Estimated Adiabatic Ionization Energies for Organic Compounds Using the Gaussian-4 (G4) and W1BD Theoretical Methods

Sierra Rayne*,[†] and Kaya Forest[‡]

Ecologica Research, Kelowna, British Columbia, Canada V1Y 1R9, and Department of Chemistry, Okanagan College, Penticton, British Columbia, Canada V2A 8E1

Gas phase (298.15 K, 101.325 kPa) adiabatic ionization energies (AIEs) were calculated for 236 organic compounds with the Gaussian-4 (G4) composite method and for 17 molecules at the W1BD level of theory. Functional group types considered span a range of mono- and polyfunctionalized halogenated, saturated and unsaturated, cyclic and acyclic, and heteroatom (N, O, S) substituted moieties without substantial conformational complexity. Excellent agreement was found using both computational methods against available experimental data. Approximately equivalent AIE prediction accuracy was observed between the G4 and the W1BD methods. For compounds with well-constrained experimental AIEs, both levels of theory provide effective chemical accuracy.

Introduction

The ionization energy (IE) represents the minimum energy to eject an electron from a neutral molecule in its ground state. Two types of IEs are defined. The adiabatic ionization energy (AIE) involves the formation of the resulting molecular ion in its ground vibrational state following electron ejection, a process which allows for geometrical rearrangement in the overall energy change (Figure 1). In contrast, the vertical ionization energy (VIE) does not allow for geometrical rearrangements upon molecular ion formation and strictly involves electron ejection with a stationary geometry.¹ AIEs are not only of interest from a theoretical perspective in terms of defining molecular properties such as electronegativity and chemical potential, hardness/softness, and the electrophilicity index and for broadly understanding structure-reactivity relationships,²⁻⁷ but they are also widely employed toward redox processes in natural, engineered, and biological systems and in the design of new materials.^{8–11}

Because of interest in the redox properties of larger supramolecular systems and biologically relevant macromolecules, the majority of theoretical IE benchmarking efforts have been performed using density functional and Hartree-Fock levels of theory (see, e.g., refs 12 to 17), both of whose computational costs scale favorably with molecular size compared to higher level composite methods. More restricted benchmarking studies in terms of molecular size and number of compounds have been conducted using the earlier Gaussian-1 (G1) through G3 versions of the higher level Gaussian-n methods and W1/W2 theory.¹⁸⁻²¹ To date, the G4 method has been benchmarked against 105 compounds from the G3/05 test set, where a mean absolute deviation (MAD) and a root-mean-squared deviation (rmsd) of (0.04 and 0.06) eV were obtained, respectively.²² The W1BD (along with the W1U, W1Usc, and W1(RO) flavors of W1 theory) method has been similarly benchmarked against 86 compounds from the G2/97 test set, yielding MAD and rmsd of 0.02 eV.²³

Figure 1. Schematic potential energy diagram for a diatomic molecule illustrating the difference between adiabatic and vertical ionization energies. Adapted from http://cccbdb.nist.gov/adiabatic.asp.

There remains much interest in molecular systems amenable to composite method calculations, and with continuing increases in computing power and the development of more efficient algorithms, we expect increasingly larger molecules will be within reach of these calculations in the near future. The current work extends AIE benchmarking efforts with the G4 and W1BD methods to a larger suite of functionalized organic compounds of varying molecular size and also provides high level AIE estimates for a number of well-known strained organic compounds whose properties are of fundamental and applied importance.

Methodology

Compound structures and experimental data were obtained from the National Institute of Standards and Technology (NIST) Chemistry WebBook.²⁴ Where applicable, two-dimensional structures from this reference database were converted to threedimensional geometries using Avogadro v.1.0.1. All compounds were subjected to a systematic rotor search which identified the lowest energy MMFF94^{25–29} conformation followed by a 500 step geometry optimization using the steepest descent algorithm and a convergence criterion of 10^{-7} within the Avogadro software environment. The resulting geometries were used as

^{*} Corresponding author. E-mail: rayne.sierra@gmail.com.

[†] Ecologica Research.

[‡] Okanagan College.

Table 1. Experimental and G4/W1BD Calculated Gas Phase (298.15 K, 101.325 kPa) AIEs for Various Small Organic Compounds^a

		MW		I	AIE/eV	
CAS-RN	formula	$\overline{g \cdot mol^{-1}}$	name	expt.	G4	W1BD
74-86-2 74-90-8 630-08-0	C ₂ H ₂ CHN CO	26.0373 27.0253 28.0101	acetylene hydrogen cyanide carbon monoxide	$11.400 \pm 0.002 \\ 13.60 \pm 0.01 \\ 14.014 \pm 0.0003$	11.41 13.61 14.05	11.40 13.62 14.04
50-00-0 74-89-5	CH ₂ O CH₅N	30.0260 31.0571	formaldehyde methylamine	$\begin{array}{c} 10.88 \pm 0.01 \\ 8.9 \pm 0.1 \end{array}$	10.89 9.05	10.91 9.06
115-07-1 124-38-9 75-21-8	C_3H_6 CO_2 C_2H_2O	42.0797 44.0095 44.0526	propene carbon dioxide ethylene oxide	9.73 ± 0.01 13.777 ± 0.001 10.56 ± 0.01	9.77 13.78 10.58	9.76 13.84 10.60
75-07-0 64-18-6	C_2H_4O C_2H_4O CH_2O_2	44.0526 46.0254	acetaldehyde formic acid	$\begin{array}{c} 10.30 \pm 0.01 \\ 10.2290 \pm 0.0007 \\ 11.33 \pm 0.01 \end{array}$	10.38 10.23 11.30	10.00 10.26 11.35
75-02-5 74-93-1 74.87.2	C ₂ H ₃ F CH ₄ S	46.0436 48.107 50.488	fluoroethene methanethiol	10.36 ± 0.01 9.439 ± 0.005 11.26 ± 0.03	10.35 9.45	10.37 9.45
74-87-3 75-10-5 506-77-4 75-01-4	CH ₃ Cl CH ₂ F ₂ CClN C ₂ H ₃ Cl	52.0234 61.470 62.498	difluoromethane cyanogen chloride chloroethene	11.20 ± 0.03 12.71 12.36 ± 0.02 9.99 ± 0.02	12.76 12.33 9.98	12.77 12.41 10.02
353-50-4	CF ₂ O	66.0069	carbonic difluoride	13.04 ± 0.03	12.96	13.04

^a Experimental values are the evaluated AIEs taken from the compendium of Lias⁵² in the NIST Database.

inputs for Gaussian-4 $(G4)^{22}$ and W1BD^{23,30} composite method calculations with Gaussian 09.³¹

All molecular enthalpies and free energies include zero-point, thermal, and composite method specific corrections. No compounds have imaginary frequencies at the final optimized geometry. Only the lowest energy conformation of each compound was considered. Gabedit v.2.2.12 was used for geometry visualization.³² Optimized geometries, energies at each step of the calculation process, and frequency coordinates for the cationic forms of all compounds are provided in the Supporting Information. The neutral forms of all compounds were calculated at the G4 and W1BD levels of theory as part of our previous work.³³ The cationic forms of all compounds from ref 33 were examined as part of the current investigation. Cationic structures which failed to converge or yielded imaginary frequencies were not considered further, giving the reduced set of compounds presented herein. Structures and Gaussian 09 archive entries for the neutral forms can be obtained from this prior reference. Molecular enthalpies and free energies for all neutral and cationic forms at both levels of theory are given in the Supporting Information.

Results and Discussion

Gas phase (298.15 K, 101.325 kPa) AIEs were initially calculated at the G4 and W1BD levels of theory for 17 organic compounds having well-constrained NIST evaluated experimental AIEs (Table 1). A wide range of functional groups were examined, including saturated and unsaturated, cyclic and acylic, halogenated, thiol, amine, alcohol, aldehyde, carboxylic acid, ether, and cyano moieties. Excellent agreement between the theoretical and the experimental AIEs was observed. The mean signed deviation (MSD), mean absolute deviation (MAD), and root-mean-squared deviation (rmsd) of (0.01, 0.03, and 0.05) eV, respectively, were obtained for the G4 method against the experimental data. Corresponding MSD, MAD, and rmsd values of (0.04, 0.04, and 0.05) eV, respectively, were obtained for the W1BD method against the experimental data. The maximum absolute individual deviations were (0.15 and 0.16) eV for the G4 and W1BD methods, respectively. MAD and rmsd of (0.03 and 0.04) eV, respectively, were obtained between the G4 and the W1BD methods.

The excellent agreement in AIE estimation capability between the G4 and the W1BD levels of theory and against high quality experimental data, coupled with the substantial computational cost of the W1BD method for larger compounds, led us to use only the G4 method to examine the AIEs for a broader suite of 134 organic compounds having experimental AIE data of varying quality (Table 2). Excellent agreement between the G4 and the experimental AIEs was obtained, particularly where NIST evaluated experimental values were available. For the 56 compounds having NIST evaluated AIEs, the MSD, MAD, and rmsd of (-0.02, 0.06, and 0.09) eV, respectively, were obtained between the G4 and the experimental values, with a maximum absolute individual deviation of 0.30 eV (isopentane).

In some cases, the G4 values may assist in obtaining an evaluated AIE or in the reassessment of an evaluated AIE. For example, the evaluated AIE for isopentane is 10.32 ± 0.05 eV, and experimental data for this compound range between $(10.18^{34}$ and $10.50 \pm 0.05)$ eV.³⁵ Given the known wide variability in measuring AIEs for saturated hydrocarbons, particularly where rapid postionization carbocation isomerization can occur, the true AIE for isopentane may be closer to the G4 estimate of 10.02 eV. Similarly, some compounds have evaluated AIEs with large error bars (e.g, chlorotrifluoromethane, 12.6 ± 0.4 eV; difluorodichloromethane, 12.0 ± 0.2 eV); in these cases, the G4 estimates are either within (chlorotrifluoromethane, 12.42 eV) or near (difluorodichloromethane, 11.73 eV) the error boundaries and may help in better constraining the actual AIEs for these molecules.

For a number of common organic compounds, the experimental AIEs span a surprisingly large range, attesting to the difficulty in reliable experimental determinations. Thus, high level computational estimates may resolve residual experimental uncertainty. Dimethyl sulfoxide has experimental AIE reports of 9.9 \pm 0.1 eV,³⁶ 9.20 \pm 0.05 eV,³⁷ 9.08 \pm 0.09 eV,³⁸ and 9.10 eV.³⁹ The G4 estimate of 8.86 eV suggests that the experimental value of 9.9 ± 0.1 is likely an outlier and that the true value is either near ~ 9.1 eV or potentially lower. Pyrazine has experimental AIE values of $9.29 \pm 0.03 \text{ eV}$, ⁴⁰ 9.29 ± 0.01 $\rm eV,^{41}$ 9.36 eV, 42 9.28 \pm 0.05 eV, 43 9.216 eV, 44 9.29 eV, 45 9.28 \pm 0.01 eV, 46 and 9.0 eV. 47 The G4 estimate of 9.28 eV is in excellent agreement with the majority of experimental reports and suggests the proposed experimental values of (9.36 and 9.0)eV are likely high and low outliers, respectively. An evaluated AIE for this compound can likely be put forward as 9.28 \pm 0.01 eV. As a final illustration, azetidine has experimental AIEs of 9.1 \pm 0.15 eV,⁴⁸ 8.9 eV,⁴⁹ 8.3 eV,⁵⁰ and 8.63 \pm 0.02 eV⁵¹ that span 0.8 eV. The G4 prediction of 8.32 eV is at the lower

		name	
rs ^a	MW	g•mol ⁻¹	
Compound		formula	
ious Organic		CAS-RN	
ts for Vari		G4	
101.325 kPa) AII	AIE/eV	expt	
lculated Gas Phase (298.15 K,		name	
and G4 Ca	MW	g•mol ⁻¹	
perimental		formula	
2. Ex		S-RN	

able 2. Ex	perimenta	I and G4	Calculated Gas Phase (298.15 1	X, 101.325 kPa) AIEs	for Va	rious Organic	Compound	S _a			
		MW		AIE/eV				MM		AIE/eV	
CAS-RN	formula	$g \cdot mol^{-1}$	name	expt	G4	CAS-RN	formula	g•mol ⁻¹	name	expt	G4
689-97-4	C_4H_4	52.0746	1-buten-3-yne	9.58 ± 0.02	9.61	110-54-3	C_6H_{14}	86.1754	hexane	10.13 ± 0.10	10.00
2873-50-9	C_4H_4	52.0746	1,2,3-butatriene	9.15 to 9.40	9.16	72323-66-1	C_7H_6	90.1225	1,1-diethynylcyclopropane	8.9	8.95
1120-53-2	C_4H_4	52.0746	cyclobutadiene	8.16 to 9.55	8.06	27041 - 32 - 3	C_7H_6	90.1225	5-ethenylidene-1,3-cyclopentadiene	8.88	8.23
107-13-1	C_3H_3N	53.0626	2-propenenitrile	10.91 ± 0.01	10.96	59502-33-9	C_7H_6	90.1225	cis-1,2-diethynylcyclopropane	8.90	8.92
157-33-5	C_4H_6	54.0904	bicyclo[1.1.0]butane	8.70 ± 0.01	8.79	35295-57-9	C_7H_6	90.1225	trans-1,2-diethynylcyclopropane	9.00	8.89
822-35-5	C_4H_6	54.0904	cyclobutene	9.43 ± 0.02	9.47	4513-94-4	$C_5H_4N_2$	92.0987	pyrrole-2-carbonitrile	8.7	8.86
6788-85-8	C_3H_5N	55.0785	1-azetine	9.30	9.31	121-46-0	C_7H_8	92.1384	2,5-norbornadiene	8.38 ± 0.04	8.39
115-11-7	C_4H_8	56.1063	2-methyl-1-propene	9.22 ± 0.02	9.24	3217-87-6	C_7H_8	92.1384	3-methylene-1,4-cyclohexadiene	8.6	8.12
590-18-1	C_4H_8	56.1063	cis-2-butene	9.11 ± 0.01	9.14	67254-49-3	C_7H_8	92.1384	5-methylenebicyclo[2.2.0]hex-2-ene	8.8	8.80
624-64-6	C_4H_8	56.1063	trans-2-butene	9.10 ± 0.01	9.15	2422-86-8	C_7H_8	92.1384	bicyclo[3.2.0]hepta-2,6-diene	8.35	8.68
1072-44-2	C_3H_7N	57.0944	1-methylaziridine	8.7	8.67	278-06-8	C_7H_8	92.1384	quadricyclane	7.80 to 8.70	7.66
503-29-7	C_3H_7N	57.0944	azetidine	8.3 to 9.1	8.32	765-46-8	C_7H_8	92.1384	spiro[2,4]hepta-4,6-diene	8.14	8.11
75-56-9	C_3H_6O	58.0791	methyloxirane	10.22 ± 0.02	10.09	22635-78-5	C_7H_8	92.1384	spiro[3.3]hepta-2,5-diene	9.02	9.01
503-30-0	C_3H_6O	58.0791	oxetane	9.65 ± 0.01	9.69	108-88-3	C_7H_8	92.1384	toluene	8.828 ± 0.001	8.86
75-56-9	C_3H_6O	58.0791	propylene oxide	10.22 ± 0.02	10.24	109-06-8	C_6H_7N	93.1265	2-methylpyridine	9.02 to 9.40	9.01
64-19-7	$C_2H_4O_2$	60.0520	acetic acid	10.65 ± 0.02	10.62	62-53-3	C_6H_7N	93.1265	aniline	7.720 ± 0.002	7.74
75-38-7	$C_2H_2F_2$	64.0341	1,1-difluoroethene	10.29 ± 0.0	10.27	108-95-2	C ₆ H ₆ O	94.1112	phenol	8.49 ± 0.02	8.53
21986-03-8	C_{5H_4}	64.0853	1,2,3,4-pentatetraene	8.67	8.77	51549-86-1	C_7H_{10}	94.1543	1-methyl-1,2-propadienylcyclopropane	8.83	8.28
24442-69-1	C ₅ H ₄	64.0853	penta-1,4-diyne	10.10 to 10.27	10.31	498-66-8	$C_{7}H_{10}$	94.1543	2-norbornene	8.60 to 9.05	8.80
1574-40-9	C ₅ H ₆	66.1011	(Z)-3-penten-1-yne	9.11	9.11	4125-18-2	$C_{7}H_{10}$	94.1543	5,5-dimethyl-1,3-cyclopentadiene	8.20 to 8.22	8.35
646-05-9	C ₅ H ₆	66.1011	I-penten-3-yne	9.00 ± 0.01	00.6	51273-50-8	$C_{7H_{10}}$	94.1543	tricyclo[3.1.1.0 ⁻³]heptane	8.7	8.71
542-92-7	C ₅ H ₆	66.1011	1,3-cyclopentadiene	8.57 ± 0.01	8.59	174-73-2	$C_{7}H_{10}$	94.1543	tricyclo[4.1.0.0 ^{1,3}]heptane	8.6	8.54 21
/8-80-8	C5H6	66.1011	2-methyl-1-buten-3-yne	20.0 ± 0.02	67.6 27.6	24108-33-6	C4H5N3	9201.66	3-methyl-1,2,4-triazine	8.0 2.1 2	8.7
2-02-104-2	C5H6	66.1011	bicyclo[2.1.0]pent-2-ene	8.0	c1.8	2/21-32-0	C5H ₈ N ₂	96.1304	2,3-diazabicyclo[2.2.1]-hept-2-ene	8.45	8.04 4.02
0/40-94-/ 100.07.7	C5H6	1101.00	cyclopropylacetylene	8./ 8.707 0.005	91.6	4-00-01		02 040 02 040		9.81 ± 0.04	8/.6
109-9/-/ 504 64 3	C4H5N	01.U892 68 0300	pyrrole	3.201 ± 102.8	8.22 10.66	2-60-001		06 043	cus-1,2-acmoroetnene	9.00 ± 0.01	10.6
110-00-9	C302 C.H.O	68 0740	Carbon suboards	8 88 + 0 01	8 80	75-44-5		98 916	n <i>uus</i> -1,2-monocurcuc nhosgane	11 2 to 11 7	11 50
788-37-4	C4140	68 0773	tutan 1 <i>H</i> -imidazole	8.81 ± 0.01	0.0 2 X X	116-14-3	CCI2C	100.0150	puosgene tetrafluoroethene	11.2 W 11.7 10.14 ± 0.07	10.05
288-13-1	C3H4N	68 0773	1 <i>H</i> -nvrazole	9.25 to 9.38	9.78	1072-20-4	C2H, CaH,	102.1332	2.4.6-octatrivne	8.60	8 53
185-94-4	C.H.	68.1170	bicvclo[2.1.0]pentane	8.7	8.66	4026-23-7	C.H.	102.1332	bicvclol4.2.01octa-1.3.5.7-tetraene	7.5	7.76
157-40-4	C,H,	68.1170	spiropentane	9.26	9.39	536-74-3	C.H.	102.1332	phenylacetylene	8.81 to 8.90	8.84
109-96-6	C_4H_7N	69.1051	2,5-dihydro-1 <i>H</i> -pyrrole	8.0	8.08	20380-31-8	C ₈ H ₈	104.1491	$(1\alpha, 2\beta, 5\beta, 6\alpha)$ -tricyclo $[4.2.0.0^{2.5}]$ octa-3,7-diene	8.27	8.68
75-46-7	CHF_3	70.0138	trifluoromethane	13.86	13.77	33284-11-6	C_8H_8	104.1491	1,5-dihydropentalene	7.86	7.86
1467-79-4	$C_3H_6N_2$	70.0931	dimethylcyanamide	9.0	9.20	37846-63-2	C_8H_8	104.1491	7-methylenebicyclo[2.2.1]hepta-2,5-diene	8.5	8.41
109-99-9	C_4H_8O	72.1057	tetrahydrofuran	9.40 ± 0.02	9.42	500-24-3	C_8H_8	104.1491	bicyclo[2.2.2]octa-2,5,7-triene	7.95 to 8.24	8.23
78-78-4	$C_{5H_{12}}$	72.1488	isopentane	10.32 ± 0.05	10.02	694-87-1	C ₈ H ₈	104.1491	bicyclo[4.2.0]octa-1,3,5-triene	8.74	8.67
463-82-1	$C_{5H_{12}}$	72.1488	neopentane	$\leq 10.30 \pm 0.08$	10.18	80339-91-9	C ₈ H ₈	104.1491	cycloocta-1,3-dien-6-yne	8.5	8.60
109-66-0	C ₅ H ₁₂	72.1488	pentane	10.28 ± 0.10	10.21	08344-40-7	C ₈ H ⁸	104.1491	cycloocta-1,5-dien-3-yne	8.2	8.37
C-06-1/01		7000.01	Z-butyneumume	11.40 to 11.61	11.94	6-07-0007		104.1491	pentacyclolo.o.o. v.v. v.v. joctane	0.10 0.464 ± 0.001	07.0
10000-00-1 16668-67-0	μ,	76.0960	(Z)-heva-1,2-myne-2-ene (Z)-heva-1,5-divne-3-ene	9.07	9.00 0 11	3227-91-6	сел С	104.1491	stytelle tetrakis(methylene)/vyclohutane	0.404 ± 0.001 8.35	0.47 8 35
6929-94-8	C,H,	76.0960	hex-3-en-1.5-divne	9.6	9.08	35438-35-8	C.H.	104.1491	tricvclof4.1.1.0 ^{7,8} locta-2.4-diene	6.2	8.07
75-15-0	CS_2	76.141	carbon disulfide	10.073 ± 0.005	10.11	75-72-9	CCIF ₃	104.459	chlorotrifluoromethane	12.6 ± 0.4	12.42
5291-90-7	C_6H_6	78.1118	3,4-dimethylenecyclobut-1-ene	8.80	8.80	63001-13-8	C_8H_{10}	106.1650	1,5-dimethyl-3-exomethylenetricyclo[2.1.0.0]pentane	8.0	7.65
71-43-2	C ₆ H ₆	78.1118	benzene	9.24378 ± 0.00007	9.29	4096-95-1	C_8H_{10}	106.1650	bicyclo[3.2.1]octa-2,6-diene	8.44	8.32
5649-95-6	C,H,	70.1118	bicyclo[2.2.0]hexa-2,5-diene	9.0	8.93	102575-26-8	C ₈ H ₁₀	106.1650	tricyclo[4,1,1,0 ^{7,6}]oct-2-ene	8.2	8.24
6-06-1226	C,H,OS	/8.1118 78 133	tris(methylene)cyclopropane dimethyl sulfovide	9.0 9.08 to 9.00	9.08 8.86	1-02-01/02/01		UC01.0U1	uricycio[4.1.1.0 ⁻⁷²]oct-5-ene chlorohanzana	8.3 9.07 + 0.07	0.00 0.00
290-37-9	C2H4N,	80.0880	pyrazine	9.00 to 9.36	9.28	372-18-9	C,H,F,	114.0928	m-diffuorobenzene	9.33 ± 0.02	9.34
289-80-5	$C_4H_4N_2$	80.0880	pyridazine	8.74 ± 0.11	8.70	367-11-3	$C_6H_4F_2$	114.0928	o-difluorobenzene	9.29 ± 0.01	9.30
289-95-2	$C_4H_4N_2$	80.0880	pyrimidine	9.33 ± 0.07	9.39	540-36-3	$C_6H_4F_2$	114.0928	<i>p</i> -difluorobenzene	9.1589 ± 0.0005	9.15

		MW		AIE/eV				MW		AIE/eV	
CAS-RN	formula	g•mol ⁻¹	name	expt	G4	CAS-RN	formula	g•mol ⁻¹	name	expt	G4
96-39-9	$C_{6}H_{8}$	80.1277	1-methyl-1,3-cyclopentadiene	8.40 ± 0.02	8.16	673-32-5	$C_{9}H_{8}$	116.1598	1-propynylbenzene	8.42	8.43
2045-78-5	$C_{6}H_{8}$	80.1277	1,3-bis(methylene)cyclobutane	8.7	9.11	79-38-9	C_2CIF_3	116.470	chlorotrifiuoroethene	9.81 ± 0.03	9.76
930-26-7	$C_{6}H_{8}$	80.1277	3-methylenecyclopentene	8.40	8.32	67-66-3	CHCI ₃	119.378	trichloromethane	11.37 ± 0.02	11.42
96-38-8	C_6H_8	80.1277	5-methyl-1,3-cyclopentadiene	8.45	8.47	75-71-8	CCl_2F_2	120.914	difluorodichloromethane	12.0 ± 0.2	11.73
3097-63-0	C_6H_8	80.1277	bicyclo[2.2.0]hex-2-ene	9.0	8.90	79-01-6	C_2HCI_3	131.388	trichloroethene	9.46 ± 0.02	9.41
290-38-0	$C_3H_3N_3$	81.0760	1,2,4-triazine	9.2	9.08	83589-40-6	CCI_3F	137.368	fluorotrichloromethane	11.68 ± 0.13	11.69
78104-88-8	C_5H_7N	81.1158	1-methylcyclopropanecarbonitrile	10.53	9.92	81044-78-2	$C_6H_4S_2$	140.226	benzodithiete	8.15	8.32
359-11-5	C_2HF_3	82.0245	trifluoroethene	10.14	10.10	251-41-2	$C_6H_4S_2$	140.226	thieno[3,2-b]thiophene	8.10	8.11
420-46-2	$C_2H_3F_3$	84.0404	1,1,1-trifluoroethane	13.3	12.48	541-73-1	$C_6H_4Cl_2$	147.002	<i>m</i> -dichlorobenzene	9.10 ± 0.02	9.13
290-67-5	$C_4H_4O_2$	84.0734	1,4-dioxin	7.75	7.85	95-50-1	$C_6H_4Cl_2$	147.002	o-dichlorobenzene	9.06 ± 0.02	9.05
674-82-8	$C_4H_4O_2$	84.0734	4-methylene-2-oxetanone	9.6	9.34	106-46-7	$C_6H_4Cl_2$	147.002	<i>p</i> -dichlorobenzene	8.92 ± 0.03	8.91
674-82-8	$C_4H_4O_2$	84.0734	diketene	9.6	9.34	75-87-6	$C_2HC_{13}O$	147.388	trichloroacetaldehyde	10.9	10.36
110-02-1	C_4H_4S	84.140	thiophene	8.86 ± 0.02	8.89	56-23-5	CC14	153.823	tetrachloromethane	11.47 ± 0.01	11.53
75-09-2	CH_2CI_2	84.933	dichloromethane	11.33 ± 0.04	11.10	127-18-4	C_2CI_4	165.833	tetrachloroethene	9.326 ± 0.001	9.24
1708-32-3	C_4H_6S	86.155	2,5-dihydrothiophene	8.4	8.49	120-82-1	$C_6H_3Cl_3$	181.447	1,2,4-trichlorobenzene	9.04 ± 0.03	8.97
a Sinale evner	rimental value	se are either t	the evaluated AIRs taken from the con	mendia of Liac ⁵² ;	nd Liac et	al ⁵³ in the NIS'	T Database or	are single non-	evaluated evnerimental data r	noints All other ex	berimental

"Single experimental values are either the evaluated ALEs taken from the compendia of Lias" and Lias et al." in the NIST Database or are single non-evaluated experimental data points. All other exper-values are the lower and upper boundaries of multiple individual data points. Experimental data taken from ref 54 with full referencing for all individual data points provided in the Supporting Information.

ata
Ä
AIE
al
ent
erime
ZD.
Ĥ
,ack
I
lic
M
s
pu
00
du
3
5
ini
ğ
0
an
rio
Va
ัษ
f
Ě
P
(a)
K
25
1.3
10
2
5
8.1
3
, ě
has
Б
as
9
teo
ula
llc
Ű
7
-
e.
ble

Iculated G	- (1	5 Phase (298.	15 K, 101.325 kPa) AIEs for Various O	Drganic Co	mpounds Which]	Lack Experim	ental AIE Dat	13	
MW	MW			G4 AIE			MW		G4 AIE
formula g•mol ⁻¹	$g \cdot mol^{-1}$		compound	eV	CAS-RN	formula	$g \cdot mol^{-1}$	compound	eV
C ₄ H ₄ 52.0746 met	52.0746 met]	met	hylenecyclopropene	8.13	3839-50-7	$C_{7}H_{8}$	92.1384	6-methylfulvene	8.10
C_4H_4 52.0746 bic	52.0746 bic	bic	yclo[1.1.0]but-1(3)-ene	9.16	31357-71-8	C_6H_7N	93.1265	bicyclo[2.1.0]pentane-1-carbonitrile	9.26
C_4H_6 54.0904 1-m	54.0904 1-m	1-m	lethylcyclopropene	9.11	287-13-8	$ m C_7H_{10}$	94.1543	tricyclo[4.1.0.0 ^{2.7}]heptane	8.35
C_3H_5N 55.0785 cycl	55.0785 cycl	cyc	lopropanimine	8.80	187-26-8	$ m C_7H_{10}$	94.1543	tricyclo[4.1.0.0 ^{2,4}]heptane	8.80
C ₄ H ₄ O 68.0740 cycl	68.0740 cycl	cyc	lopropylidenemethanone	8.75	87304-84-5	$ m C_7H_{10}$	94.1543	<i>syn</i> -tricyclo[$3.2.0.0^{2,4}$]heptane	8.04
C ₃ H ₄ N ₂ 68.0773 2-az	68.0773 2-az	2-az	ziridinecarbonitrile	10.22	121733-05-9	$ m C_7H_{10}$	94.1543	endo-2-methylene-5-methylbicyclo[2.1.0]pentane	8.04
C ₅ H ₈ 68.1170 meth	68.1170 meth	meth	nylmethylenecyclopropane	9.22	54140-30-6	$ m C_7H_{10}$	94.1543	cyclopentyl acetylene	9.66
C ₅ H ₈ 68.1170 ethy	68.1170 ethy	ethy	lidenecyclopropane	9.02	10563-10-7	$ m C_7H_{10}$	94.1543	bicyclo[3.2.0]hept-1(5)-ene	8.40
C ₅ H ₈ 68.1170 1,2-	68.1170 1,2-	$1, 2_{-1}$	dimethylcyclopropene	8.60	22630-75-7	$ m C_7H_{10}$	94.1543	bicyclo[3.2.0]hept-1-ene	8.33
C ₅ H ₈ 68.1170 1-m	68.1170 1-m	1-m	lethylcyclobutene	8.92	28102-61-6	$ m C_7H_{10}$	94.1543	antitricyclo[3.2.0.0 ^{2,4}]heptane	8.48
C ₄ H ₆ O 70.0898 3-m	70.0898 3-m	3-m	ethyleneoxetane	9.49	74503-34-7	$ m C_7H_{10}$	94.1543	5,5-dimethylbicyclo[2.1.0]pent-2-ene	7.87
C ₄ H ₆ O 70.0898 2,5-	70.0898 2,5-	2,5-(dihydrofuran	9.21	22704-38-7	$ m C_7H_{10}$	94.1543	3-(cis-ethylidene)-1-cyclopentene	7.94
C ₃ H ₆ N ₂ 70.0931 2-py	70.0931 2-py	2-p3	razoline	8.10	121839-51-8	$ m C_7H_{10}$	94.1543	$(1\alpha, 4\alpha, 5\beta)$ -5-methyl-2-methylenebicyclo[2.1.0]pentane	7.08
C ₃ H ₆ N ₂ 70.0931 1-py	70.0931 1-py	1-py	razoline	8.92	591-54-8	$C_4H_5N_3$	95.1026	4-aminopyrimidine	8.96
C ₄ H ₉ N 71.1210 N-m	71.1210 N-m	N-II	nethylazetidine	7.81	1192-21-8	$C_4H_7N_3$	97.1185	1-methyl-5-aminopyrazole	7.72
$C_3H_8N_2$ 72.1090 3,3-	72.1090 3,3-	З, Э	dimethyldiaziridine	8.85	1904-31-0	$C_4H_7N_3$	97.1185	1-methyl-3-aminopyrazole	7.56
C ₅ H ₅ N 79.0999 bic ₃	79.0999 bicy	bicy	/clo[1.1.0]butane-1-carbonitrile	9.44	6794-96-3	$C_5H_{10}N_2$	98.1463	2-methyl-1,5-diazabicyclo[3.1.0]hexane	7.89
$C_4H_4N_2$ 80.0880 1,1-	80.0880 1,1-	$1, 1_{-}$	dicyanoethane	12.32	53971-47-4	$C_5H_{10}S$	102.198	trimethylthiirane	8.48
C ₆ H ₈ 80.1277 tric	80.1277 tric	tric	yclo[3.1.0.0 ^{2,6}]hexane	8.70	13188-85-7	$C_5H_{10}S$	102.198	3,3-dimethylthietane	8.47
C ₆ H ₈ 80.1277 trai	80.1277 trai	trai	ns-2,3,4-hexatriene	8.32	539-79-7	C_8H_8	104.1491	heptafulvene	7.49
C ₆ H ₈ 80.1277 eth	80.1277 eth	eth	ynylcyclobutane	9.53	502-86-3	C_8H_8	104.1491	3,6-bis(methylene)-1,4-cyclohexadiene	7.84
C ₆ H ₈ 80.1277 bicy	80.1277 bicy	bicy	clo[2.1.1]hex-2-ene	8.58	38898-42-9	C_8H_8	104.1491	3 -methylenetetracyclo[$3.2.0.0^{-2.7}0^{4.6}$]heptane	7.75

Table 3. Contin	ned								
		MW		G4 AIE			MW		G4 AIE
CAS-RN	formula	g•mol ⁻¹	compound	eV	CAS-RN	formula	g•mol ⁻¹	compound	eV
14296-80-1	C ₆ H ₈	80.1277	1,2-bis(methylene)cyclobutane	8.67	6909-37-1	C_8H_8	104.1491	2a,2b,4a,4b-tetrahydrocyclopropa[cd]pentalene	8.24
693-98-1	$C_4H_6N_2$	82.1038	2-methyl-1H-imidazole	8.37	41527-66-6	C_8H_{10}	106.1650	bicyclo[3.3.0]octa-2,6-diene	9.01
16327-38-1	C_6H_{10}	82.1436	3,3-dimethylcyclobutene	9.24	75960-13-3	C_8H_{10}	106.1650	7-methylenebicyclo[3.2.0]hept-1-ene	8.27
930-25-6	C_6H_{10}	82.1436	1,3-dimethylbicyclo[1.1.0]butane	7.94	694-91-7	C_8H_{10}	106.1650	5-methylenebicyclo[2.2.1]hept-2-ene	8.58
4372-94-5	C_6H_{10}	82.1436	1,1-dimethyl-2-methylenecyclopropane	8.83	40117-13-3	C_8H_{10}	106.1650	2,3-bis(methylene)bicyclo[2.2.0]hexane	8.52
15506-53-3	$C_4H_4O_2$	84.0734	cyclobutane-1,3-dione	9.71	61772-33-6	C_8H_{10}	106.1650	1-methyltricyclo[4.1.0.0 ^{2,7}]hept-3-ene	8.08
n/a	$C_4H_4O_2$	84.0734	3(2H)-furanone	9.54	n/a	C_8H_{10}	106.1650	1-methylnorbornadiene	8.29
20825-71-2	$C_4H_4O_2$	84.0734	2(3H)-furanone	9.28	13027-75-3	C_8H_{12}	108.1809	antitricyclo[4.2.0.0 ^{2,5}]octane	8.40
4388-03-8	$C_4H_8N_2$	84.1197	1,1'-biaziridine	8.03	10218-02-7	$C_7H_{10}O$	110.1537	norbornan-7-one	8.79
872-36-6	$C_3H_2O_3$	86.0462	1,3-dioxol-2-one	9.64	5422-45-7	$C_3H_7N_5$	113.1212	5-(dimethylamino)tetrazole	8.55
4362-24-7	$C_4H_6O_2$	86.0892	4-methylene-1,3-dioxolane	8.69	286-28-2	$C_6H_{10}S$	114.209	7-thiabicyclo[4.1.0]heptane	8.52
5076-19-7	$C_5H_{10}O$	86.1323	α -trimethylethylene oxide	9.27	37523-44-7	$C_6H_{12}S$	116.224	2-(1,1-dimethylethyl)thiirane	8.60
1120-59-8	C_4H_6S	86.155	2,3-dihydrothiophene	8.00	n/a	$C_4H_6S_2$	118.220	dihydro- $2(3H)$ -thiophenthione	8.30
22438-40-0	C_4H_8S	88.171	3-methylthietane	8.53	50363-43-4	$C_4H_8S_2$	120.236	4-methyl-1,3-dithiolane	8.56
3772-13-2	C_4H_8S	88.171	2,2-dimethylthiirane	8.66	n/a	$C_4H_8S_2$	120.236	4-methyl-1,2-dithiolane	7.68
17837-41-1	C_4H_8S	88.171	2-methylthietane	8.51	n/a	$C_4H_8S_2$	120.236	3-methyl-1,2-dithiolane	7.66
4646-69-9	C_7H_6	90.1225	bicyclo[4.1.0]hepta-1,3,5-triene	8.81	5616-51-3	$C_4H_8S_2$	120.236	2-methyl-1,3-dithiacyclopentane	8.57
35295-58-0	C_7H_6	90.1225	bicyclo[3.2.0]hepta-1,4,6-triene	8.57	250-65-7	$C_6H_4S_2$	140.226	thieno[3,4-b]thiophene	7.88
35618-58-7	C_7H_8	92.1384	$tricyclo[4.1.0.0^{2.7}]hept-3-ene$	8.35	84615-33-8	$C_6H_4S_2$	140.226	dithio-p-benzoquinone	8.75
50861-26-2	C_7H_8	92.1384	tetracyclo[4.1.0.0 ^{-2,4} 0 ^{3,5}]heptane	8.41	3354-41-4	$C_4H_4S_3$	148.270	4-methyl-3H-1,2-dithiole-3-thione	8.18
79356-83-5	C_7H_8	92.1384	antitricyclo[3.2.0.0 ^{2,4}]hept-6-ene	8.63					

A substantial number of well-known compounds still lack fundamental physical property determinations. AIEs were estimated at the G4 level for 85 organic compounds for which no experimental values were present in the NIST database (Table 3). These compounds are generally conformationally constrained molecules with a number of ringed/bridged derivatives being of broad interest in organic chemistry on the grounds of charged aromaticity/homoaromaticity. On the basis of our benchmarking efforts provided in Tables 1 and 2, neither the G4 nor W1BD method exhibit any systematic bias in AIE estimation, and both methods have error metrics at or below chemical accuracy limits when compared against high quality experimental data. Consequently, we expect the AIEs presented in Table 3 to achieve effective chemical accuracy.

Conclusions

The Gaussian-4 (G4) composite method was used to estimate gas phase (298.15 K, 101.325 kPa) AIEs for 236 organic compounds. The W1BD level of theory was also employed to estimate AIEs for a subset of 17 compounds. Excellent agreement between the G4 and the W1BD AIE estimates was obtained. For compounds having well-constrained experimental AIEs, both levels of theory achieve effective chemical accuracy.

Supporting Information Available:

Optimized geometries, energies at each stage of the optimization process, and frequency coordinates for the cationic forms and molecular enthalpies and free energies for the neutral and cationic forms, as well as available experimental AIEs for all compounds investigated. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- McNaught, A. D.; Wilkinson, A. *IUPAC Compendium of Chemical Terminology*, 2nd ed.; Blackwell Scientific Publications: Oxford, 1997.
- (2) Mulliken, R. S. A New Electroaffinity Scale: Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. J. Chem. Phys. 1934, 2, 782–793.
- (3) Mulliken, R. S. Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments. J. Chem. Phys. 1935, 3, 573– 585.
- (4) Parr, R. G.; Pearson, R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512– 7516.
- (5) Pearson, R. G. Absolute Electronegativity and Absolute Hardness of Lewis Acids and Bases. J. Am. Chem. Soc. 1985, 107, 6801–6806.
- (6) Parr, R. G.; Chattaraj, P. K. Principle of Maximum Hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855.
- (7) Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924.
- (8) Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry; John Wiley and Sons: New York, 2003.
- (9) Fahlman, B. D. Materials Chemistry; Springer: New York, 2008.
- (10) DeHoff, R. T. *Thermodynamics in Materials Science*; Taylor & Francis: Boca Raton, 2006.
- (11) Eriksson, L. A. Theoretical Biochemistry: Processes and Properties of Biological Systems; Elsevier: New York, 2001.
- (12) Riley, K. E.; Op't Holt, B. T.; Merz, K. M. Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. J. Chem. Theory Comput. 2007, 3, 407– 433.
- (13) De Proft, F.; Geerlingsa, P. Calculation of Ionization Energies, Electron Affinities, Electronegativities, and Hardnesses Using Density Functional Methods. J. Chem. Phys. 1997, 106, 3270–3279.
- (14) Zhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868.
- (15) Jursic, B. S. A Density Functional Theory Evaluation of the Ionization Energies of Alkanes, Cycloalkanes and Their Unsaturated Analogs. *J. Mol. Struct.* **1998**, 452, 145–152.

- (16) Rohrdanz, M. A.; Herbert, J. M. Simultaneous Benchmarking of Ground- and Excited-State Properties with Long-Range-Corrected Density Functional Theory. J. Chem. Phys. 2008, 129, 034107.
- (17) Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. *J. Phys. Chem. A* **2003**, *107*, 4184–4195.
- (18) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies. J. Chem. Phys. **1989**, 90, 5622–5629.
- (19) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. Assessment of Gaussian-3 and Density Functional Theories for a Larger Experimental Test Set. J. Chem. Phys. 2000, 112, 7374–7383.
- (20) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. Assessment of Gaussian-2 and Density Functional Theories for the Computation of Ionization Potentials and Electron Affinities. *J. Chem. Phys.* **1998**, *109*, 42–55.
- (21) Parthiban, S.; Martin, J. M. L. Assessment of W1 and W2 theories for the Computation of Electron Affinities, Ionization Potentials, Heats of Formation, and Proton Affinities. J. Chem. Phys. 2001, 114, 6014– 6029.
- (22) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4 Theory. J. Chem. Phys. 2007, 126, 84108–84112.
- (23) Barnes, E. C.; Petersson, G. A.; Montgomery, J. A.; Frisch, M. J.; Martin, J. M. L. Unrestricted Coupled Cluster and Brueckner Doubles Variations of W1 theory. J. Chem. Theory Comput. 2009, 5, 2687– 2693.
- (24) Linstrom, P. J.; Mallard, W. G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, 2010; http://webbook.nist.gov (retrieved July 30, 2010).
- (25) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.
- (26) Halgren, T. A. Merck Molecular Force Field. III. Molecular Geometries and Vibrational Frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553–586.
- (27) Halgren, T. A. Merck Molecular Force Field. V. Extension of MMFF94 using Experimental Data, Additional Computational Data, and Empirical Rules. J. Comput. Chem. 1996, 17, 616–641.
- (28) Halgren, T. A. MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries. *J. Comput. Chem.* **1999**, *20*, 730–748.
- (29) Halgren, T. A.; Nachbar, R. B. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615.
- (30) Martin, J. M. L.; de Oliveira, G. Towards Standard Methods for Benchmark Quality Ab Initio Thermochemistry - W1 and W2 Theory. *J. Chem. Phys.* **1999**, *111*, 1843–1856.
- (31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. *Gaussian 09, Revision A.02*; Gaussian, Inc.: Wallingford, CT, 2009.
- (32) Allouche, A. R. Gabedit: A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182.
- (33) Rayne, S.; Forest, K. Estimated Gas Phase Standard State Enthalpies of Formation for Organic Compounds using the Gaussian-4 (G4) and W1BD Theoretical Methods. J. Chem. Eng. Data 2010, 55, 5359– 5364.
- (34) Luo, Y. R.; Pacey, P. D. Effects of Alkyl Substitution on Ionization Energies of Alkanes and Haloalkanes and on Heats of Formation of Their Molecular Cations. Part 2. Alkanes and Chloro-, Bromo- and Iodoalkanes. *Int. J. Mass Spectrom.* **1992**, *112*, 63–77.
- (35) Flesch, G. D.; Svec, H. J. Fragmentation Reactions in the Mass Spectrometer for C₂-C₅ Alkanes. J. Chem. Soc., Faraday Trans. 2 1973, 69, 1187–1199.
- (36) Blais, J. C.; Cottin, M.; Gitton, B. Ionisation Positive et Negative dans le Dimethylsulfoxyde en Phase Gazeuse. J. Chim. Phys. 1970, 67, 1475.

- (37) Distefano, G.; Foffani, A.; Innorta, G.; Pignataro, S. Electron Impact Ionization Potentials of Some Manganese, Chromium and Tungsten Organometallic Derivatives. *Int. J. Mass Spectrom.* **1971**, *7*, 383–390.
- (38) Potzinger, P.; Stracke, H. U.; Kupper, W.; Gollnick, K. Ionisierungs - Und Auftrittspotentialmessungen an Dialkylsulfoxiden. Z. Naturforsch., A 1975, 30, 340–347.
- (39) Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S. Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds; Japan Scientific Society Press: Tokyo, 1981.
- (40) Parkin, J. E.; Innes, K. K. The Vacuum Ultraviolet Spectra of Pyrazine, Pyrimidine, and Pyridazine Vapors. Part I. Spectra Between 1550 Å and 2000 Å. J. Mol. Spectrosc. 1965, 15, 407–434.
- (41) Yencha, A. J.; El-Sayed, M. A. Lowest Ionization Potentials of Some Nitrogen Heterocyclics. J. Chem. Phys. 1968, 48, 3469–3475.
- (42) Dewar, M. J. S.; Worley, S. D. Photoelectron Spectra of Molecules. II. The Ionization Potentials of Azabenzenes and Azanaphthalenes. *J. Chem. Phys.* **1969**, *51*, 263–267.
- (43) Eland, J. H. D. Photoelectron Spectra of Conjugated Hydrocarbons and Heteromolecules. Int. J. Mass Spectrom. 1969, 2, 471–484.
- (44) Asbrink, L.; Lindholm, E.; Edqvist, O. Jahn-Teller Effect in the Vibrational Structure of the Photoelectron Spectrum of Benzene. *Chem. Phys. Lett.* **1970**, *5*, 609–612.
- (45) Gleiter, R.; Heilbronner, E.; Hornung, V. Photoelectron Spectra of Azabenzenes and Azanaphthalenes: I. Pyridine, Diazines, s-Triazine and s-Tetrazine. *Helv. Chim. Acta* **1972**, *55*, 255–274.
- (46) Scheps, R.; Florida, D.; Rice, S. A. Comments on the Rydberg Spectrum of Pyrazine. J. Mol. Spectrosc. **1972**, 44, 1–13.
- (47) Piancastelli, M. N.; Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, T. A. Angular Distribution Parameter as a Function of Photon Energy for Some Mono- and Diazabenzenes and Its Use for Orbital Assignment. J. Am. Chem. Soc. **1983**, 105, 4235–4239.
- (48) Gallegos, E. J.; Kiser, R. W. Electron Impact Spectroscopy of the Four- and Five-Membered, Saturated Heterocyclic Compounds Containing Nitrogen, Oxygen and Sulfur. J. Phys. Chem. 1962, 66, 136– 145.
- (49) Kiser, R. W.; Gallegos, E. J. A Technique for the Rapid Determination of Ionization and Appearance Potentials. J. Phys. Chem. 1962, 66, 947–948.
- (50) Bowers, M. T. Gas Phase Ion Chemistry; Academic Press: New York, 1979.
- (51) Tarasenko, N. A.; Tishenkov, A. A.; Zaikin, V. G.; Volkova, V. V.; Gusel'nikov, L. E. Adiabatic Ionization Energy of Methylenimine. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1986**, *10*, 2196–2202.
- (52) Lias, S. G. Ionization Energy Evaluation. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2010; http://webbook.nist.gov (retrieved July 30, 2010).
- (53) Lias, S. G.; Levin, R. D.; Kafafi, S. A. Ionization Energy Evaluation. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2010; http:// webbook.nist.gov (retrieved July 30, 2010).
- (54) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Ionization Energy Evaluation. In *NIST Chemistry WebBook*, *NIST Standard Reference Database Number 69*; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2010; http://webbook.nist.gov (retrieved July 30, 2010).

Received for review September 7, 2010. Accepted December 9, 2010. This work was made possible by the facilities of the Western Canada Research Grid (project 100185), the Shared Hierarchical Academic Research Computing Network (project aqn-965), and Compute/Calcul Canada.

JE100913F