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ABSTRACT: In this work, the artificial neural network-group contribution (ANN-GC) method has been applied to represent/
predict the solubilities of pure chemical compounds in water over the (293 to 298) K temperature range at atmospheric pressure. A
set of 3585 pure compounds from various chemical families has been investigated to propose a comprehensive and predictive
method. The obtained results show a squared correlation coefficient (R2) value of 0.96 and a root-mean-square error of 0.4 for the
calculated/predicted properties with respect to existing experimental values, demonstrating the reliability of the proposed model.

1. INTRODUCTION

Aqueous systems are often found in oil and gas industries, drug
production units, wastewater treatment plants, etc.1-4 For instance,
carbon dioxide/methane systems containing water may cause com-
plications such as corrosion and gas hydrate formation in the oil and
gas industries, while aqueous solubility is a very significant factor that
affects a drug’s oral bioavailability.1-4 On the other hand, natural gas
processing, storage, and transportation, CO2 capture from indus-
trial/flue gases, separations of industrial compounds from aqueous
solutions using ionic liquids, and syntheses of new drugs are among
the novel technologies dealing with mixtures of these compounds
with water.2,5 Therefore, accurate knowledge of the solubilities of
pure compounds in water is necessary for the development of special
models for desired processes. Many studies have been done in order
to determine the solubilities of pure compounds in water. In general,
the presented models fall into two main categories: thermodynamic
models, especially equations of state (EoS)-based models, and
mathematical/empirical correlations.

Cubic equations of state [e.g., the Peng-Robinson (PR)
EoS,6] are widely used for calculations of the solubilities of pure
compounds in water, especially in the oil and gas industries.
However, these approaches may have several drawbacks for
predictions of aqueous solubilities, including the following:

1. Critical properties of the pure compounds are required for
calculations of the solubilities using these kinds of models.
However, many of the investigated compounds, especially
those with complex chemical structures, become degraded
before reaching the critical conditions. Therefore, measure-
ment of the related properties does not seem to be practical.

2. Many physicochemical factors of the system should be
considered in order to modify the thermodynamic model
parameters for more accurate prediction of the phase
behavior of particular systems. For example, the aqueous
solubility of many of pure chemical compounds, especially

those applied in the pharmaceutical industry, is the result of
a complex interplay of several factors ranging from the
hydrogen-bond donor and acceptor properties of the
molecule and water to the energetic cost of disrupting the
crystal lattice of the solid in order to bring it into solution.7

3. The interaction parameters, including the binary interac-
tion parameters of the EoS and/or the activity model (in
cases where GE-based mixing rules are used) should be
tuned over the experimental solubility data for each in-
vestigated system. This is a time-consuming process, espe-
cially for solubility calculations for large numbers of pure
compounds.

4. Since some pure compounds (e.g., methane and heavier
hydrocarbons) have very low solubilities in water (typically
10-3 to 10-5 mole fraction), the numerical methods for
solving the equations of state should be applied with much
attention to avoid divergence.

5. The optimization algorithms used for obtaining the optimal
values of the thermodynamic model parameters have a
strong influence on the results of the solubility predictions.
Therefore, selecting the best optimization strategy is also
another factor that should be taken into account.In spite of
the aforementioned drawbacks, the thermodynamic mod-
els have been successfully applied for predictions of the
solubilities of hydrocarbons, CO2, N2, and similar gases
in water, which are generally encountered in the oil and
gas industries under different temperature and pressure
conditions.1-3,8-12 However, the application of cubic
equations of state has to date been checked for only a
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limited number of complex pure compounds for the
reasons listed above.

The second category of approaches used for solubility predic-
tions focuses on developing correlations, especially mathematical
algorithms using the physical properties of the compounds in a
way that makes these methods general and comprehensive. The
latter methods are capable of representing/predicting the solu-
bilities of many compounds in any state (including solid, liquid,
or gas) from various chemical families in water. Abraham et al.7

proposed a linear solvation energy relationship (LSER) method
based on excess molar refractivity, solute hydrogen-bond acidity
and basicity, solute dipolarity/polarizability, and McGowan’s
characteristic volume.7,13 Although the model is capable of corre-
lating the solubilities of simple organic compounds in water, the
parameters of the model are not easily estimated from the
chemical structures of the molecules. The same approach has
also been applied by other authors.14-16

Large aqueous solubility data sets are generally used to present
comprehensive methods. Delaney17 presented a solubility pre-
diction tool for a data set containing 2874 compounds using nine
simple descriptors, including molecular weight, aromatic propor-
tion, non-carbon proportion, polar surface area, and so on.
Another attempt was made by Votano et al.,18 who constructed
a set of methods using topological structure indices as descriptors
for a data set consisting of 4115 aromatic compounds. Although
the larger data sets ensure the reliability of the predictive tools,
these two methods do not lead to acceptable average deviations
of the results from experimental solubility values [e.g., the root-
mean-square errors (RMSEs) are larger than 1.0 based on the
natural logarithm unit].4

Wang and co-workers4 developed a method that could be
optimized to reduce the RMSE by seeking a different combina-
tion of descriptors. They also tested a set of robust models to
represent/predict aqueous solubilities for 3664molecules as a set
of high-quality solubility data from a variety of sources. They
tested the reliability and predictability of the tools through a set
of stringent cross-validation experiments.4

The most cited works on the application of mathematical
correlations for representation/prediction of the solubilities of
large pure compounds in water have been done by Yalkowski and
Valvani,19 Yalkowski and Pinal,20 Abramovitz and Yalkowski,21

and Myrdal et al.,22 which have focused on the applications
of LogP (the natural logarithm of the octanol/water partition
coefficient) and aqueous functional group activity coefficient
(AQUAFAC) methods. The most recent approach for this
purpose has been proposed by Jain and Yalkowski.23 They
employed the SCRATCH algorithm using predicted melting
points and aqueous activity coefficients. As a matter of fact, the
method uses two additive, constitutive molecular descriptors
(enthalpy of melting and aqueous activity coefficient) and two
nonadditive molecular descriptors (symmetry and flexibility). A
comparison between the proposed method and a widely used
general solubility equation (GSE) was finally made in order to
prove the capability of the model to represent/predict the solu-
bilities of 2200 compounds in water under ambient conditions.
Other methods based onmathematical correlations can be found
in good reviews by Lipinski et al.,13 Jorgensen and Duffy,24 Wang
et al.,25 and Hou and Wang.26 Table 1 shows a brief survey of
several methods previously presented in the literature.

Regarding the methods reported to date, there are some
elements to be considered. First and perhaps the most important

is the fact that the failure to select proper solubility data is one of
the significant reasons that some of these methods lack high
predictive ability.4 Furthermore, accurate prediction of the
solubilities of complex multifunctional compounds is still re-
quired, especially in the drug industry, where the reliable values
of the solubilities of pure compounds in water are vital.4 Finally,
many of the previously presented methods4,13-39 have shown
RMSEs in the range of 0.6 to 0.8,which has motivated researchers
to develop more accurate predictive tools.

In this work, an artificial neural network-group contribution
(ANN-GC) algorithm was developed to represent/predict the
solubilities of 3585 pure compounds belonging to various
chemical families in water under temperature and pressure
conditions that are especially significant in the drug industry.

2. METHODS

2.1. Data Set Preparation. The accuracy and reliability of a
method for representation/prediction of physical properties,
especially one dealing with a large experimental data set, directly
depend on the quality and comprehensiveness of the data set
applied for its development.40 The aforementioned character-
istics of such a method include diversity in both the investigated
chemical families and the pure compounds available in the data
set.41 In this work, we used the data set evaluated byWang et al.,4

which is one of the most comprehensive experimental data sets
available in the literature. The experimental values of the solu-
bilities are given in the Supporting Information. In this material,
S1 refers to the first data set collected byWang et al.,4 and S2, S3,
and S4 are the second, third, and fourth ones, respectively.
2.2. Generation of Artificial Neural Network-Based Group

Contribution. With this definition of the data set, the chemical
structures of all 3585 compounds were analyzed. Consequently,

Table 1. Brief Review of Several Methods Previously Pre-
sented in the Literature for Evaluation of Aqueous Solubilities

author Na RMSEb

Klopman et al.27 1288 0.54

K€uhne et al.28 -c 0.96

Yan and Gasteiger29 (MLRd) 1293 1.06

Yan and Gasteiger29 (ANN) 1293 0.52

Hou et al.30 1290 0.53

Huuskonen31 (MLRd) 1297 0.53

Huuskonen31 (ANN) 1297 0.53

Duchowicz and Castro32 148 1.20

Tetko et al.33 1297 0.52

Liu and So34 1312 0.51

Wegner and Zell35 1269 0.53

Delaney17 2847 1.01

Votano et al.18 5964 0.74-1.04

Wang et al.25 3664 0.84

Myrdal et al.22 2432 0.448

Klopman and Zhu36 1290 0.79

Abraham and Le37 594 0.56

Meylan and Howard38 3000 0.9

Jorgensen and Duffy24 150 0.72

Mitchell and Jurs39 1297 0.67
aNumber of investigated pure compounds. bRoot-mean-square
error. cNot determined. dMultilinear relationship model.
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90 functional groups were found to be more efficient for repre-
sentation/prediction of the solubility of the related pure com-
pounds in water. The functional groups used in this study are
presented in the Supporting Information. In addition, their
numbers of occurrences in the pure compounds used in this
work are also extensively presented in the Supporting Informa-
tion. These chemical groups are used as the parameters of the
proposed method.
The next calculation step, and perhaps the most significant

one, was to search for a relationship between the chemical
functional groups and the solubility of the pure compounds in
water under the investigated conditions. The simplest method
for this purpose was to assume the existence of a multilinear
relationship between these groups and the desired property
(here, the aqueous solubility of the pure compounds).40 This
technique is similar to the method used in most of the classical
group-contribution approaches.26 Several calculations showed
that the application of the aforementioned methodology for the
current problem yielded poor results. Consequently, the non-
linear mathematical method of an artificial neural network
(ANN) was investigated.
ANNs have been used extensively in various scientific and

engineering problems,40-69 including calculations/estimations
of physical and chemical properties of different pure com-
pounds.40,54-68 These capable mathematical tools are generally
applied to the study of complicated systems.41-53 Theoretical
explanations of neural networks can be found elsewhere.70 Using
the artificial neural network toolbox of the MATLAB software
(TheMathworks Inc.), a three-layer feed-forward artificial neural
network (FFANN) was developed for the problem. The typical
structure of a three-layer FFANN is schematically presented in
Figure 1. The capabilities of this kind of ANN have been demon-
strated in previous works.40-69

All of the aqueous solubility values of the pure compounds
were normalized between-1 andþ1 to decrease computational
errors. This was performed by using the maximum andminimum
values for each functional group as input data and the maximum
and minimum values of the aqueous solubilities as output param-
eters. Later, the main data set was divided into three new data
subsets, namely, the “training” set, the “validation (optimization)”
set, and the “test (prediction)” set. In this work, the training set
was used to generate the ANN structure, the validation
(optimization) set to optimize the model, and the test
(prediction) set to investigate the predictive capability and
validity of the obtained model. The process of dividing the main
data set into three data subsets was performed randomly. For this
purpose, about (80, 10, and 10) % of the main data set were
randomly selected for the training set (2869 compounds), the
validation set (358 compounds), and the test set (358 com-
pounds), respectively. The effect of the allocation percentages for
obtaining the three data subsets from the main data set on the
accuracy of the ANN method was studied in previous work.70,71

As a matter of fact, generation of an ANN model involves
determination of the weight matrices and bias vectors.40 As
shown in Figure 1, there are two weight matrices (W1 and W2)
and two bias vectors (b1 and b2) in a three-layer FFANN.40-68

These parameters should be obtained by minimization of an
objective function. The objective function used in the present
study was the sum of squares of differences between the outputs
of the ANN (correlated/predicted solubilities) and the target
values (experimental solubility values). This minimization was
performed using the Levenberg-Marquardt (LM)70 optimization

strategy. There are also more accurate optimization methods
(i.e., methods for which the convergence of the algorithms to the
global optimum is more probable) than this algorithm; however,
they need much more convergence time. In other words, the
more accurate the optimization, the more time is needed for the
algorithm to converge to the global optimum. The LM strategy70

is the most widely used algorithm for training and was robust and
accurate enough to deal with the considered system.40-68

Developing an ANN method capable of predicting the target
values as accurately as expected was one of the main steps in the
calculations. This step was repeated until the best ANN structure
was obtained. Generally, it is more efficient to optimize the num-
bers of neurons in the hidden layer according to the accuracy of
the obtained FFANN than to apply a fixed number of neurons.40-68

3. RESULTS AND DISCUSSION

An optimized FFANN for the prediction of the solubilities of
3585 pure compounds in water under the mentioned conditions
was obtained using the aforementioned procedure. For this
purpose, several three-layer FFANN modules were generated
assuming numbers 1 through 50 for the number of neurons in the
hidden layer, n, using the previously described procedure. The
most accurate results were observed for n = 25. It should be noted
that this value is not the global value, because the optimization
method used to train the ANN had a great effect on the obtained
value.40 Therefore, the developed three-layer FFANN has the
structure of 90-25-1.

The mat file (MATLAB file format) of the obtained ANN
containing all of the parameters of the model is freely available
from the authors upon request. In addition, instructions for
running the program are presented in the Supporting Infor-
mation. The represented/predicted solubilities are shown in
Figure 2 along with the experimental values for comparison.
These values are also reported in the Supporting Information.

The results obtained by the ANN-GC method are reported
in Table 2. These results imply that the obtained ANN-GC
algorithm is an accurate tool for representing/predicting the
solubilities of the pure compounds in water under the specified
conditions, which are especially interesting for the drug industry.

To compare this method with techniques previously pre-
sented in the literature, some points should be considered. The
first of these is the comprehensiveness of the method, which is
imperative in the representation/prediction of physical proper-
ties of large numbers of pure compounds, especially for applica-
tion in the drug production industry. The proposed tool is among
the most comprehensive ones in comparison with the methods
reported in the literature to date because it was developed using a
diverse set of 3585 pure compounds from various chemical
families. Another element to consider is the RMSE of the
presented model results, which is equal to 0.4 for natural-
logarithm-based data. This value is considerably lower than the

Figure 1. Schematic structure of the three-layer feed-forward artificial
neural networkmethod used in this study. Definitions:W, weight; b, bias.
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lowest value reported previously by Wang et al.,4 who used
the same data set for representation/prediction of aqueous
solubilities.

Figure 3 illustrates a better way to understand the accuracy of
this method. The absolute percentage deviations of the results
from the experimental aqueous solubility values4 for 1526
compounds are lower than 5 %. To omit from our discussion
the fact that there are 295 compounds for which the presented
model results lead to an absolute deviation from experimental
values of more than 50% would be an oversight. The large
deviations of these results from the experimental values4 may be
due mainly to the following reasons:
(a) The presented method may not be the most accurate tool

that is possible to develop. We tried our best to develop a
technique for calculation/estimation of the aqueous solubi-
lities of pure compounds that is not only more accurate than
the previously presented methods reported in the literature
but also comprehensive because of the large data set we used.

(b) Particular phenomena such as polymorphism may con-
tribute to the deviations, as the proposed methodmay not

Figure 2. Absolute deviations of the represented/predicted results from the experimental values4 of the solubilities of pure compounds in water under the
investigated conditions. S is the solubility inwater (μg 3mL

–1); AD is the absolute deviation from the experimental values, defined as |log(Scalcd/pred)- log(Sexp)|.

Table 2. Statistical Parameters for the Presented Method

statistical parameter value

Training Set

R2 a 0.961

standard deviation error 2.0

mean square error 0.2

RMSE 0.4

Nb 2869

Validation Set

R2 a 0.963

standard deviation error 1.9

mean square error 0.1

RMSE 0.4

Nb 358

Test Set

R2 a 0.971

standard deviation error 2.0

mean square error 0.1

RMSE 0.3

Nb 358

Training þ Validation þ Test Set

R2 a 0.962

standard deviation error 2.0

mean square error 0.2

RMSE 0.4

Nb 3585
a Squared correlation coefficient. bNumber of data points.

Figure 3. Absolute percent error ranges of the proposed model results
from experimental values.4
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be able to account for compounds that can exist in
different crystalline or enantiomeric forms.

(c) It is probable that the experimental solubility values for those
compounds showing large deviations from the related results
are not accurate or may somehow be erroneous because of
the difficulties that existed in the solubility measurements,
especially for those compounds with complex chemical
structures.72 It should be noted that the absolute average
deviations of the results from the experimental values for the
three different data sets used in this study were (22.5, 22.8,
and 32.2) % for data sets 1, 2, and 3, respectively.

4. CONCLUSION

In this study, a group-contribution based method for the
representation/prediction of the solubilities of pure compounds
in water over the (293 to 298) K temperature range at atmospheric
pressure has been presented. These conditions are of much interest
in industry, especially for drug industry processes. The method is
the result of a combination of feed-forward neural networks and
group contributions. The required parameters of this tool are the
numbers of occurrences of 90 functional groups in each investi-
gated molecule. It should be noted that most of these functional
groups are not simultaneously present in a particular molecule.
Therefore, computation of the required parameters from the
chemical structure of any molecule is simple. For developing this
method, the experimental aqueous solubility values from a large
data set4 containing 3585 pure compounds from various chemical
families were applied. As a consequence, a comprehensive tool for
representing/predicting the aqueous solubilities of many of pure
compounds was developed, although it still has some limitations.
The method has a wide range of applicability, but its prediction
capability is restricted to compounds that are similar to those ones
applied in the development of this method. Application of this tool
for compounds totally different than the investigated ones is not
recommended, although it may be used for a rough estimation of
the aqueous solubilities of these kinds of compounds. Finally, a
preliminary comparison between the presented method and exist-
ing methods in the literature has shown that our approach is
comprehensive and accurate. It should be noted that extending our
method to different temperature and pressure conditions would
require adequate data on solubilities of the investigated compounds
in water under those conditions. More meticulous experimental
works are required to be done for this concept.
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