02)/τ has the meaning of the one-particle
contribution to the self-diffusion coefficient, since Ds

(1) )
〈(∆rm

(d))2〉/6τ f l02/τ. Thus,

k2l0
2 f τDs

(1)k2

and eq A1.17 for the half-width of the diffusion peak takes the
form

γD(k2) ) 1
τ(1 -

exp(-Dck
2τ)

1 + τDs
(1)k2 ) (A1.22)

This is similar to the expression

γD
(SS)(k2) ) 1

τ(1 - exp(-2W)

1 + τDsk
2) (A1.23)

obtained in ref 13 with the help of several too-detailed
assumptions that cannot be justified from a physical point of
view. In particular, they lead to an influence of the oscillation
motion on the half-width of the diffusion peak (see eq A1.23)
that is especially problematic. Our result, eq A1.22, is free from
this shortcoming.

In accordance with eq A1.10, the region of applicability of
our theory is restricted by the inequality τDs

(1)k2 , 1, or l02k2 ,
1, so it is appropriate to expand the half-width of the diffusion
peak (eq A1.22) as a power series in τDs

(1)k2:

γD(k2) ≈ Dsk
2 - τ0Ds

(1)2k4 + τ0
2Ds

(1)3k6 + ...
(A1.24)

where Ds ) Ds
(1) + Dc has the meaning of the full self-diffusion

coefficient. It should be noted that eq A1.24 follows from eq
A1.22 as a result of the condition τ1 , τ0 and the additional
assumption about the smallness of Dc in comparison with Ds

(Dc , Ds). This question is discussed in detail in ref 18. It is
evident that the structure of eq A1.24 is in full agreement with
eq A1.13.

According to eq A1.24, the half-width of the diffusion peak
deviates from the linear dependence on k2 [i.e., the expression
γD(k2) ) Dsk2] that is inherent in the simplest diffusion model.
Such behavior of γD(k2) is in agreement with experimental
results.2-12

By comparing eq A1.24 with experimental data for the half-
width of the diffusion peak, we can determine all of the essential
parameters of the thermal motion: Ds, Ds

(1), and τ0. This
procedure is correct if the experimental data for γD(k2) are
obtained over the range restricted by the inequality A1.11, k ,
1 Å-1. The use of experimental data acquired outside this range
can lead to considerable errors in the values of the key model
parameters.

The collective part of the self-diffusion coefficient for the
molecules is determined as

Dc ) Ds - Ds
(1) (A1.25)

It necessary to emphasize that all results presented in this
appendix are applicable for T e TH. At higher temperatures,
the crystal-like model of the thermal motion in water becomes
invalid. The molecular oscillations have no regular character,
and the thermal motion in water approaches argon-like behavior.

Appendix 2.

Half-Width of the Neutron Scattering Peak Outside the
Region of Applicability of the Diffusion Approximation.

The half-width of the diffusion peak is obviously limited by
the upper bound γjD ≈ Dsk2|k≈1/a ≈ 1011 s-1. In fact, the

permissible values of the half-width that can be determined with
the help of the diffusion approximation belong to the more
narrow frequency interval

γD ≈ Dsk
2 e γ/ ≈ 1010 s-1 (A2.1)

Outside this interval [i.e., for k . (γ//Ds)1/2 ≈ 0.3 Å-1], the
half-width of the neutron peak should be determined on the basis
of other representations.

Here we pay attention to the fact that during a time interval
on the order of τ, water and water + electrolyte solutions are
microinhomogeneous: spatial regions with crystal-like structure
are formed in them. The size of such regions can be estimated
as rs ≈ cτ ≈ 10 Å, where c is the longitudinal sound velocity.
On the other hand, considering the transverse modes, we can
write rt ≈ ctτM ≈ 10 Å, where ct ≈ (ν/τM)1/2 is the high-
frequency transverse sound velocity, ν is the kinematic shear
viscosity, and τM is the Maxwell relaxation time for the shear
tension. In accordance with refs 15, 16, and 18, the typical size
of the crystal-like region, rt ≈ (ντM)1/2, is proportional to the
radius of the so-called Lagrange particle, rL ) 2(ντM)1/2.

It is noteworthy that the computer simulations of thermal
motion in water in ref 39 and the analysis of those results in
ref 40 have confirmed our conclusion about the microinhomo-
geneous structure of water in the supercooled region and near
the melting point.

A Lagrange particle drifts randomly, like a Brownian particle,
in the field of thermal hydrodynamic fluctuations. During the
time 0 < t < τ, a molecule moves together with the corresponding
Lagrange particle. The main contribution to the similar drift is
caused by transverse modes.15,16 It is very essential that the
characteristic decay time td ≈ 1/νk2 of these modes for k .
(ντ)-1/2 ≈ 0.1 Å-1 be significantly smaller than τM ≈ τ.
Therefore, the displacement of a molecule connected with the
motion of the Lagrange particle can be represented in the form

[∆r(t)]t ) uLt (t , τM ≈ τ)

where uL is the velocity of the Lagrange particle. Therefore, the
mean square displacement of a molecule can be represented as

〈[∆r(t)]t
2〉 )

2kBT

mL
t2 (A2.2)

where

mL ) 4
3

πrL
3F

is the mass of the Lagrange particle. To an order of magnitude,
the maximal displacement of a molecule in a time 2τM is equal
to (kBT/ηrL)τM , a2. Therefore

〈exp[ik·∆rt(t)]〉 ≈ exp(-2kBT

mL
k2t2)

for k > kL, where kL ) rL
-1 ≈ (0.1 to 0.3) Å-1.

This character of the time dependence of the intermediate
function corresponds to the following expression for the half-
width of the neutron peak:

γn(k) ≈ 2�2kBT

mL
k (k > mL ≈ √γ//Ds)

(A2.3)

At k ≈ 1 Å-1, the half-width γn takes the value γn ≈ 1011 s-1,
which agrees with experimental data.2-12 The formula A2.3
allows us to obtain an independent estimate of the mass of the
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Lagrange particle or its radius. In fact, this circumstance is
especially important.

The contribution of the sound modes to the displacement of
a Lagrange particle for short times t , τM ≈ τ is manifested
analogously to eq A2.2. Therefore, for k > (γ//Ds)1/2, eq A2.3
becomes

γn(k) ≈ 2�3kBT

mL
k (k > √γ//Ds) (A2.4)

Typically, sound modes are correctly determined up to wave
vectors k for which k < k/, where

k/ )
mc
p

(A2.5)

in which m is the molecular mass and c is the sound velocity.
Such an estimate follows from the structure of spectra for the
longitudinal excitations of liquids,41,42 including collective and
one-particle contributions. To an order of magnitude for liquid
water,

k/(H2O) ≈ 10 Å-1 (A2.6)

Thus, the applicability region of eq A2.4 is restricted by the
inequality

�γ/
Ds

< k < k/ (A2.7)

For k > k/, the character of the wave-vector dependence of the
half-width radically changes:

γn(k) ≈ 2�3kBT

m
k (k > k/) (A2.8)

The crossover of the half-width from the diffusion expression
(eq A1.24) to eq A2.4 is really observed at kcr ≈ (γ//Ds)1/2, as
was first noted in ref 5.
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