Journal of Chemical & Engineering Data

Solid–Liquid Stable Equilibria for the Quaternary Na₂B₄O₇–Na₂SO₄–K₂B₄O₇–K₂SO₄–H₂O System at 288 K

Shi Hu Sang,* Heng Li, Ming-Liang Sun, and Jiang Peng

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, ChengDu 610059, P. R. China

ABSTRACT: The solubilities and densities of the solution in the quaternary system Na₂B₄O₇-Na₂SO₄-K₂B₄O₇-K₂SO₄-H₂O at 288 K were investigated using the method of isothermal dissolution equilibrium. The solid-liquid stable equilibria in the quaternary system Na₂B₄O₇-Na₂SO₄-K₂B₄O₇-K₂SO₄-H₂O at 288 K were studied experimentally. On the basis of experimental data, the stable phase diagram of the quaternary system was plotted. In the solubility diagram of the quaternary system Na₂B₄O₇-K₂SO₄-H₂O at 288 K, there are three invariant points, seven solubility isotherm curves, and five crystallization regions, which correspond to borax (Na₂B₄O₇·10H₂O), potassium tetraborate (K₂B₄O₇·4H₂O), mirabilite (Na₂SO₄·10H₂O), arcanite (K₂SO₄), and glaserite (Na₂SO₄·3K₂SO₄). It can be found from the experimental results that sulfates have bigger solubilities than borates in the quaternary system Na₂B₄O₇-Na₂SO₄-K₂SO₄-H₂O at 288 K.

■ INTRODUCTION

There are many salt lakes on the Qingzang plateau of China.^{1,2} Furthermore, a huge amount of underground gasfield brine was discovered west of the Sichuan basin. Sodium chloride, potassium, boron, bromine, and sulfate are the major salts or ions in the oilfield brine. They are also accompanied by lithium, strontium, and iodine. Therefore, the underground gasfield brine largely consists of the complex six-component system Na–K–Cl–B₄O₇–Br–SO₄– H₂O.³ The proved reserves of the gasfield brines are up to 2.06 · 10¹² m³.³ Although the gasfield brine resources are very valuable, there is no report on their potential utilization because of lack of data on the relevant solubilities or phase equilibrium data of the brine–mineral system. For exploiting the underground brines economically, the measurement of salt mineral solubilities at different temperatures is required.⁴

Aiming at understanding the behavior of the underground gasfield brine, some solid—liquid phase equilibrium systems at different temperatures have been reported in our earlier work: $Na_2B_4O_7$ — $NaBr-H_2O_7^5 K_2B_4O_7$ — $KBr-H_2O_7^6$ and K_2SO_4 — $K_2B_4O_7$ — $KCl-H_2O^7$ at 298 K and $Na_2B_4O_7$ — Na_2SO_4 — $NaCl-H_2O^8$ at 323 K.

The quaternary system $Na_2B_4O_7-Na_2SO_4-K_2B_4O_7-K_2SO_4-H_2O$ is a subsystem of the six-component system. The solid–liquid equilibria of its ternary subsystems $Na_2B_4O_7-Na_2SO_4-H_2O_7^0$ $Na_2B_4O_7-K_2B_4O_7-H_2O_7^{10}$ and $K_2B_4O_7-K_2SO_4-H_2O^{11}$ at 288 K has already been reported by us in detail. The ternary system $Na_2SO_4-K_2SO_4-H_2O$ at 288 K has also been reported. 12,13 So far, no report has been found on stable equilibrium solubility measurements of this quaternary system $(Na_2B_4O_7-Na_2SO_4-K_2B_4O_7-K_2SO_4-H_2O)$ at 288 K. Accordingly, in this paper, the solid–liquid equilibrium of the quaternary system at 288 K is presented in detail.

EXPERIMENTS

Reagents and Instruments. Distilled water with a conductivity less than $10^{-4} \text{ S} \cdot \text{m}^{-1}$ and pH = 6.6 was used to prepare the experimental samples and for chemical analysis. The reagents used

were of analytical reagent grade: Na₂SO₄, K₂SO₄, Na₂B₄O₇ · 10H₂O (ChengDu KeLun Chemical Reagent factory, China), and K₂B₄O₇ · 4H₂O (BeiJing YiLi Chemical Reagent factory, China).

An HZS-H type thermostatted vibrator with a precision \pm 0.1 K was used for the solid—liquid equilibrium measurements.

Experimental Method. The isothermal dissolution equilibrium method was used for the solid-liquid equilibrium experiments. The quaternary system points were compounded by adding the third component gradually on the basis of the ternary saturation points at 288 K. For example, for the points in the univariant curve E1-F1, excess sodium sulfate and sodium borate were dissolved in distilled water, and then the respective solution-solid phase mixtures were added into the third salt K2SO4 with different quantity. The respective mixtures were placed in a bottle with 100 mL for the solubility experiments. Then all the prepared bottles were put into a water- bath thermostatted vibrator (HZS-H). The solutions in the bottles were stirred for one week to promote the establishment of the equilibrium. Experimental results showed that the equilibria were attained in (3 to 7) days with stirring, and the time of clarification was about (3 to 7)4) days. The solutions were taken out periodically for chemical analysis. When the solution composition did not change, the system had attained its equilibrium state. After equilibrium, the compositions of the solution were determined by the method of chemical analysis.

The compositions of the solid phases were identified by a Rigaku D/max-3C X-ray diffraction analyzer (Japan). Wet crystals were separated from the liquid phase by vacuum filtration using a sintered glass crucible and dried for X-ray diffraction. The densities of the solution were measured using a pycnometer with an uncertainty of $0.0002 \text{ g} \cdot \text{cm}^{-3}$.

Analytical Methods¹⁴. The K⁺ concentration was measured by a sodium tetraphenylborate-hexadecyl trimethyl ammonium bromide titration (with an uncertainty of 0.5 %). The $B_4O_7^{-2-}$ concentration was evaluated by a basic titration with mannitol

Received:	September 25, 2010
Accepted:	February 25, 2011
Published:	March 15, 2011

Table 1. Phase Equilibrium Data of the Na₂B₄O₇-Na₂SO₄-K₂B₄O₇-K₂SO₄-H₂O Quaternary System at 288 K^a

						Jänecke index J			
	composition of solution 100w(b)				J/[mol • 100	$J/[mol \cdot 100 mol^{-1}] (2Na^+ + 2K^+ = 100 mol)$			density
no.	Na ⁺	K ⁺	SO4 ²⁻	$B_4 O_7^{2-}$	J(2K ⁺)	$J(B_4O_7^{2-})$	<i>J</i> (H ₂ O)	equilibrium solids	g⋅cm ⁻³
1(E1)	3.83	0.00	7.54	0.74	0.00	5.72	5864.43	$S_{10} + NB$	1.1026
2	3.54	0.40	7.51	0.59	6.25	4.64	5952.54	$S_{10} + NB$	1.1186
3	3.50	0.81	7.93	0.60	12.00	4.46	5600.79	$S_{10} + NB$	1.1279
4	3.33	1.94	8.93	0.64	25.62	4.27	4867.15	$S_{10} + NB$	1.1479
5	3.59	2.62	10.30	0.67	30.12	3.84	4123.68	$S_{10} + NB$	1.1578
6	3.65	3.20	11.12	0.69	34.06	3.70	3755.09	Gla + NB	1.1832
7	3.54	3.39	11.14	0.69	36.07	3.71	3743.44	Gla + NB	1.1857
8(E5)	0.40	3.74	0.00	8.77	84.74	100.00	8551.50	KB + NB	1.0931
9	0.30	3.93	0.47	8.07	88.46	91.40	8507.63	KB + NB	1.1036
10	0.31	4.10	0.90	7.73	88.72	84.18	8154.58	KB + NB	1.1047
11	0.30	4.59	2.20	6.58	90.12	64.91	7338.09	KB + NB	1.1195
12	0.26	4.90	2.75	6.17	91.83	58.11	6974.85	KB + NB	1.1203
13	0.31	5.19	3.40	5.88	90.80	51.67	6457.75	KB + NB	1.1350
14	0.35	5.20	3.70	5.57	89.66	48.25	6361.86	KB + NB	1.1389
15(E4)	0.00	4.92	3.24	4.56	100.00	46.55	7683.80	KB + KS	1.1089
16	0.21	4.99	3.69	4.67	93.45	43.92	7011.28	KB + KS	1.1189
17	0.07	5.36	3.58	5.08	97.96	46.72	6810.02	KB + KS	1.1210
18	0.15	5.50	3.82	5.27	95.55	46.05	6421.26	KB + KS	1.1289
19	0.44	5.59	4.33	5.62	88.15	44.54	5735.95	KB + KS	1.1336
20(F3)	0.49	5.63	4.45	5.64	87.19	43.94	5623.40	KB + KS + NB	1.1334
21	0.57	5.60	5.05	4.89	85.31	37.45	5537.51	NB + KS	1.1269
22(E2)	3.95	3.41	12.44	0.00	33.74	0.00	3438.26	$\mathrm{Gla}+\mathrm{S}_{10}$	1.1800
23	3.88	3.06	11.66	0.35	31.72	1.82	3640.68	$\mathrm{Gla}+\mathrm{S}_{10}$	1.1878
24	3.92	2.96	11.40	0.69	30.78	3.58	3653.36	$\mathrm{Gla}+\mathrm{S}_{10}$	1.1897
25	3.94	2.94	11.35	0.78	30.53	4.07	3651.01	$\mathrm{Gla}+\mathrm{S}_{10}$	1.1857
26	4.00	3.01	11.55	0.80	30.70	4.13	3568.94	$Gla + S_{10}$	1.1899
27	3.92	2.96	11.33	0.81	30.76	4.23	3651.07	$Gla + S_{10}$	1.1829
28(F1)	3.89	3.09	11.40	0.85	31.87	4.41	3611.43	$NB + Gla + S_{10}$	1.1895
29(E3)	1.85	4.35	9.21	0.00	58.10	0.00	4895.94	KS + Gla	1.1276
30	1.59	4.26	8.36	0.31	61.32	2.26	5330.03	KS + Gla	1.1334
31	1.62	4.23	8.22	0.61	60.56	4.37	5295.26	KS + Gla	1.1385
32	1.65	4.40	8.23	1.00	61.11	6.99	5103.80	KS + Gla	1.1357
33(F2)	1.71	4.41	8.24	1.22	60.34	8.36	5007.12	Gla + KS + NB	1.1403
34	1.56	4.51	8.06	1.23	63.01	8.60	5121.61	KS + NB	1.1430
35	3.37	1.09	8.00	0.58	16.00	4.29	5546.90	$S_{10} + NB$	1.1383
36	3.19	2.20	8.98	0.62	28.97	4.11	4841.98	$S_{10} + NB$	1.1552
37	3.87	3.11	11.49	0.67	32.19	3.48	3622.61	$S_{10} + NB$	1.1697
^a Note: NB	-Na ₂ B ₄ C	$O_7 \cdot 10H_2O_7$	KB-K ₂ B ₄ C	$0_7 \cdot 4H_2O, S_{10}$	$_0-\mathrm{Na}_2\mathrm{SO}_4\cdot 10\mathrm{H}_2\mathrm{O}$	KS–K ₂ SO ₄ , Gla–	$Na_2SO_4 \cdot 3K_2SO_4$	ŀ	

(with an uncertainty of 0.3 %). The SO_4^{2-} concentration was determined by a method of mixing barium chloride and magnesium chloride–EDTA titration (with an uncertainty of 0.5 %). The Na⁺ concentration was evaluated according to ion balance. **■ RESULTS AND DISCUSSION**

The equilibrium experimental solubilities of salts, densities of solutions, and equilibrium solids in the quaternary system $Na_2B_4O_7 - Na_2SO_4 - K_2B_4O_7 - K_2SO_4 - H_2O$ at 288 K are tabulated in Table 1.

The ion concentration values of the equilibrium solution are expressed in mass fraction w(b). The solution density (ρ) is given in

grams per cubic centimeter. To plot the quaternary system diagram, Jänecke dry-salt index values are necessary. $J(2Na^+)$, $J(SO_4^{2-})$, $J(2K^+)$, $J(B_4O_7^{2-})$, and $J(H_2O)$ are respective ion and water Jänecke index values. The respective ion and water Jänecke index values are calculated according to defined correlations

$$w(Na^{+}) = 2M_{Na} \cdot [w(SO_{4}^{2^{-}})/M_{SO4} + w(B_{4}O_{7}^{2^{-}})/M_{B4O7} - w(K^{+})/(2 \cdot M_{K})]g/100 \text{ g of solution}$$

$$w(H_2O) = 100 - w(B_4O_7^{2-}) - w(SO_4^{2-}) - w(K^+) - w(Na^+)g/100 \text{ g of solution}$$

Figure 1. Stable equilibrium phase diagram of the quaternary system $Na_2B_4O_7-Na_2SO_4-K_2B_4O_7-K_2SO_4-H_2O$ at 288 K: \bullet , experimental solubility data in this work; —, smoothed univariant curve.

Letting $[b] = w(Na^+)/(2M_{Na}) + w(K^+)/(2M_K)$ mol

then

 $J(2Na^+) = 100 \cdot w(Na^+)/(2M_{Na})/[b] \text{ mol/mol} (2K^+ + 2Na^+)$

$$J({\rm SO_4}^{2-}) = 100 \cdot w({\rm SO_4}^{2-})/M_{\rm SO4}/[b] \text{ mol/mol} (2{\rm K}^+ + 2{\rm Na}^+)$$

$$J(2K^+) = 100 \cdot w(K^+)/(2M_K)/[b] \text{ mol/mol} (2K^+ + 2Na^+)$$

$$J(B_4O_7^{2-}) = 100 \cdot w(B_4O_7^{2-})/M_{B4O7}/[b] \text{ mol/mol} (2K^+ + 2Na^+)$$

$$J(H_2O) = 100 \cdot w(H_2O)/M_{H2O}/[b] \text{ mol/mol}(K^+ + Na^+)$$

where w(ion) and $w(\text{H}_2\text{O})$ are the mass of ion and water in grams per 100 g of solution. J(ion) and $J(\text{H}_2\text{O})$ are the Jänecke index value of an ion and water, and M_{ion} is the molecular weight of the ion. Figure 1 is the isothermal solubility diagram plotted according to the Jänecke index values above. The quaternary solubility diagram consists of five crystallization fields corresponding to Na₂B₄O₇ · 10 H₂O (E1F1F2F3E5 field), K₂B₄O₇ · 4H₂O (E5F3E4 field), K₂SO₄ (E3F2F3E4 field), Na₂SO₄ · 10H₂O (E1F1E2 field), and Na₂SO₄ · 3K₂SO₄ (E2F1F2E3 field). The crystallization field of mirabilite (Na₂SO₄ · 10H₂O) has the smallest crystallization area. Borax (Na₂B₄O₇ · 10H₂O) has the biggest crystallization field in this quaternary system. The biggest crystallization region in the phase diagram indicates that borax (Na₂B₄O₇ · 10H₂O) is of low solubility. Experimental results imply that natural borax (Na₂B₄O₇ · 10H₂O) might form in the salt lake.

There are seven univariant curves each characterized by two solids and a solution: curve E1F1, corresponding to the coexistence of the salts $Na_2SO_4 \cdot 10H_2O$ and $Na_2B_4O_7 \cdot 10H_2O$ with the saturated solution; curve E2F1, corresponding to the coexistence of the salts $Na_2SO_4 \cdot 10H_2O$ and $Na_2SO_4 \cdot 3K_2SO_4$ with the saturated solution; curve E3F2, corresponding to the coexistence of the salts $Na_2SO_4 \cdot$ $3K_2SO_4$ and K_2SO_4 with the saturated solution; curve E4F3, corresponding to the coexistence of the salts $K_2B_4O_7 \cdot 4H_2O$ and K_2SO_4 with the saturated solution; curve ESF3, corresponding to the coexistence of the salts $K_2B_4O_7 \cdot 4H_2O$ and $Na_2B_4O_7 \cdot 10H_2O$ with the saturated solution; curve F1F2, corresponding to the coexistence of the salts $Na_2SO_4 \cdot 3K_2SO_4$ and $Na_2B_4O_7 \cdot 10H_2O$ with the saturated solution; curve F2F3, corresponding to the coexistence of the salts K_2SO_4 and $Na_2B_4O_7 \cdot 10H_2O$ with the saturated solution.

There are three isothermal invariant points F1, F2, and F3. The point F1 represents the equilibrium of three solid phases $(Na_2B_4O_7 \cdot 10H_2O, Na_2SO_4 \cdot 10H_2O, and Na_2SO_4 \cdot 3K_2SO_4)$. The point F2 represents the equilibrium of three solid phases $(Na_2B_4O_7 \cdot 10H_2O, K_2SO_4)$, and $Na_2SO_4 \cdot 3K_2SO_4)$. The point F3 represents the equilibrium of three solid phases $(Na_2B_4O_7 \cdot 10H_2O, K_2SO_4)$, and $Na_2SO_4 \cdot 3K_2SO_4)$. The point F3 represents the equilibrium of three solid phases $(Na_2B_4O_7 \cdot 10H_2O, K_2SO_4)$.

There are no solid solutions formed in the quaternary system at 288 K.

The double salt glaserite (Na₂SO₄·3K₂SO₄) formed in the stable equilibrium of the quaternary system Na₂B₄O₇–Na₂SO₄–K₂B₄O₇–K₂SO₄–H₂O at 288 K. The borate ions exist with the B₄O₅(OH)₄²⁻ ion in saturated solution, and the chemical structures of borates can be expressed as Na₂[B₄O₅(OH)₄]·8H₂O and K₂[B₄O₅(OH)₄]·2H₂O.¹⁵ The solubility data of the ternary system Na₂SO₄–K₂SO₄–H₂O at different temperatures^{12,13} suggest that the sodium sulfates can crystallize from saturated solution in the form of Na₂SO₄·7H₂O, Na₂SO₄·10H₂O, and Na₂SO₄. When the temperature reaches 35 °C, only thenardite (Na₂SO₄) can crystallize from the saturation solution. At 288 K, however, the sodium sulfate that can crystallize in the quaternary system is mirabilite (Na₂SO₄·10H₂O).

Some differences can be found between Figure 1 and the metastable equilibrium diagram¹⁶ for the quaternary system at 288 K. The crystallization field of $Na_2B_4O_7 \cdot 10H_2O$ becomes obviously smaller in the metastable solubility diagram than that in Figure 1; that is, the solubility of $Na_2B_4O_7 \cdot 10H_2O$ in the metastable equilibrium is supersaturated in the quaternary system $Na_2B_4O_7 - Na_2SO_4 - K_2B_4O_7 - K_2SO_4 - H_2O$ at 288 K. There is no crystallization field of $Na_2SO_4 \cdot 3K_2SO_4$ in the metastable equilibrium diagram at 288 K.¹⁶ Only thenardite (Na_2SO_4) in the quaternary system can crystallize from the saturated solution in the metastable equilibria at 288 K.¹⁶

CONCLUSIONS

The solubilities of salts, densities of solution, and coexisting equilibrium solids in the quaternary system $Na_2B_4O_7-Na_2SO_4-K_2B_4O_7-K_2SO_4-H_2O$ at 288 K were determined using an isothermal dissolution saturation method. In the phase diagram, there are three invariant points F1, F2, and F3, seven univariant curves E1-F1, E2-F1, E4-F3, E5-F3, E3-F2, F1-F2, and F2-F3, and five fields of crystallization, which correspond to $Na_2B_4O_7 \cdot 10H_2O$, $K_2B_4O_7 \cdot 4H_2O$, $Na_2SO_4 \cdot 10H_2O$, K_2SO_4 , and $Na_2SO_4 \cdot 3K_2SO_4$. The experimental results show that borax has lower solubility and sulfates have higher solubilities.

AUTHOR INFORMATION

Corresponding Author

*E-mail: sangshihua@sina.com.cn.

Funding Sources

This project was supported by the National Natural Science Foundation of China (No. 40973047), the New Century Excellent Talents in Universities of China (NCET-07-0125), and the Youth Science Foundation of Sichuan Province in China (08ZQ026-017).

REFERENCES

(1) Zheng, X. Y.; Zhang, M. G.; Xu, Y.; Li, B. X. Salt Lakes of China; Science press: Beijing, 2002 (in Chinese).

(2) Zhang, P. X.; Zhang, B. Z.; Tang, Y. Salt Lake Natural Resources in China and its Exploiting and Utilizing; Science press: Beijing, 1999 (in Chinese).

(3) Lin, Y. T. Geochemical characteristics of gas field water in one field in west Sichuan and its development evaluation. *Nat. Gas Ind.* **2000**, *20*, 9–14 (in Chinese).

(4) Song, P. S. Comprehensive Utilization of Salt Lake and Related Resources. J. Salt Lake Res. 2000, 8, 33–58 (in Chinese).

(5) Sang, S. H.; Yin, H. A.; Ni, S. J.; Zhang, C. J. A study on equilibrium solubilities and properties of solutions in the ternary system $K_2B_4O_7$ - KBr - H₂O at 298 K. J. Chengdu Univ. Technol. **2006**, 33 (Science&Technology Edition), 414–416 (in Chinese).

(6) Sang, S. H.; Yu, H. Y. Study on the Phase Equilibrium of $Na_2B_4O_7$ - NaBr - H₂O Ternary System at 298 K. Sea-Lake Salt Chem. Ind. **2006**, 35, 4–6 (in Chinese).

(7) Zhang, Z. L.; Sang, S. H.; Li, M.; Hou, C. H. Study on Equilibrium of the Quaternary System $K_2B_4O_7 - K_2SO_4 - KCl - H_2O$ at 298 K. *Chem. Eng.* **2009**, 37 (5), 46–48 (in Chinese).

(8) Zhang, X.; Sang, S. H.; Lai, C. H.; Sun, M. L. Study on Equilibrium of the Quaternary System $Na_2B_4O_7 - Na_2SO_4 - NaCl - H_2O$ at 323 K. *Chem. Eng.* **2009**, 37 (11), 44–46 (in Chinese).

(9) Sang, S. H.; Yin, H. A.; Peng, J. Experimental study on the phase Equilibrium of the Ternary System Na₂SO₄-Na₂B₄O₇-H₂O at 288 K. Proceedings of the 13th national Symposium on Phase Diagrams China-Japan Joint Symposium on Phase Diagrams, Materials Design and Their Application; 2006; pp 320–323 (in Chinese).

(10) Sang, S. H.; Yin, H. A.; Tang, M. L.; Zhang, Y. X. A study on the ternary system $K_2B_4O_7 - Na_2B_4O_7 - H_2O$ at 288K. *Sea-Lake Salts Chem. Ind.* **2002**, *31*, 16–18 (in Chinese).

(11) Sang, S. H.; Zhang, X. Solubility Investigations in the systems $Li_2SO_4 + Li_2B_4O_7 + H_2O$ and $K_2SO_4 + K_2B_4O_7 + H_2O$ at 288 K. J. Chem. Eng. Data **2010**, 55, 808–812.

(12) Niu, Z. D.; Cheng, F. Q. *The Phase Diagram of Salt-Water System and Its Application* [*M*]; Tianjin University Press: Tianjin, 2002 (in Chinese).

(13) Stephen, H.; Stephen, T. Solubilities of Inorganic and Organic Compounds, v. 2: Ternary and Multicomponent Systems; Pergamon Press, Macmillan: Oxford, U.K., 1979.

(14) Qinghai Institute of Salt-Lake, Chinese Academy of Sciences. *Analytical Methods of Brines and Salts*, 2nd ed.; Science Press: Beijing, 1988 (in Chinese).

(15) Li, J. Chemistry of Borate. J. Salt Lake Sci. 1993, 1, 62–66 (in Chinese).

(16) Zeng, Y.; Sang, S. H.; Li, Y. Q. Liquid-Solid Equilibrium for Quaternary System $Na_2SO_4 + K_2SO_4 + Na_2B_4O_7 + K_2B_4O_7 + H_2O$ at 288 K. J. Chem. Eng. Data **2005**, 50, 928–931.