# Journal of Chemical & Engineering Data

# Densities, Speeds of Sound, and Refractive Indices of Binary Mixtures of Decan-1-ol with Anisole, *o*-Cresol, *m*-Cresol, and *p*-Cresol at T = (298.15, 303.15, and 308.15) K

Subhash C. Bhatia,\* Ruman Rani,\* and Rachna Bhatia

Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, Haryana, India

Supporting Information

**ABSTRACT:** Densities, speeds of sound, and refractive indices of binary mixtures of decan-1-ol with 2-methylphenol (*o*-cresol), 3-methylphenol (*m*-cresol), 4-methylphenol (*p*-cresol), and methyl phenyl ether (anisole) were measured over the entire range of composition from T = (298.15 to 308.15) K and at a pressure of 0.1 MPa. The experimental values of densities were used to calculate the excess molar volumes of the binary liquid mixtures. Excess molar volumes have been fitted to the Redlich—Kister polynomial equation to derive the binary coefficients and the standard errors between the experimental and the calculated quantities. The excess molar volumes are negative over the entire composition range for the binary mixtures of decan-1-ol with *m*-cresol and *p*-cresol and give an s-shaped curve with *o*-cresol at the high mole fraction region of *o*-cresol. For the binary mixtures of decan-1-ol with anisole, the excess molar volume is positive.

## ■ INTRODUCTION

Information about the physical properties of the pure liquids and the liquid mixtures containing aromatic hydrocarbon and higher alcohols and their dependence on composition and temperature is a very important basic data required for extraction and separation processes in petrochemical industry. Systematic studies of thermodynamic properties of binary liquid mixtures of higher alcohols and aromatic hydrocarbons are important to study the nature of molecular interaction and physicochemical behavior of these binary mixtures,  $^{1-5}$  but the review of the literature on the thermodynamic, acoustic, and optical properties of binary mixtures containing 1-alcohols with aromatic hydrocarbon reveals that the databases are limited, so it seems to be very useful in this area of research to carry out systematic investigations involving the physical properties of the binary mixtures containing 1-alcohols with aromatic hydrocarbons. In an attempt to explore the nature of interactions occurring between the decan-1-ol with isomeric cresols and anisole, the densities, speeds of sound, and refractive indices of binary mixtures of decan-1-ol with o-cresol, m-cresol, p-cresol, and anisole have been measured over the entire range of composition at T = (298.15, 303.15, and 308.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were calculated. The calculated excess functions have been fitted to the Redlich-Kister polynomial equation to derive the binary coefficients and the standard errors between the experimental and the calculated quantities.

# EXPERIMENTAL SECTION

Chemicals. Decan-1-ol (CAS Registry No.: 112-30-1 with a mass fraction purity of 0.995), *o*-cresol (CAS Registry No.: 96-

66-2 with a mass fraction purity of 0.997), *m*-cresol (CAS Registry No.: 2301-01-7 with a mass fraction purity of 0.997), *p*-cresol (CAS Registry No.: 128-37-0 with a mass fraction purity of 0.990), and anisole (CAS Registry No.: 100-63-3 with a mass fraction purity of 0.995) were obtained from SD Fine Chemicals, Ltd., India and were used after double distillation and partially degassed with a vacuum pump under nitrogen atmosphere. The purity of these solvents was ascertained by comparing the measured density, refractive index, and speed of sound of the components at *T* = 298.15 K with the available literature<sup>6-13</sup> shown in the Table 1.

**Measurements.** All liquid mixtures are prepared by weighing appropriate amounts of pure liquids on an electronic balance (Afcoset, ER-120A, India) with a precision of  $\pm$  0.1 mg by syringing each component into airtight stopper bottles to minimize evaporation losses. The accuracy of the mole fraction was  $\pm$   $1 \cdot 10^{-4}$ .

Densities,  $\rho$ , and speeds of sound, u, of the pure liquids and their mixtures were measured with a density and sound speed analyzer apparatus (Anton Paar DSA 5000, Austria-Europe) with precision in densities and speeds of sound better than  $\pm 2 \cdot 10^{-6}$  g·cm<sup>-3</sup> and  $\pm 0.01$  m·s<sup>-1</sup>, respectively, and the temperature was kept constant within  $\pm 0.001$  K using the Peltier method. The uncertainty in experimental measurements has been found to be lower than  $\pm 10^{-4}$  g·cm<sup>-3</sup> for the density and  $\pm 1$  m·s<sup>-1</sup> for the speed of sound. Before each series of measurements, the calibration of the apparatus was carried

Special Issue: John M. Prausnitz Festschrift

 Received:
 April 14, 2010

 Accepted:
 July 8, 2010

 Published:
 July 21, 2010

Table 1. Comparison of Experimental Densities  $\rho$ , Speeds of Sound *u*, and Refractive Indices  $n_D$  of Pure Components with Available Literature Values at T = 298.15 K

|                  | $ ho \cdot 10^{-3}/\mathrm{kg} \cdot \mathrm{m}^{-3}$ |                     | u/:  | $m \cdot s^{-1}$   | $n_{\rm D}$ |                      |
|------------------|-------------------------------------------------------|---------------------|------|--------------------|-------------|----------------------|
| component        | exp.                                                  | lit.                | exp. | lit.               | exp.        | lit.                 |
| decan-1-ol       | 0.8265                                                | 0.8264 <sup>6</sup> | 1379 | 1380 <sup>10</sup> | 1.4346      | 1.4345 <sup>12</sup> |
| anisole          | 0.9891                                                | $0.9892^{7}$        | 1407 | $1408^{7}$         | 1.5150      | 1.5141 <sup>13</sup> |
| o-cresol         | 1.0423                                                |                     | 1505 |                    | 1.5440      | 1.5442 <sup>8</sup>  |
| <i>m</i> -cresol | 1.0300                                                | 1.0302 <sup>8</sup> | 1481 |                    | 1.5380      | 1.5396 <sup>8</sup>  |
| <i>p</i> -cresol | 1.0301                                                |                     | 1486 |                    | 1.5370      | 1.5391 <sup>8</sup>  |
| benzene          | 0.8737                                                | 0.8737 <sup>9</sup> | 1299 | 1299 <sup>7</sup>  | 1.4979      | 1.4979 <sup>8</sup>  |
| toluene          | 0.8622                                                | 0.8622 <sup>9</sup> | 1305 | 1305 <sup>7</sup>  | 1.4938      | 1.4941 <sup>7</sup>  |
| water            | 0.9971                                                | 0.9971 <sup>8</sup> | 1497 | 149711             | 1.3331      | 1.3326 <sup>8</sup>  |

out at working temperature by measuring densities of double-distilled water,<sup>8</sup> benzene,<sup>9</sup> and toluene<sup>9</sup> and speeds of sound of double-distilled water,<sup>11</sup> benzene,<sup>7</sup> and toluene<sup>7</sup> at working temperature, and these values are reported in Table 1.

Refractive indices,  $n_{\rm D}$ , were measured with a thermostatic Abbe refractometer (Erma, A-302A, India) using sodium-D line with an error less than  $\pm$  0.0001 units at (298.15 to 308.15) K. The temperature in the refractometer was regulated by using a circulation pump connected with a constant temperature water bath with  $\pm$  0.01 °C stability. The uncertainty in refractive indices measurements has been found to be  $\pm$  0.0002 units. Calibration of the instrument was carried out at working temperature by measuring the refractive indices of doubledistilled water,<sup>8</sup> benzene,<sup>8</sup> and toluene,<sup>7</sup> and these values are reported in Table 1.

Table 2. Densities  $\rho$ , Excess Molar Volume  $V^E$ , Speeds of Sound *u*, and Refractive Indices  $n_D$  for Binary Liquid Mixtures at T = (298.15 to 308.15) K

|        | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |                    |                 | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |             |
|--------|----------------------|------------------------|------------------|--------------------|-----------------|----------------------|------------------------|------------------|-------------|
| x      | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | n <sub>D</sub>     | x               | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | $n_{\rm D}$ |
|        |                      |                        |                  | T/K =              | 298.15          |                      |                        |                  |             |
|        |                      |                        |                  | x Anisole $+ (1 -$ | - x) Decan-1-ol |                      |                        |                  |             |
| 0.0000 | 0.8265               | 0.000                  | 1379             | 1.4346             | 0.5440          | 0.8899               | 0.420                  | 1369             | 1.4632      |
| 0.0817 | 0.8340               | 0.089                  | 1377             | 1.4376             | 0.6071          | 0.9001               | 0.419                  | 1370             | 1.4683      |
| 0.1440 | 0.8400               | 0.156                  | 1375             | 1.4403             | 0.6699          | 0.9111               | 0.405                  | 1372             | 1.4739      |
| 0.2047 | 0.8463               | 0.217                  | 1374             | 1.4430             | 0.7359          | 0.9238               | 0.371                  | 1376             | 1.4804      |
| 0.2730 | 0.8538               | 0.278                  | 1372             | 1.4463             | 0.8171          | 0.9411               | 0.300                  | 1382             | 1.4896      |
| 0.3484 | 0.8628               | 0.336                  | 1370             | 1.4503             | 0.9100          | 0.9637               | 0.177                  | 1393             | 1.5016      |
| 0.4099 | 0.8706               | 0.374                  | 1369             | 1.4539             | 0.9464          | 0.9735               | 0.119                  | 1398             | 1.5067      |
| 0.4874 | 0.8814               | 0.407                  | 1369             | 1.4591             | 1.0000          | 0.9892               | 0.000                  | 1407             | 1.5150      |
|        |                      |                        |                  | x o-Cresol + (1    | - x) Decan-1-ol |                      |                        |                  |             |
| 0.0000 | 0.8265               | 0.000                  | 1379             | 1.4346             | 0.5545          | 0.9144               | -0.141                 | 1421             | 1.4772      |
| 0.0861 | 0.8375               | -0.108                 | 1385             | 1.4394             | 0.6165          | 0.9277               | -0.106                 | 1428             | 1.4841      |
| 0.1516 | 0.8464               | -0.163                 | 1389             | 1.4435             | 0.6875          | 0.9443               | -0.062                 | 1438             | 1.4928      |
| 0.2077 | 0.8543               | -0.194                 | 1393             | 1.4473             | 0.7538          | 0.9613               | -0.025                 | 1448             | 1.5018      |
| 0.2717 | 0.8639               | -0.211                 | 1397             | 1.4519             | 0.8245          | 0.9814               | 0.006                  | 1461             | 1.5124      |
| 0.3340 | 0.8738               | -0.216                 | 1402             | 1.4567             | 0.8811          | 0.9991               | 0.020                  | 1474             | 1.5218      |
| 0.4103 | 0.8867               | -0.201                 | 1408             | 1.4631             | 0.9410          | 1.0198               | 0.020                  | 1489             | 1.5325      |
| 0.4797 | 0.8995               | -0.177                 | 1414             | 1.4696             | 1.0000          | 1.0423               | 0.000                  | 1505             | 1.5440      |
|        |                      |                        | χ                | cm-Cresol + (1     | -x) Decan-1-o   | 1                    |                        |                  |             |
| 0.0000 | 0.8265               | 0.000                  | 1379             | 1.4346             | 0.5447          | 0.9086               | -0.230                 | 1415             | 1.4743      |
| 0.0818 | 0.8364               | -0.088                 | 1384             | 1.4390             | 0.6205          | 0.9241               | -0.206                 | 1422             | 1.4823      |
| 0.1443 | 0.8444               | -0.141                 | 1388             | 1.4427             | 0.6951          | 0.9408               | -0.171                 | 1431             | 1.4909      |
| 0.2191 | 0.8546               | -0.189                 | 1393             | 1.4475             | 0.7472          | 0.9535               | -0.144                 | 1437             | 1.4976      |
| 0.2700 | 0.8619               | -0.214                 | 1396             | 1.4510             | 0.8163          | 0.9716               | -0.103                 | 1447             | 1.5071      |
| 0.3513 | 0.8744               | -0.237                 | 1401             | 1.4571             | 0.8738          | 0.9882               | -0.069                 | 1457             | 1.5158      |
| 0.4154 | 0.8850               | -0.244                 | 1405             | 1.4623             | 0.9325          | 1.0066               | -0.032                 | 1469             | 1.5256      |
| 0.4864 | 0.8975               | -0.241                 | 1410             | 1.4687             | 1.0000          | 1.0301               | 0.000                  | 1481             | 1.5380      |
|        |                      |                        | :                | x p-Cresol + (1    | – x) Decan-1-ol |                      |                        |                  |             |
| 0.0000 | 0.8265               | 0.000                  | 1379             | 1.4346             | 0.5566          | 0.9112               | -0.265                 | 1420             | 1.4756      |
| 0.0790 | 0.8361               | -0.096                 | 1385             | 1.4388             | 0.6321          | 0.9269               | -0.239                 | 1428             | 1.4838      |
| 0.1424 | 0.8443               | -0.159                 | 1389             | 1.4425             | 0.7041          | 0.9433               | -0.204                 | 1436             | 1.4923      |
| 0.2213 | 0.8551               | -0.217                 | 1394             | 1.4476             | 0.7628          | 0.9578               | -0.170                 | 1444             | 1.4999      |

# Table 1. Continued

|        | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |                 |                        | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |                |
|--------|----------------------|------------------------|------------------|-----------------|------------------------|----------------------|------------------------|------------------|----------------|
| x      | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | n <sub>D</sub>  | x                      | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | n <sub>D</sub> |
| 0.2915 | 0.8653               | -0.253                 | 1399             | 1.4525          | 0.8229                 | 0.9738               | -0.129                 | 1453             | 1.5083         |
| 0.3611 | 0.8762               | -0.274                 | 1404             | 1.4579          | 0.8793                 | 0.9901               | -0.090                 | 1462             | 1.5168         |
| 0.4180 | 0.8857               | -0.282                 | 1408             | 1.4626          | 0.9382                 | 1.0087               | -0.043                 | 1474             | 1.5263         |
| 0.4915 | 0.8987               | -0.278                 | 1414             | 1.4692          | 1.0000                 | 1.0302               | 0.000                  | 1486             | 1.5370         |
|        |                      |                        |                  | T/K =           | 303.15                 |                      |                        |                  |                |
|        |                      |                        |                  | x Anisole + (1  | - <i>x</i> ) Decan-1-o | l                    |                        |                  |                |
| 0.0000 | 0.8231               | 0.000                  | 1362             | 1.4326          | 0.5440                 | 0.8859               | 0.438                  | 1351             | 1.4610         |
| 0.0817 | 0.8305               | 0.095                  | 1360             | 1.4356          | 0.6071                 | 0.8960               | 0.436                  | 1352             | 1.4662         |
| 0.1440 | 0.8365               | 0.165                  | 1358             | 1.4380          | 0.6699                 | 0.9069               | 0.421                  | 1354             | 1.4718         |
| 0.2047 | 0.8427               | 0.229                  | 1356             | 1.4407          | 0.7359                 | 0.9195               | 0.385                  | 1357             | 1.4785         |
| 0.2730 | 0.8501               | 0.293                  | 1354             | 1.4439          | 0.8171                 | 0.9367               | 0.310                  | 1362             | 1.4877         |
| 0.3484 | 0.8590               | 0.353                  | 1352             | 1.4480          | 0.9100                 | 0.9591               | 0.183                  | 1373             | 1.5000         |
| 0.4099 | 0.8668               | 0.393                  | 1351             | 1.4516          | 0.9464                 | 0.9689               | 0.122                  | 1378             | 1.5054         |
| 0.4874 | 0.8774               | 0.426                  | 1351             | 1.4568          | 1.0000                 | 0.9844               | 0.000                  | 1387             | 1.5140         |
|        |                      |                        |                  | x o-Cresol + (1 | — <i>x</i> ) Decan-1-0 | 1                    |                        |                  |                |
| 0.0000 | 0.8231               | 0.000                  | 1362             | 1.4327          | 0.5545                 | 0.9105               | -0.188                 | 1404             | 1.4744         |
| 0.0861 | 0.8340               | -0.114                 | 1368             | 1.4374          | 0.6165                 | 0.9237               | -0.155                 | 1411             | 1.4813         |
| 0.1516 | 0.8428               | -0.176                 | 1372             | 1.4414          | 0.6875                 | 0.9402               | -0.109                 | 1421             | 1.4900         |
| 0.2077 | 0.8508               | -0.213                 | 1376             | 1.4451          | 0.7538                 | 0.9571               | -0.068                 | 1431             | 1.4989         |
| 0.2717 | 0.8603               | -0.237                 | 1380             | 1.4495          | 0.8245                 | 0.9769               | -0.028                 | 1444             | 1.5095         |
| 0.3340 | 0.8701               | -0.247                 | 1384             | 1.4543          | 0.8811                 | 0.9944               | -0.005                 | 1456             | 1.5188         |
| 0.4103 | 0.8830               | -0.240                 | 1390             | 1.4606          | 0.9410                 | 1.0147               | 0.008                  | 1472             | 1.5295         |
| 0.4797 | 0.8957               | -0.221                 | 1397             | 1.4669          | 1.0000                 | 1.0369               | 0.000                  | 1487             | 1.5410         |
|        |                      |                        | ٥                | cm-Cresol + (1  | -x) Decan-1-c          | ol                   |                        |                  |                |
| 0.0000 | 0.8231               | 0.000                  | 1362             | 1.4326          | 0.5447                 | 0.9049               | -0.227                 | 1398             | 1.4714         |
| 0.0818 | 0.8330               | -0.087                 | 1367             | 1.4369          | 0.6205                 | 0.9204               | -0.202                 | 1406             | 1.4793         |
| 0.1443 | 0.8409               | -0.141                 | 1371             | 1.4405          | 0.6951                 | 0.9370               | -0.168                 | 1414             | 1.4880         |
| 0.2191 | 0.8511               | -0.188                 | 1376             | 1.4451          | 0.7472                 | 0.9497               | -0.141                 | 1421             | 1.4946         |
| 0.2700 | 0.8584               | -0.213                 | 1379             | 1.4486          | 0.8163                 | 0.9678               | -0.100                 | 1431             | 1.5042         |
| 0.3513 | 0.8708               | -0.234                 | 1384             | 1.4545          | 0.8738                 | 0.9843               | -0.067                 | 1441             | 1.5130         |
| 0.4154 | 0.8814               | -0.241                 | 1388             | 1.4597          | 0.9325                 | 1.0027               | -0.031                 | 1453             | 1.5227         |
| 0.4864 | 0.8939               | -0.237                 | 1393             | 1.4658          | 1.0000                 | 1.0261               | 0.000                  | 1465             | 1.5350         |
|        |                      |                        |                  | x p-Cresol + (1 | -x) Decan-1-o          | 1                    |                        |                  |                |
| 0.0000 | 0.8231               | 0.000                  | 1362             | 1.4326          | 0.5566                 | 0.9076               | -0.263                 | 1403             | 1.4728         |
| 0.0790 | 0.8326               | -0.094                 | 1368             | 1.4366          | 0.6321                 | 0.9232               | -0.237                 | 1411             | 1.4809         |
| 0.1424 | 0.8408               | -0.156                 | 1372             | 1.4403          | 0.7041                 | 0.9395               | -0.203                 | 1419             | 1.4894         |
| 0.2213 | 0.8515               | -0.213                 | 1377             | 1.4452          | 0.7628                 | 0.9540               | -0.169                 | 1427             | 1.4969         |
| 0.2915 | 0.8618               | -0.248                 | 1382             | 1.4501          | 0.8229                 | 0.9700               | -0.128                 | 1437             | 1.5052         |
| 0.3611 | 0.8726               | -0.270                 | 1386             | 1.4553          | 0.8793                 | 0.9863               | -0.090                 | 1446             | 1.5137         |
| 0.4180 | 0.8821               | -0.278                 | 1391             | 1.4599          | 0.9382                 | 1.0049               | -0.043                 | 1458             | 1.5232         |
| 0.4915 | 0.8951               | -0.274                 | 1397             | 1.4665          | 1.0000                 | 1.0263               | 0.000                  | 1471             | 1.5340         |
|        |                      |                        |                  | T/K =           | 308.15                 |                      |                        |                  |                |
|        |                      |                        |                  | x Anisole + (1  | -x) Decan-1-o          | l                    |                        |                  |                |
| 0.0000 | 0.8197               | 0.000                  | 1346             | 1.4305          | 0.5440                 | 0.8818               | 0.457                  | 1333             | 1.4582         |
| 0.0817 | 0.8269               | 0.107                  | 1343             | 1.4330          | 0.6071                 | 0.8919               | 0.456                  | 1334             | 1.4632         |
| 0.1440 | 0.8329               | 0.181                  | 1341             | 1.4354          | 0.6699                 | 0.9027               | 0.441                  | 1335             | 1.4688         |
| 0.2047 | 0.8390               | 0.247                  | 1339             | 1.4380          | 0.7359                 | 0.9152               | 0.404                  | 1338             | 1.4754         |
| 0.2730 | 0.8464               | 0.313                  | 1337             | 1.4413          | 0.8171                 | 0.9322               | 0.327                  | 1343             | 1.4848         |
| 0.3484 | 0.8552               | 0.372                  | 1335             | 1.4452          | 0.9100                 | 0.9546               | 0.193                  | 1353             | 1.4969         |
| 0.4099 | 0.8629               | 0.412                  | 1334             | 1.4488          | 0.9464                 | 0.9642               | 0.129                  | 1358             | 1.5023         |

#### Table 1. Continued

|        | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |                 |                        | $\rho \cdot 10^{-3}$ | $V^{\rm E} \cdot 10^6$ | и                |                |
|--------|----------------------|------------------------|------------------|-----------------|------------------------|----------------------|------------------------|------------------|----------------|
| x      | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | n <sub>D</sub>  | x                      | $kg \cdot m^{-3}$    | $m^3 \cdot mol^{-1}$   | $m \cdot s^{-1}$ | n <sub>D</sub> |
| 0.4874 | 0.8735               | 0.445                  | 1333             | 1.4540          | 1.0000                 | 0.9797               | 0.000                  | 1367             | 1.5110         |
|        |                      |                        | :                | x o-Cresol + (1 | — <i>x</i> ) Decan-1-o | 1                    |                        |                  |                |
| 0.0000 | 0.8197               | 0.000                  | 1346             | 1.4305          | 0.5545                 | 0.9066               | -0.230                 | 1387             | 1.4712         |
| 0.0861 | 0.8306               | -0.126                 | 1351             | 1.4351          | 0.6165                 | 0.9197               | -0.198                 | 1394             | 1.4779         |
| 0.1516 | 0.8393               | -0.193                 | 1355             | 1.4389          | 0.6875                 | 0.9361               | -0.155                 | 1404             | 1.4864         |
| 0.2077 | 0.8472               | -0.234                 | 1359             | 1.4425          | 0.7538                 | 0.9528               | -0.115                 | 1414             | 1.4952         |
| 0.2717 | 0.8567               | -0.264                 | 1363             | 1.4469          | 0.8245                 | 0.9725               | -0.075                 | 1427             | 1.5057         |
| 0.3340 | 0.8665               | -0.278                 | 1367             | 1.4515          | 0.8811                 | 0.9898               | -0.046                 | 1439             | 1.5149         |
| 0.4103 | 0.8793               | -0.275                 | 1373             | 1.4576          | 0.9410                 | 1.0098               | -0.020                 | 1454             | 1.5256         |
| 0.4797 | 0.8919               | -0.259                 | 1379             | 1.4638          | 1.0000                 | 1.0316               | 0.000                  | 1470             | 1.5370         |
|        |                      |                        | x                | m-Cresol + (1   | - <i>x</i> ) Decan-1-c | ol                   |                        |                  |                |
| 0.0000 | 0.8197               | 0.000                  | 1346             | 1.4305          | 0.5447                 | 0.9012               | -0.223                 | 1382             | 1.4685         |
| 0.0818 | 0.8295               | -0.086                 | 1351             | 1.4346          | 0.6205                 | 0.9167               | -0.198                 | 1389             | 1.4764         |
| 0.1443 | 0.8374               | -0.139                 | 1354             | 1.4382          | 0.6951                 | 0.9333               | -0.165                 | 1398             | 1.4850         |
| 0.2191 | 0.8476               | -0.186                 | 1359             | 1.4427          | 0.7472                 | 0.9458               | -0.138                 | 1404             | 1.4916         |
| 0.2700 | 0.8548               | -0.210                 | 1362             | 1.4460          | 0.8163                 | 0.9639               | -0.097                 | 1415             | 1.5013         |
| 0.3513 | 0.8672               | -0.232                 | 1367             | 1.4518          | 0.8738                 | 0.9804               | -0.065                 | 1425             | 1.5101         |
| 0.4154 | 0.8777               | -0.238                 | 1371             | 1.4569          | 0.9325                 | 0.9988               | -0.030                 | 1437             | 1.5198         |
| 0.4864 | 0.8902               | -0.234                 | 1377             | 1.4630          | 1.0000                 | 1.0221               | 0.000                  | 1450             | 1.5320         |
|        |                      |                        | 3                | x p-Cresol + (1 | — <i>x</i> ) Decan-1-0 | 1                    |                        |                  |                |
| 0.0000 | 0.8197               | 0.000                  | 1346             | 1.4305          | 0.5566                 | 0.9038               | -0.254                 | 1386             | 1.4699         |
| 0.0790 | 0.8292               | -0.092                 | 1351             | 1.4344          | 0.6321                 | 0.9195               | -0.229                 | 1394             | 1.4779         |
| 0.1424 | 0.8373               | -0.153                 | 1355             | 1.4379          | 0.7041                 | 0.9358               | -0.195                 | 1403             | 1.4863         |
| 0.2213 | 0.8480               | -0.209                 | 1360             | 1.4428          | 0.7628                 | 0.9502               | -0.163                 | 1411             | 1.4938         |
| 0.2915 | 0.8582               | -0.242                 | 1365             | 1.4475          | 0.8229                 | 0.9662               | -0.124                 | 1420             | 1.5021         |
| 0.3611 | 0.8690               | -0.263                 | 1370             | 1.4526          | 0.8793                 | 0.9825               | -0.087                 | 1430             | 1.5106         |
| 0.4180 | 0.8784               | -0.270                 | 1374             | 1.4572          | 0.9382                 | 1.0010               | -0.042                 | 1442             | 1.5201         |
| 0.4915 | 0.8914               | -0.266                 | 1380             | 1.4636          | 1.0000                 | 1.0224               | 0.000                  | 1455             | 1.5310         |

#### RESULTS AND DISCUSSION

The experimental data of density,  $\rho$ , speed of sound, u, refractive index,  $n_D$ , and excess molar volume,  $V^E$ , for binary liquid mixtures at T = (298.15 to 308.15) K and p = 0.1 MPa are reported in Table 2.

The excess molar volumes,  $V^E$ , were calculated from the densities of the pure liquids and their mixtures using the following equation:

$$V^{\rm E} = \sum_{i=1}^{2} x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(1)

where  $\rho_i$  is the density of the pure component *i*,  $\rho$  is the density of the mixture, and  $x_i$  and  $M_i$  are the mole fraction and the molecular weight (decan-1-ol = 158.2811, *o*-cresol = 108.1392, *m*-cresol = 108.1392, *p*-cresol = 108.1392, and anisole = 108.14) of the component *i* of the system, respectively.

The experimental results of  $V^{E}$  were fitted to the Redlich-Kister equation of the type:<sup>14</sup>

$$Y(x) = x(1-x)\sum_{k=1}^{n} A_k(1-2x)^{k-1}$$
(2)

where k is the number of estimated parameters and  $A_k$  the polynomial coefficients were obtained by fitting the equation to the experimental results by least-squares regression method.

$$\sigma(Y) = \left[\sum_{i}^{n} \left\{Y(x)_{\exp} - Y(x)_{cal}\right\}^{2} / (N-n)\right]^{1/2}$$
(3)

where  $Y(x)_{exp}$ ,  $Y(x)_{cal}$ , N, and n are values of the experimental and calculated property, the number of data points, and the number of parameter of the fitting equation, respectively. The polynomial coefficients and the standard deviation between the experimental and the calculated values of  $V^E$  are given in Table 3. The excess molar volumes are plotted in Figure 1 over the

The excess molar volumes are plotted in Figure 1 over the entire composition range at T = 298.15 K. The results shown in Figure 1 reveal that, for (*m*-cresol + decan-1-ol) and (*p*-cresol + decan-1-ol),  $V^{E} < 0$  over the whole composition range. For the mixture (*o*-cresol + decan-1-ol), the  $V^{E}$  curve becomes slightly s-shaped, that is,  $V^{E} < 0$  with the exception of the mole fraction after  $x \approx 0.82$ . In this region the  $V^{E}$  values are close to zero or even positive. For the mixture of anisole with decan-1-ol,  $V^{E} > 0$  over the whole composition range. Generally, the mixtures of decan-1-ol with isomeric cresols show a contraction of volume  $(V^{E} < 0)$ ; that is, the packing of the molecules and molecular interaction in the mixture is more compact as compared to the pure components, but in the case of *o*-cresol at  $x \approx 0.82$  the steric hindrance factor dominates, which opposes the close proximity of the constituent molecules, that is,  $V^{E} \ge 0$ . In case of (anisole +

Table 3. Coefficients  $A_i$  of the Redlich–Kister Equation and Standard Deviations  $\sigma$  for the Excess Molar Volume  $V^E$  for Binary Liquid Mixtures at T = (298.15 to 308.15) K

| T/K                             | $A_1$                              | $A_2$                                             | $A_3$    | σ       |  |  |  |  |  |  |
|---------------------------------|------------------------------------|---------------------------------------------------|----------|---------|--|--|--|--|--|--|
|                                 |                                    |                                                   |          |         |  |  |  |  |  |  |
| x Amsole + $(1 - x)$ Decan-1-of |                                    |                                                   |          |         |  |  |  |  |  |  |
| 298.15                          | 1.6392                             | 0.5592                                            | 0.0670   | 0.0031  |  |  |  |  |  |  |
| 303.15                          | 1.7131                             | 0.5550                                            | 0.0616   | 0.0032  |  |  |  |  |  |  |
| 308.15                          | 1.7905                             | 0.5527                                            | 0.1569   | 0.0027  |  |  |  |  |  |  |
|                                 | x o-Cres                           | $\operatorname{sol} + (1 - x) \operatorname{Dec}$ | can-1-ol |         |  |  |  |  |  |  |
| 298.15                          | -0.6725                            | 0.9666                                            | 0.1870   | 0.0019  |  |  |  |  |  |  |
| 303.15                          | -0.8539                            | 0.8666                                            | 0.2147   | 0.0026  |  |  |  |  |  |  |
| 308.15                          | -1.0068                            | 0.7326                                            | 0.0292   | 0.0009  |  |  |  |  |  |  |
|                                 | x m-Cresol + (1 - $x$ ) Decan-1-ol |                                                   |          |         |  |  |  |  |  |  |
| 298.15                          | -0.9565                            | 0.3412                                            | 0.1302   | 0.00163 |  |  |  |  |  |  |
| 303.15                          | -0.9429                            | 0.3498                                            | 0.1286   | 0.00164 |  |  |  |  |  |  |
| 308.15                          | -0.9298                            | 0.3540                                            | 0.1334   | 0.00162 |  |  |  |  |  |  |
|                                 | <i>x p</i> -Cres                   | $\operatorname{sol} + (1 - x) \operatorname{Dec}$ | can-1-ol |         |  |  |  |  |  |  |
| 298.15                          | -1.1100                            | 0.3039                                            | 0.0682   | 0.0012  |  |  |  |  |  |  |
| 303.15                          | -1.0977                            | 0.2873                                            | 0.0712   | 0.0013  |  |  |  |  |  |  |
| 308.15                          | -1.0634                            | 0.2913                                            | 0.0541   | 0.0009  |  |  |  |  |  |  |



**Figure 1.** Excess molar volume,  $V^{\mathbb{E}}$ , plotted against mole fraction, *x*, for [*x* isomeric cresols and anisole + (1 - x) decan-1-ol] systems at T = 298.15 K:  $\bigcirc$  *o*-cresol;  $\blacksquare$ , *m*-cresol;  $\blacktriangle$ , *p*-cresol; and \*, anisole.

decan-1-ol),  $V^{E} > 0$ ; this is mainly due to the weak intermolecular force of attraction and mainly dispersion forces between anisole and decan-1-ol molecules.

The magnitude of the maximum value of  $V^{\text{E}}$  for (anisole + decan-1-ol) binary mixtures increases slightly with the increase of temperature from T = (298.15 to 308.15) K, and the minimum value of  $V^{\text{E}}$  for the (*m*-cresol + decan-1-ol) and (*p*-cresol + decan-1-ol) binary mixtures becomes more positive with the increase of temperature from T = (298.15 to 308.15) K, except for the (*o*-cresol + decan-1-ol) binary mixture where the  $V^{\text{E}}$  value at the minimum becomes more negative with the increase of temperature from T = (298.15 to 308.15) K.

#### ASSOCIATED CONTENT

**Supporting Information.** The values of isentropic compressibility,  $\kappa_S$ , deviation in isentropic compressibility,  $\Delta \kappa_S$ , molar isentropic compression,  $K_{S,m}$ , deviation in molar isentropic compression,  $\Delta K_{S,m}$ , and the deviation in the speeds of sound,  $\Delta u$ , for the investigated systems at T = (298.15 to 308.15) K. The values of heat capacity,  $C_p$ , and isobaric coefficient of thermal expansion,  $\alpha$ , for pure components in the temperature range (298.15 to 308.15) K. Two additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: bhatiasc2@rediffmail.com, rumanjangra58@gmail.com.

#### ACKNOWLEDGMENT

Authors are grateful to the Kurukshetra University authorities for providing the necessary facilities to carry out the research work and for the award of University Research Fellowship to one of the authors.

#### REFERENCES

(1) Bhatia, S. C.; Bhatia, R.; Dubey, G. P. Thermodynamic and Sonochemical Behaviour of Binary Mixtures of Decan-1-ol with Halohydrocarbons at (293.15 and 313.15). *J. Chem. Thermodyn.* **2010**, *42*, 114–127.

(2) Bhatia, S. C.; Bhatia, R.; Dubey, G. P. Studies of Thermodynamic Properties of Binary Mixtures of Hexan-1-ol with Halogenated Compounds at 308.15 and 313.15 K. *J. Chem. Thermodyn.* **2009**, *41*, 1132–1144.

(3) Bhatia, S. C.; Bhatia, R.; Dubey, G. P. Studies on Transport and Thermodynamic Properties of Binary Mixtures of Octan-ol with Chloroform, 1,2-Dichloroethane and 1,1,2,2-Tetrachloroethane at 298.15 and 308.15 K. J. Mol. Liq. **2009**, *144*, 163–171.

(4) Kiyohara, O.; Benson, G. C. Ultrasonic Speeds and Isentropic Compressibilities of *n*-Alkanol + *n*-Heptane mixtures at 298.15 K. J. Chem. Thermodyn. **1979**, *11*, 861–873.

(5) Benson, G. C.; Kiyohara, O. Evaluation of Excess Isentropic Compressibilities and Isochoric Heat Capacities. *J. Chem. Thermodyn.* **1979**, *11*, 1061–1064.

(6) Heintz, A.; Schmittecker, B.; Wanger, D.; Lichtenthaler, R. N. Excess Volumes of Binary 1-Alkanol/Hexane Mixtures at Temperatures between 283.15 and 323.15 K. *J. Chem. Eng. Data* **1986**, *31*, 487–492.

(7) Al-Jimaz, A. S.; Al-Kandary, J. A.; Abdul-Latif, A.-H. M. Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K. J. Chem. Eng. Data **2006**, *51* (1), 99–103.

(8) Riddick, J. A.; Bunger, W. B.; Sakano, F. K. Oraganic Solvents, Physical Properties and Method of Purification, 4th ed.; Wiley-Interscience: New York, 1986.

(9) Dubey, G. P.; Kumar, K. Volumetric and Viscometric Properties of Binary Liquids Mixtures of Ethylene Glycol Monomethyl Ether + 1-Hexanol, 1-Octanol, and 1-Decanol at Temperatures of T = (293.15, 298.15, 303.15, and 308.15) K. J. Chem. Eng. Data **2010**, 55, 1700–1703.

(10) Dubey, G. P.; Sharma, M. Acoustic, Thermodynamic, Viscometric and Volumetric Studies in Binary Systems of 1-Decanol with *n*-Hexane, *n*-Octane and *n*-Decane with respect to Temperature. *J. Mol. Liq.* **2008**, *143*, 109–114.

(11) Zafarani-Moattar, M. T.; Samadi, F.; Sadeghi, R. Volumetric and Ultrasonic Studies of the System (Water + Polypropylene Glycol 400) at Temperatures from (283.15 to 313.15) K. J. Chem. Thermodyn. 2004, 36, 871–875. (12) Ortega, J. Densities and Refractive Indices of Pure Alcohols as a Function of Temperature. *J. Chem. Eng. Data* **1982**, *27*, 312–317.

(13) Al-Jimaz, A. S.; Al-Kandary, J. A.; Abdul-latif, A.-H. M.; Al-Zanki, A. M. Physical Properties of {a Anisole + n-Alkanes} at Temperatures between (293.15 and 303.15) K. J. Chem. Thermodyn. 2005, 37, 631–642.

(14) Redlich, O.; Kister, A. T. Algebric Representation of Thermodynamic Properties and Classification of Solution. *Ind. Eng. Chem.* **1948**, *40*, 345–348.