Phase Equilibria in the NaOH-NaNO₃-Na₂CrO₄-H₂O System

Yang Zhang,^{†,‡} Shili Zheng,^{*,†} Hongbin Xu,^{*,†} Hao Du,[†] and Yi Zhang[†]

National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China, and Graduate School of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

Equilibrium data for the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system from (313 to 393) K were measured, and the phase diagram at 393 K was constructed, with the crystallization areas in the phase diagram discussed in detail. In addition, the solubility isotherms of Na₂CrO₄ and NaNO₃ in NaOH solutions were plotted. The solubility of Na₂CrO₄ in NaOH solutions was compared with that in NaOH solutions saturated with NaNO₃. On the basis of the phase diagram, a strategy for effective separation of Na₂CrO₄ and NaNO₃ from the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system has been proposed.

Introduction

Sodium chromate is an important alkali metal chromate for the production of other chromium chemicals, such as sodium dichromate, CrO₃, and Cr₂O₃. In industry, sodium chromate is mainly produced from chromite ore. Traditionally, chromite ore is processed by roasting with sodium carbonate at 1473 K in a rotary kiln with the addition of limestone and dolomite, yielding only 75 % of the Cr in the ore to sodium chromate. Furthermore, the residue discharged [(2.5 to 3.0) ton per ton of chromate product] contains hexavalent chromium causing significant environmental pollution.^{1–3}

Recently, a novel cleaner process¹⁻⁴ of oxidizing chromite ore using a high-concentration potassium hydroxide solution by air was proposed by the Institute of Process Engineering, Chinese Academy of Sciences. In this process, the Cr yield could be raised to 99 % at a temperature of 573 K with an alkali-toore ratio of 4:1. To separate K₂CrO₄ from the leaching liquor, the phase equilibria of KOH–K₂CO₃–K₂CrO₄–H₂O⁵ and K₂CO₃–K₂CrO₄–H₂O⁶ have been studied, though the process can only produce potassium-containing chromate products (such as K₂CrO₄ and K₂Cr₂O₇) instead of sodium chromate and dichromate as products, which have a larger utilization than potassium-containing products in industry.

An optimized process production of sodium chromate by oxygen has been proposed. The tests were executed by introducing NaNO₃ to the decomposition process of chromite ore in molten NaOH to decrease the decomposition temperature. After the residue was leached and filtered, separation of Na₂CrO₄ crystals from the leaching liquor would be carried out. The leaching liquor mainly consists of NaOH, NaNO₃, Na₂CrO₄, and H₂O. In this regard, it is necessary to study the phase diagram of the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system to get a separation method of Na₂CrO₄, NaNO₃, and NaOH.

So far, the phase equilibria of the NaOH–NaNO₃–Na₂CrO₄– H_2O quaternary system have not been reported. However, some research has been done regarding the phase diagrams of the

ternary subsystems of the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system. The phase equilibria of the NaOH–Na₂CrO₄–H₂O ternary system at (288, 298, 308, and 318) K have been reported by Kashiwase,⁷ and at (313 and 353) K by Zou.⁸ The NaOH–NaNO₃–H₂O ternary system from (273 to 398) K^{9,10} and the NaNO₃–Na₂CrO₄–H₂O ternary system from (254.5 to 371.5) K¹⁰ have also been studied.

Experimental Section

Apparatus and Reagents. A HZQ-type thermostatic vibrator with a temperature control (precision of 0.1 K) was used to prepare the samples to equilibrium states. The concentration of sodium chromate in all samples was determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES, PE Optima 5300DV, Perkin-Elmer). The concentration of sodium nitrate was analyzed using ion chromatography (Dionex DX-500). The solid-phase analysis was done by X-ray diffraction (XRD, Phillips PW223/30).

The chemicals used in the experiments are all of analytical grade, and deionized water is used in all the experiments.

Experimental Method. The solubility was determined employing the isothermal solution saturation method.¹¹ A predetermined amount of sodium hydroxide, tetrahydrate sodium chromate, and sodium nitrate was mixed homogenously in a given amount of water before being put into sealed polyethylene bottles, and then the bottles were placed in the thermostatic vibrator. The experiments were performed at ambient pressure, and the temperature was fixed at five specific values: (313, 333, 353, 373, and 393) K. The liquid phase of each sample was examined every two days, and an equilibrium state was believed to be achieved when the liquid phase components became stable. After equilibrium was attained, the shaking was discontinued, and then the samples were allowed to settle for one day before further treatment and analysis.

The content of sodium chromate in the liquid phase was determined using ICP-OES by measuring the content of chromium. The content of sodium nitrate was determined using ion chromatography by analyzing NO_3^- . For each sample, about 1 mL of aqueous phase was filtered, weighed, and diluted into a 100 mL volumetric flask. For the determination of chromium contents, 2 mL of the previously diluted solution was further diluted 50 times after addition of 2 mL of concentrated

^{*} Corresponding authors. E-mail: slzheng@home.ipe.ac.cn; hbxu@home.ipe.ac.cn.

[†] Institute of Process Engineering, Chinese Academy of Sciences.

[‡] Graduate School of Chinese Academy of Sciences.

Table 1.	Solubility	Data	of the	NaOH-	-NaNO ₃ -	-Na ₂ CrO ₄ -	H_2O
System							

compo	osition of 1 g/100 g c	the liquid p of dry salt	hase,				
NaOH	NaNO ₃	Na ₂ CrO ₄	H ₂ O	equilibrium solid phase			
	t = 393 K						
0.00	51.84	48.16	47.11	$NaNO_3 + Na_2CrO_4$			
6.09	48.81	45.10	44.61	$NaNO_3 + Na_2CrO_4$			
15.99	48.36	35.65	52.06	$NaNO_3 + Na_2CrO_4$			
25.72	48.09	26.19	57.51	$NaNO_3 + Na_2CrO_4$			
31.48	47.57	20.95	56.6	$NaNO_3 + Na_2CrO_4$			
36.9	46.64	16.46	58.29	$NaNO_3 + Na_2CrO_4$			
40.65	45.71	13.64	51.52	$NaNO_3 + Na_2CrO_4$			
47.39	41.53	11.08	48.46	$NaNO_3 + Na_2CrO_4$			
55.98	34.38	9.64	33.25	$NaNO_3 + Na_2CrO_4$			
84.67	13.58	1.75	26.70	$NaOH \cdot H_2O + Na_2CrO_4 + NaNO_2$			
89.64	10.36	0.00	21.64	$NaOH \cdot H_2O + NaNO_3$			
96.02	0.00	3.98	55.35	$NaOH \cdot H_2O + Na_2CrO_4$			
			t — 3	73 K			
0.00	12.6	57 /	1 - J 55 8	$N_{2}NO_{2} + N_{2}CrO_{2}$			
6.84	38.34	54.82	70.0	$N_aNO_4 + N_aCrO_4$			
12.04	20.11	12 85	60.99	$NaNO_3 \pm NaCrO$			
21.5	20.2	42.65	67.49	$NaNO \pm NaCrO$			
21.5	39.2	39.3	07.48	$NaNO_3 + Na_2CrO_4$			
29.88	38.78	31.34	67.96	$NaNO_3 + Na_2CrO_4$			
36.49	39.12	24.39	67.78	$NaNO_3 + Na_2CrO_4$			
44.38	37.55	18.07	65.6	$NaNO_3 + Na_2CrO_4$			
51.43	35.15	13.42	62.54	$NaNO_3 + Na_2CrO_4$			
59.28	31.92	8.8	41.93	$NaNO_3 + Na_2CrO_4$			
87.57	11.26	1.17	27.14	$NaOH \cdot H_2O + Na_2CrO_4 + NaNO_3$			
90.45	9.55	0	24.59	$NaOH \cdot H_2O + NaNO_3$			
96.27	0.00	1.75	49.00	$\text{NaOH}^{\circ}\text{H}_2\text{O} + \text{Na}_2\text{CIO}_4$			
			t = 3	53 K			
0.00	32.49	67.51	59.85	$NaNO_3 + Na_2CrO_4$			
7.01	31.53	61.46	68.37	$NaNO_3 + Na_2CrO_4$			
20.16	31.24	48.6	71.46	$NaNO_3 + Na_2CrO_4$			
32.67	32.06	35.27	76.19	$NaNO_3 + Na_2CrO_4$			
40.84	32.26	26.9	75.56	$NaNO_3 + Na_2CrO_4$			
55.06	30.19	14.75	67.56	$NaNO_3 + Na_2CrO_4$			
64.64	27.09	8.27	45.09	$NaNO_3 + Na_2CrO_4$			
89.12	10.14	0.74	29.08	$NaOH \cdot H_2O + Na_2CrO_4 + NaNO_3$			
90.99	9.01	0.00	21.53	$NaOH \cdot H_2O + NaNO_3$			
98.76	0.00	1.24	47.92	$NaOH \cdot H_2O + Na_2CrO_4$			
			t = 3	33 K			
0.00	27.96	72.04	76.20	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
11.53	24.47	63.99	83.25	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
20.14	21.85	58.01	83.91	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
25.13	22.21	52.66	87.73	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
34.94	22.76	42.30	88.46	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
45.48	22.76	31.76	89.61	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
56.05	22.55	21.40	86.51	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
62.52	21.84	15.64	83.18	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
70.35	19.95	9.71	71.28	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
74.43	18.82	6.75	59.50	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O + Na_2CrO_4$			
92.14	6.25	1.61	48.78	$NaOH \cdot H_2O + Na_2CrO_4 + NaNO_3$			
92.21	7.79	0.00	56.26	$NaOH \cdot H_2O + NaNO_3$			
97.56	0.00	2.44	58.07	$NaOH \cdot H_2O + Na_2CrO_4$			
			t = 3	13 K			
0.00	28.29	71.71	81.47	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
30.76	15.82	53.43	98.66	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
37.86	14.71	47.43	96.16	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
49.71	15.52	34.77	97.28	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
61.18	15.30	23.52	95.26	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
71.35	14.85	13.79	89.76	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
81.06	13.42	5.52	67.62	$NaNO_3 + Na_2CrO_4 \cdot 4H_2O$			
85.31	9.16	5.53	62.90	$NaOH \cdot H_2O + Na_2CrO_4 + NaNO_3$			
91.30	8.70	0.00	61.43	$NaOH \cdot H_2O + NaNO_3$			
93.62	0.00	6.38	71.10	$NaOH \cdot H_2O + Na_2CrO_4$			

hydrochloric acid. The same dilution methods were used for the determination of sodium nitrate except for the addition of concentrated hydrochloric acid. Sodium hydroxide was determined by titration using hydrochloric acid solution with phenolphthalein solution as the indicator. The equilibrium solid phase was dried in desiccators at room temperature and then grinded to powder in a mortar. The powder was analyzed by an X-ray diffraction analyzer to determine the composition of the equilibrium solid phase.

Figure 1. Phase diagram of the NaOH–NaNO₃–Na₂CrO₄–H₂O system at 393 K. Point P is the invariant point, and points F_1 , F_2 , and F_3 represent the equilibrium composition of the solid phases at the two extremes of the corresponding side, respectively.

Figure 2. Solubility isotherms of Na_2CrO_4 in $NaNO_3$ -saturated NaOH solution.

All the solubility data were the average values of three measurements, with the relative standard deviation (RSD) values of less than 2 %.

Results and Discussion

 $NaOH-NaNO_3-Na_2CrO_4-H_2O$ Quaternary System. The solubility data for the NaOH-NaNO_3-Na_2CrO_4-H_2O quaternary system at (313, 333, 353, 373, and 393) K were measured and are presented in Table 1. The phase diagram at 393 K is plotted in Figure 1. The phase diagrams at the other temperatures are similar to that at 393 K and are therefore not shown in this paper.

Figure 1 shows that the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system has three crystallization zones, which are the Na₂CrO₄ crystallization zone, the NaNO₃ crystallization zone, and the NaOH·H₂O crystallization zone. It suggests that Na₂CrO₄ and NaNO₃ can be easily separated from NaOH aqueous solution. The phase diagram provides a theoretical basis for the separation of Na₂CrO₄ from the system.

Solubility Isotherms of Na_2CrO_4 from (313 to 393) K. As shown in Figure 2, the solubility isotherms of Na_2CrO_4 decline sharply with an increase of the concentration of NaOH when NaNO₃ is saturated. That is, the salting-out effect of NaOH on Na₂CrO₄ is strong. It can also be seen from Figure 2 that the solubility of Na₂CrO₄ decreases significantly with an increase of temperature when the concentration of NaOH is below 600 $g \cdot dm^{-3}$. On the contrary, the solubility of Na₂CrO₄ increases when the concentration of NaOH is higher than 600 $g \cdot dm^{-3}$. Generally, the solubility of Na₂CrO₄ increases with the increase of temperature.^{7,8} The unusual phenomena of the solubility of Na₂CrO₄ in NaOH solutions saturated with NaNO₃ may be due to the strong decrease of the NaNO₃ solubility with the decrease of temperature, which will be revealed in the next section.

600

Figure 3. Solubility isotherms of NaNO₃ in Na₂CrO₄-saturated NaOH solution.

Table 2. Comparison of Solubility of Na_2CrO_4 in NaOH Solution with that in $NaNO_3\mbox{-}Saturated$ NaOH Solution at 353 K

solubility in without NaN	NaOH aqueous IO ₃ coexistence	solubility in NaOH aqueous saturated with NaNO ₃		
c/g	•dm ⁻³	$c/g \cdot dm^{-3}$		
NaOH	Na ₂ CrO ₄	NaOH	Na ₂ CrO ₄	
0.00	887.33	0.00	676.97	
83.00	775.73	65.16	571.67	
98.00	760.15	182.45	439.89	
166.00	641.77	202.00	393.78	
229.00	538.97	286.70	309.42	
276.00	479.77	351.86	231.72	
290.00	457.97	499.13	133.77	
330.00	408.12	508.25	130.44	
417.00	314.66	521.28	121.69	
464.00	264.81	605.99	99.97	
502.00	234.59	645.08	94.83	
570.00	196.27	658.12	92.75	
604.00	176.02	723.28	93.77	
629.00	164.18	729.79	93.43	
642.00	162.62	742.82	96.39	
678.00	678.00 153.28			

From the above analysis, Na_2CrO_4 can be separated efficiently by evaporation crystallization from the NaOH–NaNO₃–Na₂CrO₄– H₂O system.

Solubility Isotherms of NaNO₃ from (313 to 393) K. Figure 3 shows the solubility isotherms of NaNO₃ in Na₂CrO₄-saturated NaOH solution from (313 to 393) K. As shown in Figure 3, the solubility of NaNO₃ decreases strongly with a decrease of temperature. Compared with the sharp decline of solubility isotherms of Na₂CrO₄, the concentration of NaOH has a slight influence on the solubility isotherms of NaNO₃.

The results indicate that NaNO₃ can be separated from the NaOH–NaNO₃–Na₂CrO₄–H₂O system by cooling crystallization due to the sensitivity of solubility to temperature. Na₂CrO₄ will not crystallize together with NaNO₃ when the system is cooled due to the increase of the solubility of Na₂CrO₄. It supplies the basis for the efficient separation of NaNO₃.

Comparison of the Solubility of Na_2CrO_4 in NaOH Solution with that in NaNO₃-Saturated NaOH Solution. The solubility data of Na_2CrO_4 in NaOH solution and in NaNO₃saturated NaOH solution at 353 K are presented in Table 2, and the isotherms are plotted in Figure 4. As shown in Table 2 and Figure 4, compared with NaOH solutions without NaNO₃, the solubility of Na_2CrO_4 in NaNO₃-saturated NaOH solutions decreases significantly at 353 K. There are similar results at other temperatures.

That is, a higher crystallization ratio of Na_2CrO_4 in the NaOH-NaNO₃-Na₂CrO₄-H₂O system will be attained compared with the NaOH-Na₂CrO₄-H₂O system.

Figure 4. Solubility isotherms of Na₂CrO₄ at 353 K: ■, in NaOH solution; ●, in NaNO₃-saturated NaOH solution.

Conclusion

Phase equilibria for the NaOH–NaNO₃–Na₂CrO₄–H₂O quaternary system from (313 to 393) K were studied. The phase diagrams of the system and the solubility isotherms of Na₂CrO₄ and NaNO₃ were plotted. This study provides a theoretical basis for the separation of Na₂CrO₄ and NaNO₃ from NaOH solutions. The results show that the solubility isotherms of Na₂CrO₄ decline sharply with an increase of the concentration of NaOH when NaNO₃ is saturated, and evaporation crystallization is a highly efficient way to separate most of the Na₂CrO₄ from the liquor. The solubility of NaNO₃ decreases strongly with a decrease of temperature, and a large mass of NaNO₃ can be separated by cooling crystallization.

Literature Cited

- (1) Zhang, Y.; Li, Z.; Qi, T. Green manufacturing process of chromium compounds. *Environ. Process* **2005**, *24* (1), 44–50.
- (2) Sun, Z.; Zheng, S. L.; Xu, H. B.; Zhang, Y. Oxidation decomposition of chromite ore in molten potassium hydroxide. *Int. J. Miner. Process.* 2007, 83, 60–67.
- (3) Sun, Z.; Zhang, Y.; Zheng, S.-I.; Zhang, Y. A new method of potassium chromate production from chromite and KOH-KNO₃-H₂O binary submolten salt system. *AIChE J.* **2009**, *55* (10), 2646–2656.
- (4) Zheng, S.; Zhang, Y.; Li, Z.; Qi, T.; Li, H. Q.; Xu, H. Green metallurgical processing of chromite. *Hydrometallurgy* 2006, 82, 157–163.
- (5) Cui, J. L.; Zhang, Y. Study on the KOH + K₂CrO₄ + K₂CO₃ + H₂O system. J. Chem. Eng. Data **2000**, 45, 1215–1217.
- (6) Du, C.; Zheng, S.; Li, H.; Zhang, Y. Solid-Liquid Equilibria of K₂CO₃ + K₂CrO₄ + H₂O System. J. Chem. Eng. Data **2006**, 51, 104–106.
- (7) Xing, Z. Basic chemistry research on phase separation of Al³⁺/Na⁺/ CrO₄²⁻/OH. PhD Thesis. University of science and technology Beijing, Beijing, PR China (in Chinese), 1998.
- (8) Kashiwase, K.; Sato, G.; Narita, E.; Okaba, T. Solubility of sodium chromate in sodium nitrate and in methanol solution. *Nippon Kagaku Kaishi* 1974, 7, 1224–1229 (in Japanese).
- (9) Pelkhotkin, V. F.; Bobrovskaya, L. P. Sodium nitrite (sodium nitrate)sodium hydroxide-water systems. *Zh. Neorg. Khim.* 1970, 15, 1643– 1647.
- (10) Linke, W. F. Solubilities, inorganic and metal-organic compounds: a compilation of solubility data from the periodical literature, 4th ed.; Princeton: N. J., Van Nostrand, 1958–65; Vol. 2.
- (11) Shu, Y. G.; Lü, B. L.; Wang, X. R. Phase Diagram Analyses of Inorganic Chemical Production: Basic Theory; Chemical Industry Press: Beijing, 1985 (in Chinese).

Received for review December 17, 2009. Accepted March 26, 2010. Financial support from the National Basic Research Development Program of China (973 Program) under Grant No. 2007CB613501 and 2009CB219901 and Key Project in the National Science & Technology Pillar Program under Grant No. 2006BAC02A05 is gratefully acknowledged.

JE9010618