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The present study reports a differential scanning calorimetry (DSC) study of the barbituric acid derivatives:
1,3-dimethylbarbituric acid [CAS 769-42-6], 5,5-dimethylbarbituric acid [CAS 24448-94-0], 1,3-diethyl-
barbituric acid [CAS 32479-73-5], 1,3,5-trimethylbarbituric acid [CAS 7358-61-4], 1,5,5-trimethylbarbituric
acid [CAS 702-47-6], and tetramethylbarbituric acid [CAS 13566-66-0] in the temperature interval from T
) 268 K to their respective melting temperatures. Temperatures, enthalpies and entropies of fusion, and the
heat capacities of the solid compounds as a function of temperature are reported.

Introduction

Barbituric acid derivatives were introduced for medical use
a century ago,1 several years after the synthesis in 1864 by von
Baeyer of the parent compound, barbituric acid.2 Barbiturates
act as central nervous system depressants, and by virtue of this,
they produce a wide spectrum of physiological effects. They
are used as sedatives, hypnotics, soporifics, anticonvulsants, or
adjuncts in anesthesia.3 Other applications of barbituric acid
derivatives include their use as antivirals,4 in photochemical
nanoscience,5 as dyes,6 polymers,7 dental materials,8 water-
thinned or oil-based inks,9 and as polymerization catalysts.10

In the context of a systematic study of the thermodynamic
properties of this family of compounds, we have recently
published thermochemical studies of barbituric acid11 and its
5,5-dimethyl12 and 5,5-diethyl (barbital)13 derivatives. Ther-
mophysical data existing in the literature for these types of
compounds are scarce. Only experimental data concerning the
Cp of barbituric acid14,15 and the 5,5-diethyl derivative13 are
available.

Heat capacities at T ) 298.15 K have proven quite useful in
adjusting vaporization, sublimation, and fusion enthalpies with
temperature. Equations for doing this have recently been
reported by Chickos and co-workers.16,17 There are several
compilations of critically evaluated calorimetrically measured
heat capacities,18,19 but new data on the heat capacity of
important families of compounds are still needed,20,21 particu-
larly for crystalline solids. There has been an effort to develop
reliable and accurate group contribution schemes to improve
the estimation and compensate for the scarcity of this data. The
simplest schemes are based on first-order additivity and only
consider the constituent groups of the molecule.22,23 Other

methods use a second-order additivity scheme that also take
into account nearest-neighbor interactions in the definition of
the structural units of molecules.24 These schemes normally
neglect all next-to-nearest neighbor interactions because of the
limited accuracy of the available experimental heat capacity data.
Estimations of the heat capacity of solids are more problematic
than their liquid counterparts. This is due in part to the lack of
data but also due to the anisotropic nature of the solid state.
Phase transitions in solids can affect their heat capacities near
these transitions. Solids that form liquid crystals, for example,
seem to have larger heat capacities in certain temperature
regions, and phase change entropies appear attenuated in
comparison to systems that melt directly to isotropic liquids.25

Group values for estimating the heat capacity of crystalline
solids have been reported, but the estimations in many cases
have been hampered by the lack of sufficient data.

During the past few years, we have been involved in the
experimental determination of enthalpies of fusion, heat capaci-
ties, and the study of polymorphism of pure crystalline organic
compounds.26-32 The present work reports the temperature,
enthalpy and entropy of fusion, and heat capacities of several
barbituric acid derivatives measured by differential scanning
calorimetry (DSC). The target compounds (see Figure 1) are
1,3-dimethylbarbituric acid (1), 5,5-dimethylbarbituric acid (2),
1,3-diethylbarbituric acid (3), 1,3,5-trimethylbarbituric acid (4),
1,5,5-trimethylbarbituric acid (5), and tetramethylbarbituric acid
(6). The main objective of this work was to expand the database
of available experimental heat capacities of barbituric acid
derivatives and to provide reliable data to adjust and refine group
contribution schemes for the estimation of this property for
compounds that have not yet been investigated.

Experimental Procedures

Materials. 1,3-Dimethylbarbituric acid (1) [CAS 769-42-6]
and 5,5-dimethylbarbituric acid (2) [CAS 24448-94-0] were
commercially available from Fluka, and no further purification
was necessary as described below.

1,3-Diethylbarbituric acid (3) [CAS 32479-73-5] was obtained
by the condensation of malonic acid with N,N′-diethylurea
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promoted by acetic anhydride according to a literature proce-
dure.33 The oily crude 3 slowly underwent a partial crystalliza-
tion, and the crystals were filtered out with suction and were
washed with a little ethanol. The crystals were recrystallized
several times to a melting point (mp) of (325 to 326) K (lit.33

mp 325 K), from mixtures of chloroform and heptane (1.4:1),
in the following manner: the solution was allowed to evaporate
at room temperature until 1,3-diethylbarbituric acid was a liquid
layer on the bottom, and the mass was then cooled to 277 K
and seeded. 1H NMR (300 MHz, CDCl3): δ ) 1.21 (t, J ) 7.1
Hz, 6 H), 3.65 (s, 2 H), 3.94 (q, J ) 7.1 Hz, 4 H) ppm.

1,3,5-Trimethylbarbituric acid (4) [CAS 7358-61-4] was
prepared from diethyl methylmalonate and N,N′-dimethylurea
according to a literature procedure34 and was purified as follows:
The sodium barbiturate salt smoothly precipitated in the reaction
mixture and was filtered out and washed with ethanol. The salt
was dissolved in water, benzene was then added, and the salt
was acidified adding with stirring 1 M hydrochloric acid to a
pH 4. The benzene layer was separated, dried over sodium
sulfate, filtered, and concentrated, giving on cooling, crystals
of 3, with an mp of 362.7 ( 0.5 K (lit.34 mp (362.7 to 363.2)
K); 1H NMR (300 MHz, CDCl3): δ ) 1.61 (d, J ) 7.5 Hz, 3
H), 3.31 (s, 6 H), 3.48 (q, J ) 7.5 Hz, 1 H) ppm.

1,5,5-Trimethylbarbituric acid (5) [CAS 702-47-6] was
obtained by condensation of diethyl dimethylmalonate with
methylurea,35 using one equivalent of sodium ethoxide in
ethanol as the condensation agent. In this manner, the sodium
salt of 1,5,5-trimethylbarbiturate smoothly precipitated from the
reaction mixture and was filtered out, washed with ethanol, and
dried in air. The salt was then acidified by quickly adding an
equivalent amount of 6 M hydrochloric acid with vigorous
mixing to prevent the decomposition of the salt in aqueous
solution. Compound 5 was recrystallized from chloroform to
the required purity, with an mp of 434.6 ( 0.2 K (lit.36 mp
(434 to 435) K); 1H NMR (300 MHz, CDCl3): δ ) 1.56 (s, 6
H), 3.28 (s, 3 H), 8.91 (br, 1 H) ppm.

Tetramethylbarbituric acid37 (6) [CAS 13566-66-0] was
prepared by methylation of the sodium salt of 1,5,5-trimethyl-
barbituric acid in the following manner. The sodium salt
(obtained as described above, 28.3 g, 0.147 mol) was reacted
with methyl iodide (18.5 mL, 0.297 mol) in absolute ethanol
(500 mL) at room temperature for 2.5 h. The ethanol was
removed, and water (75 mL) was added, followed by extraction
with petroleum ether (300 mL) and diethyl ether (300 mL). The
combined extracts were dried over sodium sulfate, filtered, and

concentrated to give crystals of 6, with an mp of 382.3 ( 0.2
K (lit.36 mp (382 to 383) K); 1H NMR (300 MHz, CDCl3): δ )
1.54 (s, 6 H), 3.30 (s, 6 H) ppm.

Purity Control. All samples were carefully dried under
vacuum. A determination of purity was assessed by high-
performance liquid chromatography (HPLC) and DSC, using
the fractional fusion technique.38 The mole fraction of impurities
in all compounds studied was less than 0.0001 as assessed by
both techniques.

The standards used for DSC calibration were hexafluoroben-
zene, 0.999 mass fraction, supplied by Aldrich, benzoic acid
National Institute of Standards and Technology (NIST) standard
reference sample 39j, and high-purity indium (w > 0.99999)
and tin supplied by Perkin-Elmer.

Apparatus and Procedure. The behavior of the samples as a
function of temperature was studied by DSC. A Pyris 1
instrument from Perkin-Elmer equipped with an intracooler unit
was used to monitor purity, to study the fusion process and the
possible existence of phase transitions in the solid samples, and
to determine heat capacities as a function of temperature. The
apparatus was previously calibrated in temperature and energy
with reference materials. Temperature and power scales were
calibrated39 at heating rates of (0.04 and 0.17) K · s-1. The
temperature scales were calibrated by the melting temperature
of the high-purity reference materials, hexafluorobenzene, tin,
and indium.40 The power scales were calibrated with high-purity
indium.40

Table 1. Group Values (Γ) Used to Estimate Total Phase Change
Entropies and Heat Capacities

Γ(∆tpceS(Tfus))
a Γ(Cp,m(cr))a

components group (Γ) J ·K-1 ·mol-1 J ·K-1 ·mol-1

primary sp3

carbon
CH3sR 17.6 36.6

secondary sp3 carbon sCH2s 7.1 26.9
cyclic secondary sp3

carbon
24.6

cyclic tertiary sp3

carbon
sCH(R)s -14.7 11.7

aromatic tertiary sp2

carbon
dCHs 17.5

aromatic quaternary
sp2 carbon

dCRs 8.5

cyclic quaternary sp3

carbon
sC<(R)2s -34.6 6.1

cyclic sec amide sC(dO)NHs 2.7 46.4
cyclic tertiary

amide
sC(dO)NRs -21.7 45.3b

N-substituted cyclic
imide

sC(dO)N(R)C(dO)s [-13.6] [49.4]c

cyclic imide sC(dO)N(H)C(dO)s [2.8] [74.1]
cyclic urea sNHC(dO)NHs [63.6]
cyclic ketone 34.3

a Values in brackets are considered tentative assignments. b This
value, previously assigned tentatively as [52.7], has been modified as a
result of additional data. c New assignment.

Table 2. Temperatures and Enthalpies and Entropies of Fusion for
the Compounds Studied

Tfus ∆fusH(Tfus) ∆fusS(Tfus)expt ∆tpceS(Tfus)calc
a

K kJ ·mol-1 J ·K-1 ·mol-1 J ·K-1 ·mol-1

1,3-dimethylbarbituric
acid

396.1 ( 0.3 17.7 ( 0.1 44.6 ( 0.3 44.4

5,5-dimethylbarbituric
acid

549.3 ( 0.9 37.9 ( 0.3 69.0 ( 0.5 50.6

1,3-diethylbarbituric
acid

326.8 ( 0.2 19.6 ( 0.1 60.1 ( 0.3 58.6

1,3,5-trimethylbarbituric
acid

362.6 ( 0.5 13.7 ( 0.6 37.7 ( 0.5 47.3

1,5,5-trimethylbarbituric
acid

434.5 ( 0.2 30.2 ( 0.1 69.6 ( 0.2 51.8, 43.8

tetramethylbarbituric
acid

382.2 ( 0.2 18.5 ( 0.8 48.4 ( 2.1 45.0

a Values calculated according to ref 44.

Figure 1. Molecular structures of the barbituric acid derivatives studied.
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Thermograms of samples hermetically sealed in aluminum
pans were recorded in a nitrogen atmosphere. All of the pans
with the samples were weighed on a Mettler AT21 microbalance
with a detection limit of 1 ·10-6 g, before and after the
experiments to confirm that no product had volatilized.

After calibration, several runs with high-purity benzoic acid
and indium were performed under the same conditions as the
experimental determinations. The accuracies associated with
measurements of temperature and enthalpy of fusion were
calculated as the percentage deviation of the experimental data
with respect to the values given in the literature;40 in all cases
the deviations were less than 1 K and 2.0 % for temperature
and enthalpy determinations, respectively.30

For the determination of purity, temperature, and enthalpy
of fusion, a heating rate of 0.04 K · s-1 was used, and five to
eight samples weighing (1 to 2) mg were measured. A fresh
sample was used for each run. All compounds showed thermal
stability during the fusion process.

Different scans at heating rates of (0.04 and 0.17) K · s-1 were
performed to determine the possible existence of phase transi-
tions in the samples over the temperature range from T ) 268
K to their melting temperature.

Heat capacities were determined by the “scanning method”
following the experimental methodology previously described41

with synthetic sapphire (R-aluminum oxide) as reference
material.40,41 DSC is a commonly accepted method for the
quantitative determination of heat capacities, and it has been
proven as a suitable technique for obtaining reliable and accurate

values.42 As a check of the experimental method, heat capacity
experiments were performed with benzoic acid in the temper-
ature interval T ) (268 to 360) K.30 The relative percentage
error of our measurements in comparison with those reported
in the literature was less than 2 %.30

The mass of sapphire used in each run was 0.030345 g. For
heat capacity determinations, three to six fresh samples weighing
(10 to 25) mg were scanned for each solid compound in the
temperature range from T ) 268 K to its melting temperature
at 0.17 K · s-1. The complete temperature range for determination
of heat capacity was divided in intervals of approximately 40
K, overlapping by 5 K from one interval to another.

The molecular weights used to convert the specific heat
capacities measured to their molar values were calculated from
the atomic weights recommended by the International Union
of Pure and Applied Chemistry (IUPAC) in 2005.43

Estimations of Total Phase Change Entropies and Heat
Capacity. Total phase change entropies were calculated accord-
ing to the protocol described previously.16 Table 1 lists group
values used together with the ring equation developed, eq 1, to
estimate ∆tpceS(Tfus)calc.

The estimation of a monocyclic heterocycle begins by first
estimating the parent hydrocarbon of ring size N, obtained by
substituting carbon for all the ring heteroatoms using eq 1.

Table 3. Mean Experimental Cp,m(cr) Values

Cp,m(cr)/J ·K-1 ·mol-1 Cp,m(cr)/J ·K-1 ·mol-1

T/K 1 2 3 4 5 6 T/K 2 5

268.15 175.7 173.9 223.4 207.8 199.9 217.2 395.15 233.8 264.2
270.15 176.7 175.5 225.6 209.3 200.9 218.1 400.15 236.0 267.3
275.15 178.7 179.2 230.7 213.0 203.2 221.0 405.15 238.4 273.2
280.15 180.8 182.2 234.5 217.0 205.3 223.6 410.15 240.2 276.5
285.15 182.6 184.4 238.2 220.6 207.5 226.4 415.15 242.3 279.4
290.15 185.3 187.0 242.1 224.7 209.8 229.3 420.15 246.2
295.15 187.4 188.8 246.1 228.5 212.2 232.2 425.15 247.9
298.15 188.5 190.5 248.5 230.9 213.6 234.2 430.15 250.7
300.15 189.5 191.4 250.3 232.6 214.6 235.4 435.15 253.7
305.15 191.6 194.5 254.2 236.6 216.7 238.6 440.15 255.0
310.15 193.9 196.5 259.8 241.1 218.9 243.0 445.15 258.9
315.15 197.5 199.1 244.1 221.4 246.5 450.15 261.5
320.15 199.9 201.5 249.4 223.9 249.6 455.15 264.4
325.15 202.7 203.3 253.2 225.6 252.3 460.15 266.9
330.15 204.9 205.3 258.1 227.8 255.0 465.15 270.0
335.15 206.8 207.5 265.1 230.3 258.8 470.15 273.4
340.15 208.9 208.9 272.4 233.0 261.8 475.15 275.8
345.15 211.5 211.2 235.5 264.8 480.15 278.7
350.15 214.3 214.3 237.8 268.6 485.15 282.3
355.15 216.9 217.5 241.0 272.1 490.15 285.4
360.15 219.7 219.2 243.0 276.3 495.15 288.2
365.15 223.5 220.9 246.0 280.0 500.15 292.4
370.15 227.2 222.4 249.2 285.1 505.15 296.6
375.15 226.2 251.1 510.15 298.4
380.15 228.2 253.4 515.15 301.5
385.15 228.4 256.3 520.15 304.5
390.15 232.0 259.8 525.15 308.0

Table 4. Coefficients of the Fitted Curves

range A B · 102 C ·103 D ·105 rmsda

K J ·K-1 ·mol-1 J ·K-1 ·mol-1 J ·K-1 ·mol-1 J ·K-1 ·mol-1 R2 J ·K-1 ·mol-1

1 268-370 189.0 ( 0.1 45.3 ( 0.3 0.20 ( 0.17 1.15 ( 0.22 0.9988 0.6
2 268-525 190.4 ( 0.1 48.7 ( 0.3 -0.73 ( 0.04 0.39 ( 0.01 0.9997 0.7
3 268-310 248.4 ( 0.1 82.8 ( 0.4 5.15 ( 0.50 12.00 ( 2.4 0.9997 0.1
4 268-340 230.8 ( 0.1 75.3 ( 0.7 1.31 ( 0.24 8.77 ( 0.92 0.9990 0.6
5 268-415 213.7 ( 0.1 45.1 ( 0.3 -0.40 ( 0.10 1.17 ( 0.07 0.9994 0.5
6 268-370 234.7 ( 0.1 61.5 ( 0.4 0.32 ( 0.19 1.00 ( 0.26 0.9991 0.6

a Root-mean-square deviation.

∆tpceS(Tfus)calc ) 33.4 + 3.7(N - 3) (1)
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Estimations of the heterocyclic ring is then completed by
identifying the appropriate groups that modify the structure and
adding their contributions. The groups are identified in columns
1 and 2 of Table 1, and their contributions are listed in column
3 of the table. The barbituric acid derivatives of this study were
modeled as derivatives of cyclohexane. Modifications to the
cyclohexane structure include the introduction of a cyclic amide
and cyclic imide to the ring. The estimation is then completed
by adding the contributions of any acyclic groups attached to
the ring and modifying any ring carbons atoms that differ from
the secondary sp3 hybridized methylene groups found in the
parent ring. In some cases, it is possible to model total phase
change entropies in more than one manner. The estimation of
1,5,5-trimethylbarbituric acid serves as an example. In addition
to the ring contribution, the molecule can either be modeled as
a cyclic imide and an N-substituted cyclic tertiary amide or as
an N-substituted cyclic imide and a cyclic secondary amide.
Ideally both values calculated in this manner should be identical.
In this case it is not possible to preferentially assign one value
over the other since both the cyclic imide and the N-substituted
cyclic imide are still tentative values. Both estimated values
are included below in Table 2.

The group values for estimating Cp,m(cr) of the compounds
of this study are listed in column 4 of Table 1. The group value
for a cyclic tertiary amide (old value 52.7), previously assigned
as tentative, has been updated, and a new group value, that for
a N-substituted cyclic imide, has been tentatively assigned due
to the inclusion of new data. The new values were evaluated by
minimizing the following function: ∑[[Cp,m(cr)exp - Cp,m(cr)calc]/
Cp,m(cr)exp]2, using the data in Table 5.

Results and Discussion

Fusion temperatures and enthalpies and experimental entropies
of fusion of the compounds measured are given in Table 2. The
uncertainties were taken as the standard deviation of the mean.
Tfus values are reported as DSC onset temperatures. Also
included in the last column of the table is the estimated total
phase change entropy, ∆tpceS(Tfus).

44 This term includes the total
phase change entropy associated in going from T ) 0 K to the
liquid at T ) Tfus. For compounds without any other phase
transitions, this entropy change is identical to the fusion entropy.
The uncertainty associated with predicting total phase change
entropies by this method based on approximately 1000 estima-
tions is ( 18.5 J ·K-1 ·mol-1.25 For the most part, the estimations
reported in Table 2 fall well within this uncertainty, suggesting
the absence of any substantial low temperature solid-solid phase
transitions. To the authors’ knowledge, there is no other
calorimetric data in the literature for comparison with the results
obtained in this study.

No solid-solid phase transitions were observed over the
temperature interval from T ) 268 K to the corresponding
melting points for any of the compounds.

The measured molar heat capacities as a function of temper-
ature for all compounds are collected in Table 3. The values
given in Table 3 are averages of three to six independent runs.
The standard deviation of all of the data associated with multiple
measurements is less than 2 J ·K-1 ·mol-1.

The experimental results for the compounds were fit to a third-
order polynomial in temperature of the type:

The range studied for each compound, the coefficients of the
fitted third-order equation in temperature, and the root-mean-
square deviation (rmsd) for all the compounds are collected in
Table 4. To our knowledge, there are no Cp,m data in the
literature for comparison with our results.

Estimations of heat capacities at T ) 298.15 K are relatively
straightforward. The estimation requires an identification of the
correct groups and evaluating their sum. As noted in the
Experimental Section, one group value previously assigned as
tentative has been updated, and one additional value, an
N-substituted cyclic imide, has been added. The compounds and
data used for this purpose are included in Table 5, which
includes experimental values from this work as well as from
the recent literature. All of the compounds in Table 5, except
for parabanic acid and 1,3-dimethyl-5-butyluracil, were used
in generating the new group values. These two compounds
resulted in errors greater than three standard deviations when
included in the correlations and were therefore excluded. The
heat capacity of 1,3-dimethyl-5-butyluracil (351.8 J ·K-1 ·mol-1)
is particularly surprising since the value for the isomer, 1,3-
dimethyl-6-butyluracil (296.4 J ·K-1 ·mol-1), is considerably
lower. The two isomers differ only in the location of the butyl
group on the heterocyclic ring. The standard deviation associated

Cp,m(cr) ) A + B(T/K - 298.15) +

C(T/K - 298.15)2 + D(T/K - 298.15)3 (2)

Table 5. Heat Capacity of Compounds Used to Update Group
Values for a Cyclic Tertiary Amide and N-Substituted Urea

Cp,m(cr, 298.15 K)

J ·K-1 ·mol-1 ∆Cp,m
a

compound exp. calc. J ·K-1 ·mol-1 ref

imidazolidin-2-one 107.7 112.8 -5.1 45
N,N′-trimethyleneurea 129.5 137.4 -7.9 45
parabanic acid 168.9b 120.5 48.4 46
barbituric acid 141.1 145.1 -4 14, 15
1,3-dimethylbarbituric acid 188.5 192.5 -4.0 this work
1,3-diethylbarbituric acid 248.5 246.3 2.2 this work
5,5-dimethylbarbituric acid 190.5 199.8 -9.3 this work
5,5-diethylbarbituric acid 228.7 253.6 -24.9 13
1,3,5-trimethylbarbituric acid 230.9 216.2 14.7 this work
1,5,5-trimethylbarbituric acid 213.6 210.6 3.0 this work
tetramethylbarbituric acid 234.2 247.2 -13.0 this work
uracil 131.8 124.6 7.2 47
1-methyluracil 156.9 160.1 -3.2 47
3-methyluracil 157 160.1 -3.1 47
5-methyluracil 163 150 13 47
6-methyluracil 162.5 150 12.5 47
1,3-dimethyluracil 182.5 195.6 -13.1 47
3,6-dimethyluracil 187.4 185.5 1.9 47
1,6-dimethyluracil 188.1 185.5 2.6 47
1,5-dimethyluracil 187.6 185.5 2.1 47
5,6-dimethyluracil 191.1 175.4 15.7 47
1,3,6-trimethyluracil 212.6 221.0 -8.4 47
1,3,5,6-tetramethyluracil 244.5 246.4 -1.9 47
1,3-dimethyl-5-ethyluracil 241.1 247.9 -6.8 47
1,3-dimethyl-5-propyluracil 302.7 274.8 27.9 47
1,3-dimethyl-5-butyluracil 358.1b 301.7 56.4 47
1,3-dimethyl-6-ethyluracil 241.8 247.9 -6.1 47
1,3-dimethyl-6-propyluracil 287.2 274.8 12.4 47
1,3-dimethyl-6-butyluracil 296.4 301.7 -5.3 47
1,3-dimethyl-5,6-trimethyleneuracil 252.9 247.0 5.9 47
1,3-dimethyl-5,6-tetrarmethyleneuracil 282.9 271.6 11.3 47
1,3-dimethyl-5,6-pentamethyleneuracil 314.5 296.2 18.3 47
6-chlorouracil 139.4 142.1 -2.7 47
5-fluorouracil 138.3 138.2 0.1 47
5-chlorouracil 136.7 142.1 -5.4 47
5-bromouracil 144.7 145.8 -1.1 47
5-iodoracil 150.9 141.3 9.6 47
5-trifluoromethyuracil 182.2 182.8 -0.6 47
5-nitrouracil 167.2 169.5 -2.3 47
5-aminouracil 145 135 10 48
6-aminouracil 147 135 12 48
6-amino-1-methyluracil 166.2 170.5 -4.3 48
6-amino-1,3-dimethyluracil 189 206.0 -17.0 48
caffeine 231.8 204.2 27.6 49
succinamide 131.4 123.3 8.1 49
antipyrine 268.2 266.6 1.7 49
4-aminoantipyrene 294.6 277.0 17.6 49

a Cp,m(cr, 298.15 K, expt.) - Cp,m(cr, 298.15 K). b Not used in
generating the group value for a cyclic tertiary amide.
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with the estimations listed in Table 5 was ( 11.0 J ·K-1 ·mol-1.
This increases to ( 14.9 J ·K-1 ·mol-1 if the uncertainties
associated with the two outliers are included.

Some flexibility also exists in the estimation of Cp,m(cr). As
described above, 1,5,5-trimethylbarbituric acid (5) can be
estimated as either a cyclic imide attached to a cyclic tertiary
amide, 235.3 J ·K-1 ·mol-1, or as an N-substituted cyclic imide
attached to a cyclic secondary amide, 210.6 J ·K-1 ·mol-1. In
principle, both estimations should produce identical results. In
general, the use of different groups in an appropriate manner
usually results in Cp,m(cr) values that do not vary a great deal
from each other. In this case the later value is preferred because
the former calculation uses a value that is still tentatively
assigned, [74.1] J ·K-1 ·mol-1. 5,5-Dimethylbarbituric acid (2)
has been estimated as the sum of a cyclic urea and cyclic
secondary amide in Table 5, 199.8 J ·K-1 ·mol-1. An alternative
method, perhaps less indicative of the properties of the molecule,
is to estimate Cp,m(cr, 298.15 K) as the sum of a cyclic urea
and two cyclic ketones. This results in the value 211.5
J ·K-1 ·mol-1, not terribly different from the experimental value
of 190.5 J ·K-1 ·mol-1.

The uracils in Table 5 were previously estimated by Zielen-
kiewicz et al.47,48 using this group method. Uracil was estimated
as the sum of two cyclic secondary amides and two tertiary
aromatic sp2 C, 127.8 J ·K-1 ·mol-1. If this protocol is applied
using the older group value previously available for a cyclic
tertiary amide, 52.7 J ·K-1 ·mol-1,22 a value for 1-methyluracil
of 170.7 J ·K-1 ·mol-1 is calculated, which differs from the value
of 153.5 J ·K-1 ·mol-1 reported in Table 2 of ref 47. It is not
clear exactly how these authors arrived at some of their
estimated values. The use of the group value for a tertiary
aromatic sp2 C was intended for aromatic compounds and would
probably be a more appropriate choice to use if uracil was being
modeled as a dihydroxypyrimidine. Otherwise, the use of the
group value for a cyclic tertiary sp2 carbon is recommended
for cyclic unsaturated compounds of this sort.

Literature Cited

(1) http://es.wikipedia.org/wiki/Barbital (accessed Aug 16, 2010).
(2) von Baeyer, A. Untersuchungen über die Harnsäuregruppe. Ann. Chem.
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