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ABSTRACT: Simple mathematical transformations on the Gibbs excess function GEm permit the evaluation of many important
thermodynamic quantities. It is therefore of considerable interest to be able to evaluate this excess function from experimental data.
We extend the methods already developed for excess functions based on mole-fractions to derive appropriate partial differential
equations which relate any pair ofGEm, the logarithm of an activity coefficient, or the osmotic coefficient φ. The derivation is general
and does not depend on the experimental data conforming to any particular model. We illustrate the applications of these equations
to experimental data from the literature. Equations and applications for other partial molar quantities are also discussed.

’ INTRODUCTION

For binary systems, equations are available that permit the
direct passage from one partial molar quantity to another or from
a mean molar quantity to a partial molar quantity or vice versa.
These equations are very general and do not assume any
particular functional form for the quantities. Their derivation
depends only on the properties of extensive functions and the
Gibbs�Duhem equation and does not depend on any particular
model. Surprisingly, no general equation has been derived for the
direct passage from the osmotic coefficient φ to the Gibbs excess
function on the molality scale, GEm. The Gibbs excess function is
important and convenient because many thermodynamic prop-
erties may be derived from it by simple mathematical transfor-
mations.

As part of an approach to deal with multicomponent electro-
lyte solutions, Pitzer1,2 developed an analysis that starts off from
an assumed expression for GEm and derives equations for other
quantities in terms of the coefficients (ion-interaction para-
meters) that appear in the expression for GEm. The equations
are written in terms of ionic compositions, not molecular com-
positions. This method can in principle be used also for none-
lectrolytes. Other models such as those due to Robinson and
Stokes3 or the Lietzke and Stoughtonmodel4 have been used, but
the main interest in their models is to predict behavior of
multicomponent systems from the properties of binary systems
rather than in the evaluation of partial molar quantities.

A disadvantage of approaches using model expressions is that
when the experimental quantity does not strictly conform to the
requirements of the model somemodification of equations of the
model may be required to fit experimental data. Instead of having
to make adjustments to a specific model and revise its equations
to conform to experimental data, it would be preferable to use an
equation whose derivation is not constrained by any particular
model but is easily adapted to the requirements of the experi-
mental data.

It is useful to recall equations that are available at present.
McKay5 dealt with ternary systems, and the method he developed
was directed to isopiestic measurements. Since it required values at

constant activity of solvent, some interpolations had to be carried
out. This method does not appear to be used currently. The
method developed by Darken6 for analyzing ternary systems has
been used especially in alloy systems. He suggested extensions to
multicomponent systems but did not give any explicit equations
to analyze general multicomponent systems. Both McKay and
Darken used cross-differentiation relations for their derivations.
Neither treatment gave a unified treatment for any general partial
molar property, and the resulting equations do not have the same
form as those for binary systems. On the other hand, the differen-
tial equations approach taken by Canagaratna and Maheswaran7,8

derives equations for any general partial molar quantity, activity
coefficients, as well as excess and mean molar quantities based on
the mole fraction and molality scales. The derivation is straightfor-
ward and yields equations for multicomponent systems that are
formally identical to those for binary systems. Darken’s method of
keeping the ratios of solute compositions constant (effectively
using pseudobinaries) arises naturally as the characteristics of a
partial differential equation. Our goal in this paper is to develop
equations whose derivations are independent of anymodel, so that
it is possible to determine all partial molar quantities after a
sufficiently precise fit has been obtained for the available experi-
mental data. This is achieved by applying the partial differential
equations approach to obtain equations for the excess quantity
GEm based on molalities, as well as for the osmotic coefficient φ
and activity coefficients γi. We illustrate the application of these
equations by analyzing a few examples from the literature. Also, to
illustrate how experimental data for any general quantity may be
analyzed to obtain the corresponding partial molar quantities, we
consider the example of molar volume.

’RELATIONSHIPS AMONG φ, GEm, AND ln γi
A common way of investigating a multicomponent system is

to measure the osmotic coefficient φ. It is therefore of interest to
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establish equations to go from φ to GEm and from φ to ln γi,
where γi is the (mean) activity coefficient of solute species i.
We derive equations that enable us to obtain analytical
expressions for the excess free energy and the activity coef-
ficient when a least-squares fit has been made for φ as a func-
tion of composition.
Thermodynamic Preliminaries. For the discussion in this

section we take the set of molalities of the constituents {m2, m3,
..., mN} to be the independent variables, where N is the total
number of components. The solvent is denoted by subscript 1
and solutes are denoted by subscripts 2, 3, ..., N. Let W1, a1 and
M1 be, respectively, the mass, the relative activity and molar mass
of the solvent. Also, νi is the number of ions produced from one
molecule of species i . The quantities GEm and φ are defined by

GEm

W1RT
¼ ∑

N

i¼2
νimið1� φþ ln γiÞ ð1Þ

ln a1 ¼ �M1φ ∑
N

i¼2
νimi ð2Þ

A nonelectrolyte species j may be included in the treatment by
putting νj = 1. Let γi be expressed on the molality scale. It is
related to the relative activity ai by the relation

ai ¼ ðQimiγiÞνi ð3Þ
Qi is independent of composition and depends only on the
number of cations and anions produced from a single neutral
molecule. For constant T and p, the Gibbs�Duhem equation in
terms of molalities reads

d ln a1 ¼ �M1 ∑
N

i¼2
mi d ln ai ð4Þ

from which we obtain

d ln a1 þM1 ∑
N

i¼2
mi ln ai

 !
¼ M1 ∑

N

i¼ 2
ln ai dmi ð5Þ

For i,j = 2, 3, ..., N and i 6¼ j, eqs 5 and 3 yield the cross-
differentiation relations

Dln ai
Dmj

¼ Dln aj
Dmi

ð6Þ

νi
Dln γi
Dmj

¼ νj
Dln γj
Dmi

ð7Þ

Relationship between GEm and ln γi. Combining eqs 1, 2,
and 4, we obtain the equation

dðGEm=W1RTÞ ¼ ∑
N

i¼ 2
νiln γi dmi ð8Þ

whence

DðGEm=W1RTÞ
Dmi

¼ νi ln γi ð9Þ

This equation is for neutral electrolyte species i and enables
us to determine ln γi from a knowledge of GEm/W1RT. It

must be distinguished from Pitzer’s eq (14.23)9 which is for
an ion.
When ln γi is known, changes inG

Em/W1RTmay be obtained
from eq 9 by integration with respect to mi, while all of the other
mj are held constant.
Differential Equation ConnectingGEm and O.The following

partial differential equation forGEm/W1RT is obtained by substi-
tuting for ln γi from eq 9 in eq 1:

GEm

W1RT
¼ ∑

N

i¼2
νimið1� φÞ þ ∑

N

i¼ 2
mi

DðGEm=W1RTÞ
Dmi

ð10Þ

This may be rearranged to read

∑
N

i¼ 2
mi

DðGEm=W1RTÞ
Dmi

¼ GEm

W1RT
� ∑

N

i¼2
νimið1� φÞ ð11Þ

According to the theory of linear partial differential equa-
tions, there are special paths called characteristics along
which a partial differential equation may be treated as an
ordinary differential equation. The characteristics for eq 11
are given by

dmi

mi
¼ dmj

mj
¼ ::: ¼ dm

m

¼ dðGEm=W1RTÞ
ðGEm=W1RTÞ � ∑

N

i¼ 2
νimið1� φÞ

ð12Þ

Here, m = m2 þm3þ ...þmN is the total molality. According
to eq 12, the ratio mi/mj of the molalities of any two solutes is
constant along a characteristic. Consequently, it is conveni-
ent to change the variables from the set {m2, ..., mN} to the set
{mi, m2/mi, m3/mi, ..., mi�1/mi, miþ1/mi, ..., mN/mi}, where
we choose any one of the molalities, mi, and the ratios of the
other molalities to the selected molality. Then, when we move
along a characteristic, only mi changes and the remaining
variables in this set remain constant. In some instances, it may
be preferable to use the set {m, m2/m, m3/m, ..., mN/m},
where, instead of mi, we select the total molality m together
with the ratios mi/m as the variables. However, in this case
only N � 2 of these ratios are independent. We use the
expression differentiation along a characteristic to mean
differentiation with respect to the selected variable in one
of the above set of variables, while the ratios of the molalities
are kept constant. We use the subscript “ch” to denote the
differential coefficient along a characteristic. We note that
when the ionic strength I is used, we have dI/I = dm/m and
the ratio yi = Ii/I representing the ionic strength fraction is
constant along a characteristic.
Along a characteristic, we may rewrite eq 12 in the form

d
ðGEm=W1RTÞ

mi

" #
¼ ∑

N

j¼2
νjmjð1� φÞd 1

mi

� �
ð13Þ

Note that in the above equation wemay use themolalitymi of any
solute or replace it by m or I, whenever appropriate.
To integrate eq 13 along a characteristic, we need to write all of

the functions in terms of mi and the ratios mj/mi and regard the
ratios as constants during the integration. Also, we note that
(GEm/W1RT)/mi tends to 0 as the solution approaches infinite
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dilution. So, we have

ðGEm=W1RTÞ
mi

¼ �
Z
0

∑
N

j¼2
νjmj

m2
i

ð1� φÞ

0
BBBB@

1
CCCCA dmi ð14Þ

¼
∑
N

j¼ 2
νjmj

mi

Z
0

φ� 1
mi

� �
dmi ð15Þ

Here we have moved ∑ νjmj/mi outside the integral sign because
it is a constant along a characteristic given by mj/mi equal to a
constant for all j. We finally obtain

GEm=W1RT ¼ ∑
N

j¼2
νjmj

Z
0

φ� 1
mi

� �
dmi ð16Þ

The integral on the right-hand side of eq 16 tends to zero as mi

tends to zero even (as for electrolytes) if φ � 1 tends to m1/2.
This can be shown by carrying out the integration with respect to
m1/2 as the variable of integration. The equation is identical in
form to the equation for a binary solution, except that the
integration in this case is carried out along a characteristic.
After a functional form for φ has been obtained from a least-

squares fit, eq 16 enables us to derive an equation for GEm/
W1RT. Equation 9 can then be applied to obtain expressions for
the activity coefficients. We illustrate this in the analysis of
Robinson and Stokes’ data in the section on nonelectrolyte
solutions.
Differential Equation for ln γi. In some instances, it is useful

to have a direct route from φ to ln γi. We combine eq 2 with eqs 4
and 7 to obtain the partial differential equation

∑
N

j¼2
mj

Dln γi
Dmj

¼ φ� 1þ
∑
N

j¼2
νjmj

νi

Dφ
Dmi

ð17Þ

The characteristics for this differential equation are given by

dmi

mi
¼ dmj

mj
¼ ::: ¼ dm

m
¼ d ln γi

ðφ� 1Þ þ ðDφ=DmiÞ ∑
N

j¼ 2
νjmj

 !
=νi

ð18Þ
We integrate the above equation along characteristics starting
from the state of infinite dilution, where ln γi = 0. We obtain

ln γi ¼
Z
0

φ� 1
mi

� �
dmi þ

∑
N

j¼ 2
νjmj

νimi

Z
0

Dφ
Dmi

� �
dmi

ð19Þ

Along a characteristic, the integrands must be written as func-
tions of the integration variablemi and the ratiosmj/mi, which are
treated as constants. It is important to note that the partial
derivative of φ at the end of eq 19 is the regular partial derivative
with respect to mi treating m2, m3, ..., mN as the variables. As
stated earlier, the integration variable mi can be selected arbi-
trarily or may be replaced by the total molality m or the ionic
strength I. Once information about φ as a function of composition is

known, eq 19 enables us to get an analytical expression for ln γi as
a function of composition.
The reverse process, which is the calculation of φ from

experimental information of ln γi, may also be performed by
using eq 17. However, only one partial derivative of φ is involved,
and the integration has to be carried out along a line where only
mi varies, while all of the other molalities are kept constant. We
obtain the equation

∑
N

j¼ 2
νjmj

 !
φ ¼ νi

Z
mi¼ 0

∑
N

j¼2
mj

D ln γi
Dmj

þ 1

 !
dmi þ constant

ð20Þ
To evaluate the constant of integration, we need to know the
osmotic coefficient when mi = 0.

’APPLICATION OF THE EQUATIONS

We now illustrate the application of the above equations with
experimental data from the literature. All curve fitting was carried
out using the R package.10 This package has diagnostics which
facilitate recognition of outliers as well as a test of normality of
the distribution of the data points.

A point worth noting about the least-squares fit using the R
package is that when the expression used for the fit results in the
overdetermination of the coefficients the program flags the terms
which cause the problem. This overdetermination of the coeffi-
cients arises from linear relationships between terms; the exact
form of the linear relationship can be obtained from R. In the
theoretical development one uses all possible terms, but this
creates problems when such a symmetrical expression is used for
a least-squares fit. Thus for a binary system with variables x1 and
x2, if an experimental quantity y is fitted to an expression of the
form Ax1þ Bx2þ C, all three coefficients cannot be determined
uniquely by a least-squares fit because of the relation x1þ x2 = 1
between two of the terms. The only way of determining A,B, and
C uniquely is when one of them, say C, is known independently
of the fit (e.g., by determining ywhen x1 = 1 and x2 = 0). Then, C
can be held constant during the fit. In a similar way, we cannot
include all three terms x1x2, x1

2x2, and x1x2
2 in an expression for a

least-squares fit because of the relationship x1x2 = x1
2x2þ x1x2

2.
The R package also reports the statistical significance of the

coefficients that are determined. When any coefficients were not
statistically significant, the least-squares fit was repeated after the
corresponding terms had been removed. The dropping of some
terms results in the expression for the fit not being symmetrical
with respect to the variables representing the composition. This
is evident in the illustrative examples we consider.
Nonelectrolyte Solutions.Weanalyze the results of Robinson

and Stokes11 on aqueous solutions of sucrose and mannitol.
Robinson and Stokes developed a treatment that started from a
cross-differentiation relation but assumed that the cross-differ-
ential could be represented as a sum of two functions, each
depending only on one variable. Our analysis is direct and does
not make any assumptions whatsoever. We pooled the data for
the osmotic coefficient of the two binaries and the ternary system
and carried out a linear least-squares analysis. The expression
used to fit the data, after terms reported by R as not being
statistically significant are dropped, is

φ� 1 ¼ A2m2 þ A3m3 þ A23m2m3 þ A2sqm
2
2 þ A2sq3m

2
2m3

þ A2cubm
3
2 þ A2cub3m

3
2m3 þ A2qm

4
2 þ A3qm

4
3 ð21Þ
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In eq 21, subscript 2 denotes sucrose and subscript 3 denotes
mannitol. The coefficients for this fit are given in Table 1.
We use this fit to obtain an expression for GEm/W1RT and the

activity coefficients. First, we convert (φ� 1)/m2 to a function of
m2 and k3 = m3/m2 as follows:

φ� 1
m2

¼ A2 þ A3m3=m2 þ A23m2m3=m2 þ A2sqm2

þ A2sq3m2
2m3=m2 þ A2cubm2

2 þ A2cub3m2
3m3=m2

þ A2qm2
3 þ A3qm3

4=m2 ð22Þ

¼ A2 þ A3k3 þ A23m2k3 þ A2sqm2 þ A2sq3m2
2k3 þ A2cubm2

2

þ A2cub3m2
3k3 þ A2qm2

3 þ A3qm2
3k3

4 ð23Þ
Then, eq 16 with k3 taken to be constant gives

GEm=W1RT ¼ m� ðA2m2 þ A3m3 þ ð1=2ÞA23m2m3

þ ð1=2ÞA2sqm2
2 þ ð1=3ÞA2sq3m2

2m3 þ ð1=3ÞA2cubm2
3

þ ð1=4ÞA2cub3m2
3m3 þ ð1=4ÞA2qm2

4 þ ð1=4ÞA3qm3
4Þ
ð24Þ

Robinson and Stokes do not evaluate the excess function.
Using eq 9 we obtain ln γ2 by partial differentiation with

respect to m2. This gives

ln γ2 ¼ ln γ02 þm3f1ðm2Þ þm3
2f2ðm2Þ þm3

4f4ðm2Þ ð25Þ
where

ln γ02 ¼ 2A2m2 þ ð3=2ÞA2sqm2
2 þ ð4=3ÞA2cubm2

3 þ ð5=4ÞA2qm2
4

ð26Þ

f1ðm2Þ ¼ A2 þ A3 þm2ðA23 þ A2sqÞ þm2
2½A2cub þ A2sq3�

þm2
3ðA2cub3 þ A2qÞ ð27Þ

f2ðm2Þ ¼ ð1=2ÞA23 þm2ð2=3ÞA2sq3 þ ð3=4Þm2
2A2cub3 ð28Þ

f4ðm2Þ ¼ ð1=4ÞA3q ð29Þ
The results of Robinson and Stokes are sufficiently precise to
allow detection of the higher terms involving m3

4 and the
dependence of the m3

2 term on m2; these terms do not appear
in the analysis of Robinson and Stokes. Also, we note that

Robinson and Stokes obtained the expression for ln γ2
0 separately

from the binary system. We obtain it as part of deriving ln γ2 for
the ternary system.
Electrolyte Solutions. To test the suitability of our approach

for electrolyte solutions, we selected the CsCl/NaCl/H2O system.
The results of Rard and Miller12 for the ternary system were

analyzed both by our series method as well as by the Pitzer
method. For comparison we analyzed the binary systems NaCl/
H2O and CsCl/H2O as well. Table 2 summarizes our results.
Rard and Miller examined the different investigations of this
system and concluded that some of these were not of good
accuracy or precision. We examined only the results of Rard and
Miller, Robinson, and Guendouzi et al. Of these three sets, we
found the results of Rard and Miller were the most precise. For
comparison, we also analyzed the results of the binary systems
NaCl/H2O and CsCl/H2O. The equation that we used to fit φ is
of the form

φ ¼ 1� Am1=2=ð1þ Bm1=2Þ þ A2m2 þ A3m3 þ A2mhm2m
1=2

þ A3mhm3m
1=2 þ A2sqm2

2 þ A3sqm3
2 þ A2mm2mþ A3mm3m

þ A23m2m3 þ A2sq3m2
2m3 þ A23sqm2m3

2 þ A2m3hm2m
3=2

þ A3m3hm3m
3=2 þ A2cubm2

3 þ A3cubm3
3 þ A2cmhm2

3m1=2

þ A3cmhm3
3m1=2 ð30Þ

Coefficients that were not statistically significant were omitted.
The coefficients for the fit are given in Table 2.
We pooled the data for the two binary systems and the data for

the two sets of ternary systems for the analysis and obtained σ =
0.00084 for the standard error of the fit.
This approachmust be contrasted with that of Rard andMiller,

who analyzed the binary and ternary systems separately by the
Pitzer method. For comparison, we analyzed the systems by the
Pitzer method as well. For the ternary system, using the equation

φ ¼ 1� Am1=2=ð1þ Bm1=2Þ þ β02m2 þ β12m2e
�2m1=2 þ C2m2m

þ β03m3 þ β13m3e
�2m1=2 þ C3m3mþ θm2m3=mþΨm2m3

ð31Þ

Table 1. Sucrose-Mannitol: Coefficients of Fit for theOsmotic
Coefficient O, eq 21a

coeff. estimate std. error t value Pr(>|t|)

A2 6.789� 10�2 9.1� 10�4 75 <2 � 10�16 ***

A3 5.290� 10�3 5.0� 10�4 11 2 � 10�15 ***

A23 1.551 � 10�2 1.3� 10�3 12 <2 � 10�16 ***

A2sq 2.154� 10�2 9.6� 10�4 22 <2 � 10�16 ***

A2sq3 �5.871� 10�3 8.3� 10�4 �7.0 2.2 � 10�9 ***

A2cub �5.186� 10�3 3.1� 10�4 �17 <2 � 10�16 ***

A2cub3 4.242� 10�4 1.3� 10�4 3.4 0.0013 **

A2q 3.524 � 10�4 3.2� 10�5 11 3.1 � 10�16 ***

A3q 2.167� 10�3 3.8� 10�4 5.7 4.0 � 10�7 ***
a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual std err:
0.00090 on 60 deg of freedom. Multiple R-sq: 1, Adj R-sq: 1. F-statistic:
3.9eþ05 on 9 and 60 DF. p-value: < 2.2 � 10�16.

Table 2. CsCl/NaCl/H2O: Coefficients of Fit for the Osmotic
Coefficient O, eq 30a

coeff. estimate std. error t value Pr(>|t|)

A2 3.431� 10�2 2.3� 10�3 15 <2 � 10�16 ***

A3 2.295� 10�1 2.7� 10�3 85 <2 � 10�16 ***

A2mh 2.462 � 10�2 3.9� 10�3 6.3 1.7 � 10�9 ***

A3mh �1.858� 10�1 4.7 � 10�3 �40 <2 � 10�16 ***

A2sq �4.031� 10�2 2.2� 10�3 �18 <2 � 10�16 ***

A3sq 7.234� 10�2 2.5� 10�3 29 <2 � 10�16 ***

A2sq3 �9.889� 10�3 3.0� 10�4 �33 <2 � 10�16 ***

A23sq �8.214 � 10�3 2.9� 10�4 �28 <2 � 10�16 ***

A2m3h 2.526� 10�2 6.2� 10�4 41 <2 � 10�16 ***

A2cub �7.204� 10�3 3.0� 10�4 �24 <2 � 10�16 ***

A3cub �5.586 � 10�3 4.1� 10�4 �14 <2 � 10�16 ***

A2cmh 7.643� 10�4 5.5� 10�5 14 <2 � 10�16 ***

A3cmh 8.866� 10�4 9.8� 10�5 9.0 <2 � 10�16 ***
a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual std err:
0.00084 on 213 deg of freedom.Multiple R-sq: 1, Adj R-sq: 1. F-statistic:
1.3 � 106 on 13 and 213 DF. p-value:<2.2 � 10�16.
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we obtained a fit with σ = 0.0011. Our values of β0, β1, and C for
Cs and Na are compared with Pitzer’s values:

β0 β1 C
Cs: 0.0352 0.0305 �0.00056
(Pitzer) 0.0347 0.0397 �0.00049
Na: 0.0765 0.261 0.00119
(Pitzer) 0.0765 0.266 0.00127

For θ we obtained �0.038 as compared to Pitzer’s �0.0388,
and for Ψ we obtained �0.00134 as compared to �0.00135.
Though we pooled the binaries and the ternary, the values of the
parameters obtained by our method are in very good agreement
with those of Pitzer.
Rard and Miller used the coefficients from the analysis of

the two binary systems to fix the appropriate terms in the above
equation and obtained only the two coefficients θ and Ψ.
We refer to such a fit as a constrained fit; a fit where θ and Ψ
are determined simultaneously with the other terms using pooled
binary and ternary data will be referred to as an unconstrained fit.
This constrained fit gave σ = 0.0015. We also carried out a
constrained fit and got σ = 0.0011. The analysis by Rard and
Miller possibly included data from other sources; our analysis
used only Rard and Miller’s data.
A binary system is a special case of the ternary system. It

follows that for a proper statistical analysis of a ternary system the
data for both systems must be pooled together, unless there is a
reason to give an undue weight to the binary systems. Though
our constrained fit for φ was only slightly worse than the
unconstrained fit (σ of 0.0015 vs. 0.00084), the unconstrained
fit did not give as good results for the activity coefficients for the
solutes. This is possibly due to the fact that there are only two sets
of data for the ternary system. In the unconstrained fit, the three
coefficients corresponding to NaCl were quite close to those
found for the binary NaCl system, whereas this was not true for
CsCl. In fact, one of the coefficients was of opposite sign. It is
therefore possible that the results for CsCl are not quite
compatible with those for the other systems. Indeed, we found
that a Pitzer fit for the binary CsCl data given in Table 5 of Rard
and Miller was not successful; one of the coefficients was not
statistically significant. The diagnostic plots of R showed that
there was a small but significant systematic trend in the residuals.
This lends weight to the suggestion that the failure of our analysis
to give results better than about 2% for the activity coefficients
arises from the slight incompatibility of the CsCl data. The
disagreement of the data for CsCl solutions among different
workers has recently prompted a reexamination by Partanen.13

Equation 30 may be combined with eq 16 to obtain GEm. The
use of eq 9 will then give the expressions for the activity coef-
ficients.
We also looked at the data of Robinson,14 but the value of φ

could not be fitted to an equation having the same form as eq 30
to better than σ = 0.0032. The data had seven sets from ternary
systems and one for the CsCl binary; the NaCl binary system was
not included. The sigma was rather large, and the predicted
activity coefficient for the CsCl binary was not better than 2.5%;
the predicted activity coefficient for theNaCl was very poor. Rard
and Miller considered Robinson’s data to be incompatible with
theirs, and did not include them in their analysis.
We also looked at the data of Guendouzi et al.,15 which had

three sets of ternary data. We pooled this with the data for the
CsCl and NaCl binaries taken from their earlier work. Though

the fit was poor (σ = 0.011) the predicted values of the activity
coefficient for the NaCl binary was good to about 0.5%, but the
predicted values for the activity coefficients of the CsCl binary
was not better than 6�8%.
Nonelectrolyte Solutions in Mole-Fractions. When the

whole range of composition is experimentally accessible, it is
normal to use mole fraction as a measure of composition, and use
the excess function G

_
E = GE/n . The latter is the difference

between the mean molar free energy between the actual solution
and the ideal solution, (G

_
soln� G

_
soln
id ). Darken’s equations have

been used for this case, but such analyses use numerical or
graphical integration and differentiation. When analytical expres-
sions rather than a table of values is desired for the properties of a
system, a new problem of determining the constants of integra-
tion arises. We illustrate how this problem is tackled by con-
sidering the data on the alloy system Zn/Sn/Ga by Behera and
Shamsuddin.16

We briefly recapitulate the basic equations relating to this case
as discussed in an earlier paper.8 The characteristics of the partial
differential equation for G

_
E are defined by

dx2
x2

¼ dx3
x3

¼ ::: ¼ � dx1
1� x1

¼ dG
_E

G
_E � ðμ1 � μ01Þ

ð32Þ

where μ1
0 is the partial molar free energy of the pure solvent.

From this we obtain the following derivatives and differentials
along a characteristic:

dG
_E

dx1

0
@

1
A

ch

¼ � G
_E � ðμ1 � μ01Þ

1� x1
ð33Þ

dG
_E

dxi

0
@

1
A

ch

¼ G
_E � ðμ1 � μ01Þ

xi
, i 6¼ 1 ð34Þ

d
G
_E

1� x1

0
@

1
A ¼ ðμ1 � μ01Þd

1
1� x1

� �
ð35Þ

d
G
_E

xi

0
@

1
A ¼ ðμ1 � μ01Þd

1
xi

� �
, i 6¼ 1: ð36Þ

When the entire range of composition is available, any species
may be chosen as species 1. For the integration and differentia-
tion along a characteristic, the variable must be taken to be either
(a) x1, xi/(1� x1), i = 2, 3, ...,N or (b) any xi, i 6¼ 1, and xj/xi, i 6¼ 1,

Table 3. Zn/Sn/Ga: Coefficients of Fit for the Excess Gibbs
Free Energy G

_
E at 750 K, eq 37a

coeff. estimate std. error t value Pr(>|t|)

A12 7.59 0.41 18 <2 � 10�16 ***

A13 2.45 0.11 22 <2 � 10�16 ***

A23 6.85 0.16 44 <2 � 10�16 ***

A1sq2 1.06 0.45 2.4 0.022 *

A1sq3 1.63 0.19 8.5 1.1 � 10�10 ***

A2sq1 �4.15 0.44 �9.5 4.4 � 10�12 ***

A2sq3 �3.31 0.29 �12 9.7 � 10�15 ***
a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual std err:
0.026 on 43 deg of freedom. Multiple R-sq: 0.9996, Adj R-sq: 0.9995.
F-statistic: 1.5 � 104 on 7 and 43 DF. p-value: <2.2 � 10�16.
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j; the ratios of the mole fractions are constant along a character-
istic. Integration along characteristics is discussed in our earlier
papers.7,8

Since μ1 � μ1
0 = RT ln γ1, the above equations allow us to

obtain ln γ1 fromG
_
E by differentiation and to obtainG

_
E from ln

γ1 by integration.
Table 2 of Behera and Shamsuddin gives their experimental

values of the activity coefficients of Zn in the ternary systems, but
we found that the precision was not very good. Since we wanted
to pool data from the binary and ternary systems, we obtained a
least-squares fit of the values ofG

_
E from their Table 4A and used

eq 35 to obtain ln γZn.
The equation for the least-squares fit, after terms which were

not statistically significant had been dropped, is

G
_E ¼ A12x1x2 þ A13x1x3 þ A23x2x3 þ A1sq2x1

2x2 þ A1sq3x1
2x3

þ A2sq1x2
2x1 þ A2sq3x2

2x3 ð37Þ
where 1� Zn, 2� Sn, and 3�Ga. The values of the coefficients
are given in Table 3. From eq 35 the equation for ln γZn is

RTln γZn ¼ A12ð1� x1Þx2 þ A13ð1� x1Þx3 � A23x2x3
þ 2A1sq2x1ð1� x1Þx2 þ 2A1sq3x1ð1� x1Þx3
þ A2sq1x2

2ð1� 2x1Þ � 2A2sq3x2
2x3 ð38Þ

The expressions for the logarithm of the activity coefficients of Sn
and Gamay be obtained from eq 37 using eq 35, selecting Sn and
Ga successively as species 1. If the primary fit is for the activity
coefficient of one of the species, the activity coefficients of the
other species may be obtained by first getting the expression for
the excess function and then using eq 35. Alternatively, we may
obtain the expression for lnγSn directly from the expression for ln
γZn by using the equation

17

ln γSn ¼ Cþ ln γZn �
Z
0

D ln γZn
Dx2

dx2
x2

ð39Þ

We consider {x2,x3} space in which the characteristics are lines
through the origin O, where x2 = 0, x3 = 0, and x1 = xZn = 1. To
obtain an expression for ln γSn at a general point (x2,x3), we
integrate along the line from O to that point. The constant
of integration C represents the value of ln γSn as x1 f 1.
We obtain

RT ln γSn¼ A12½x1ð1� x2Þ � 1� � A13x1x3 þ A23x3ð1� x2Þ
þ A1sq2½x12ð1� 2x2Þ � 1� � 2A1sq3x1

2x3

þ 2A2sq1x1x2ð1� x2Þ þ 2A2sq3x2x3ð1� x2Þ þC ð40Þ
We obtain an expression for C in terms of the other coefficients
by using the fact that lnγSn = 0when x2 = 1. This yieldsC=A12þ
A1sq2. Note that we do not have to get the value of the integration
constant C from the binaries as recommended by Darken. We
substitute this value for C in the above equation to obtain

RT ln γSn ¼ A12x1ð1� x2Þ � A13x1x3 þ A23x3ð1� x2Þ
þ A1sq2x1

2ð1� 2x2Þ � 2A1sq3x1
2x3 þ 2A2sq1x1x2ð1� x2Þ

þ 2A2sq3x2x3ð1� x2Þ ð41Þ
A similar problem of having to determine the constant of
integration crops up when we try to calculate the excess func-
tion from a least-squares fit of RT ln γ. To evaluate G

_
E/xi in

an application to a system with N components, we integrate
eq 36 along a characteristic from the origin O to a general point

(x2, x3, ..., xN) using xi as the variable. The constant of integration
Ci is the value ofG

_
E/xi at O.We obtain this value as the limit as xj

f 0 for j = 2, 3, ...,N along the characteristic, while noting that the
quantities x2/xi, x3/xi, ..., xN/xi remain constant and that G

_
E =

RT ∑j = 1
N xjlnγj. Then, using the fact that limx1f1 ln γ1/xi = 0 we

have

Ci ¼ x2
xi
ln γO2 þ x3

xi
ln γO3 þ 3 3 3 þ

xN
xi

ln γON ð42Þ

where γi
O is the limiting value of of the activity coefficient as x1f

1. Then, x2C2 = x3C3 = ... = xNCN = C, and

C ¼ x2 ln γO2 þ x3 ln γO3 þ x4 ln γO4 þ 3 3 3 ð43Þ

We can determine the values of ln γi
O by using the fact that

G
_
E = 0 when xi tends to 1. Thus, after obtaining the least-squares

fit for ln γ1 as given in eq 38, we use eq 35 or 36 and integrate
along a characteristic to obtain

G
_E

=RT
x2

¼ C2 � ½A12ð1� x1Þ þ A13ð1� x1Þx3=x2 � A23x3

þ A1sq2ð1� x1
2Þ þ A1sq3ð1� x1

2Þx3=x2 � A2sq1x1x2 � A2sq3x2x3�
ð44Þ

G
_E

=RT ¼ x2 ln γO2 þ x3 ln γO3 � ½A12ð1� x1Þx2
þ A13ð1� x1Þx3 � A23x2x3 þ A1sq2x2ð1� x1

2Þ
þ A1sq3ð1� x1

2Þx3 � A2sq1x1x2
2 � A2sq3x2

2x3� ð45Þ
Using G

_
E = 0 when x2 = 1 or x3 = 1, we find ln γ2

O = A12þ A1sq2
and ln γ3

O = A13þ A1sq3. Substituting these values we can recover
eq 37 for the excess function free of any arbitrary constants.
The contribution of the constant of integration to any general

molar excess quantity yE is evaluated in a way analogous to
the procedure used for G

_
E.

’OTHER PROPERTIES

In investigations of binary systems, it has become customary
to report partial molar properties and excess molar properties
as tables of numerical values; often apparent partial molar
properties are used to calculate partial molar properties. In
reporting ternary and higher multicomponent systems, the
interest does not appear to be in the partial molar properties
but in the validity of models that predict or correlate excess
properties in terms of the excess properties of binary systems.
For example, Wisniak et al.18 detailed investigation of the
volume properties of binary and ternary mixtures of toluene,
butyl acrylate and methyl methacrylate. Though they give
extensive tables of partial molar volumes for the binary
systems, they do not evaluate the partial molar volumes for
the ternary system.

Although the validity of predictive models is obviously im-
portant, we must bear in mind that a knowledge of an excess
property by itself tells us nothing about the contributions of the
individual components: an explicit calculation is required to
determine them. At a fundamental level, the individual contribu-
tions are more important, since they enable us to calculate the
excess property. Furthermore, the evaluation of a partial molar
properties only involves differentiation of the expression for the
corresponding excess or mean molar property obtained by a
curve-fitting procedure. The reporting of expressions for partial
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molar properties in multicomponent systems would give useful
additional information. The availability of programs that can
carry out differentiations and symbolic algebraic manipulations
makes this relatively easy.

Our concern is to show that the partial molar properties may
be determined equally well or better by a direct analysis of an
extensive property Y rather than by an analysis of the mean molar
excess property corresponding to Y. We believe that proceeding
through the excess function may lead to greater error, since it
usually involves small differences between two large quantities. In
the case of activity and osmotic coefficients, these are determined
directly, not as differences between other experimentally deter-
mined quantities; analysis through an excess function therefore
seems natural for activity and osmotic coefficients.

Various formulas may be derived for the relation between any
arbitrary extensive property Y and the corresponding partial
molar properties yi and mean molar property y = Y/n. Using
equations that were established in an earlier paper,8 we obtain, on
the molality scale, the formulas

dðY=niÞ ¼ y1
M1

dð1=miÞ ð46Þ

dðYM1=W1Þ ¼ m y1 � YM1

W1

� �
dð1=mÞ ð47Þ

where species 1 is the solvent and the differentiations are carried
out along a characteristic. Along the characteristic, the variables
are taken as mi, mj/mi, j 6¼ 1,i. The ratios of the molalities are
constant along the characteristic. Alternatively, wemay replacemi

by the total molality m. We note that Y/ni = y/xi and YM1/W1 =
Y/n1 = y/x1.

To calculate the partial molar quantity of a solute i, we use the
formula

dðY=W1Þ ¼ yidmi ð48Þ
where the variables mj, j 6¼ i are held constant.

When the composition is expressed in mole fractions, all
species are in principle equivalent, and the characteristics of the
differential equation for y are defined by

dxi
xi

¼ ::: ¼ dð1� x1Þ
1� x1

¼ dy
y� y1

, i 6¼ 1 ð49Þ

Equations for y1 along a characteristic are

dðy=xiÞ ¼ y1dð1=xiÞ, i 6¼ 1 ð50Þ

d½y=ð1� x1Þ� ¼ y1d½1=ð1� x1Þ� ð51Þ
From eqs 50 and 51, we may derive alternative forms which
resemble the form used for binary solutions:

y1 ¼ y� xiðdy=dxiÞch, i 6¼ 1 ð52Þ

¼ yþ ð1� x1Þðdy=dx1Þch ð53Þ
Equation 53 enables us to carry out the differentiation with

respect to the species whose partial molar value is being evalu-
ated. When working with an equation like eq 53, the functions
may be expressed in terms of x1 and xi/(1� x1), the latter being
constant along a characteristic.

We can also use the original differential equations19 to cal-
culate y1 from the excess quantity yE or the meanmolar quantity y

expressed as functions of xi, i = 2, ..., N

∑
N

i¼ 2
xi
DyE

Dxi
¼ yE � ðy1 � yO1 Þ ð54Þ

∑
N

i¼ 2
xi
Dy
Dxi

¼ y� y1 ð55Þ

We note that, if f is a differentiable function of the independent
variables x2, x3, ..., xN, then

∑
N

i¼ 2
xi
Df
Dxi

¼ xj
df
dxj

 !
ch

ð56Þ

where j is one of 2, 3, ...,N and the characteristics are given by xi/
xj = constant. Also, we can replace the x bym to get an analogous
equation involving molalities.

To analyze the data of Wisniak et al.18 we pooled the data for
binary and ternary systems and directly analyzed the data for the
mean molar volume. The latter was fitted to an equation of the
form

ν=ðcm3=molÞ ¼ A10x1 þ A20x2 þ A30x3 þ A12x1x2 þ A23x2x3

þ A13x1x3 þ A1sq3x1
2x3 þ A2sq1x2

2x1 þ A2sq3sqx2
2x3

2

ð57Þ
The values of the coefficients are given in Table 4. The

agreement of the molar volumes of the pure components
obtained by our method of pooling the binary and ternary
systems and the values obtained by Wisniak et al. (shown in
parentheses) are worth noting: toluene 106.878 (106.8775),
butyl acrylate 143.3995 (143.3748), and methyl methacrylate
106.7809 (106.7748). The very good agreement between the
two methods validates our analysis of the data in terms of νh ins-
tead of vE.

The equations for the partial molar volumes may be obtained
by any one of eqs 50 to 53 or eq 55; eq 50 or 51 may be applied
here without any difficulty, with y being replaced by νh. Alter-
natively, we could use eq 54 or 55. The equations are

v1=ðcm3=molÞ ¼ A10 þ A12ð1� x1Þx2 þ A13ð1� x1Þx3
� A23x2x3 þ 2A1sq3x1ð1� x1Þx3 � A2sq1x2

2f1� 2ð1� x1Þg
� 3A2sq3sqx2

2x3
2 ð58Þ

Table 4. Toluene þ Butyl Acrylate þ Methyl Methacrylate:
Fit for the Mean Molar Volume νh at 298.15 K, eq 57a

coeff. estimate std. error t value Pr(>|t|)

A10 106.878 0.004 25632 <2 � 10�16 ***

A20 143.3935 0.0038 38100 <2 � 10�16 ***

A30 106.7809 0.0024 44789 <2 � 10�16 ***

A12 �0.430 0.038 �11 <2 � 10�16 ***

A13 0.245 0.032 7.6 2.8 � 10�12 ***

A23 0.317 0.048 6.6 9.0 � 10�10 ***

A1sq3 �0.230 0.066 �3.5 0.00066 ***

A2sq1 0.122 0.070 1.7 0.083 .

A2sq3sq �0.49 0.21 �2.3 0.023 *
a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual std err:
0.01113654 on 142 deg of freedom. Multiple R-sq: 1, Adj R-sq:1.
F-statistic: 1.904133 � 109 on 9 and 142 DF. p-value: <2.2 � 10�16.
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v2=ðcm3=molÞ ¼ A20 þ A12x1ð1� x2Þ � A13x1x3
þ A23ð1� x2Þx3 � 2A1sq3x1

2x3 þ 2A2sq1x1x2ð1� x2Þ
þ A2sq3sqx2x3

2f3ð1� x2Þ � 1g ð59Þ

v3=ðcm3=molÞ ¼ A30 � A12x1x2 þ A13x1ð1� x3Þ
þ A23x2ð1� x3Þ � A1sq3x1

2f1� 2ð1� x3Þg � 2A2sq1x1x2
2

þ A2sq3sqx2
2x3f3ð1� x3Þ � 1g ð60Þ

Wisniak et al. tried different types of fit for the ternary, but they
do not calculate the partial molar volumes for any of the models.
One of the models they used was the Redlich�Kister model
(their eq 20)

vE ¼ x1x2½A12 þ B12ðx1 � x2Þ þ C12ðx1 � x2Þ2�
þ x1x3½A13 þ B13ðx1 � x3Þ þ C13ðx1 � x3Þ2�
þ x2x3½A23 þ B23ðx2 � x3Þ þ C23ðx2 � x3Þ2� ð61Þ

We analyzed the data for the excess volumes according to the
above equation and obtained values of the coefficients very close
to their values. However, according to our analysis, some of the
coefficients were not statistically significant.

Using any of eqs 50 to 55 wemay obtain the expression for the
partial molar volumes for any general model. For example, for the
model given by eq 61, the expression for partial molar volume of
species 1 is given by

v1 ¼ vO1 þ A12ð1� x1Þx2 þ B12½ð1� x1Þx2ðx1 � x2Þ
þ x1x2f1� ðx1 � x2Þg� þ C12½ð1� x1Þx2ðx1 � x2Þ2
þ 2x1x2f1� ðx1 � x2Þgðx1 � x2Þ� þ A13ð1� x1Þx3
þ B13½ð1� x1Þx3ðx1 � x3Þ þ x1x3f1� ðx1 � x3Þg�
þ C13½ð1� x1Þx3ðx1 � x3Þ2
þ 2x1x3f1� ðx1 � x3Þgðx1 � x3Þ�
� A23x2x3 � 2B23x2x3ðx2 � x3Þ � 3C23x2x3ðx2 � x3Þ2

ð62Þ
where v1

O represents the molar volume of species 1 in the pure
state. Equations 58 and 62 agree to within ( 0.03 cm3/mol, i.e.,
about 3 in about 10 000. This is a testament to the high precision
of the data of Wisniak et al.

It is clear that if the precision of the data is good, use of both
meanmolar volume as well asmeanmolar excess volumewill give
results in good agreement. When the excess volume is used,
volumes of the pure components are fixed. Since these are
experimental values, the results obtained by pooling both binary
and ternary data together, as we have done, will yield statistically
more reliable results. The least-squares fit will then determine the
molar volumes of the pure components. If the precision of the
data is not very good, the use of the mean molar volume for the
analysis will probably yield better results.

’CONCLUSION

We have derived general equations which relate φ toGEm, φ to
ln γi, andG

Em to ln γi; the equations are for neutral molecules or
neutral electrolytes, not individual ions. These equations enable
us to deal with any arbitrary form of equation dictated by the
experimental data for a good fit. In particular, we are not
constrained to any of the models already worked out, though
the standard models are a subset of the equations which our

approach can handle. The equations that have been derived have
the same form irrespective of the number of components and are
analogous to those of binary systems. Integrations and differ-
entiations are carried out analytically and, therefore, the results
are considerably more accurate than those obtained numerically
or graphically.

A graphical or numerical analysis of data about a multi-
component system is possible only when the experimental points
fall on a characteristic, i.e., the ratio xi/xj is the same for all the
points in a set. When all the data are pooled together to obtain a
least-squares fit, however, this restriction is strictly not necessary.

Although our analysis of a multicomponent system does not
strictly require results for the corresponding 2, 3, ..., (N � 1)
component systems, when such results are available, it would be
preferable to pool them; appropriate weighting of the different
systems should be used if information is available. This is a
stringent test of the compatibility of the different systems. An
incompatibility will result in corresponding coefficients being
different, for example, in the ternary and the binary systems.

Illustrative examples are given to show how one determines
constants of integration by using some special value the property
being evaluated assumes at some known composition.

It is recommended that most partial molar quantities are best
analyzed in terms of the corresponding mean molar quantity
rather than the mean molar excess quantity. The validity of this
approach is shown by an illustrative example.

It seems preferable to report analytical expressions for partial
molar properties than to give tables of values of these quantities.
The approach adopted in this paper enables data about partial
molar properties to be reported as analytical expressions rather
than as tables of numerical values at selected compositions. This
will result in a conseasily evaluate the reported properties at any
desired composition.
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