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ABSTRACT: We present a simple method to estimate the solubility of weakly soluble solids in different solvents. The method
involves the calculation of the residual chemical potential of a single solute molecule in the solvent of interest using an appropriate
atomistic free energy simulation technique. In the present method, an expanded ensemble calculation is used, along with a combined
Wang-Landau/Bennett's acceptance ratio method. To avoid the simulation of the solid phase and the use of analytic reference
states, a single experimental solubility data point for the solute in a single reference solvent is also required. The method has
advantages over more empirical descriptor-based methods in that the simulations enable insight into the underlying molecular
driving forces responsible for solubility trends. Results are presented for the solubility of 1,2,4,5-tetramethylbenzene, phenanthrene,
and fluorene in the solvents hexane, octane, ethanol, 1-octanol, cyclohexane, benzene, and 1,4-dioxane. Overall, agreement between
the results of the present study and available experimental data is good. In general, the predictions have a lower total absolute error
when compared to experimental solubility data than those obtained using the Abraham general solvation model.

’ INTRODUCTION

Knowledge of the solubility behavior of organic solids in
different solvents is of substantial interest. For instance, in the
formulation of pharmaceuticals, a molecule that has a promising
activity but is poorly soluble in water may end up being
abandoned or may require substantial modification. Advances
in high throughput synthesis and testing, combined with the
desire to have drugs be more sensitive in their binding affinity,
have resulted in an increase in the molecular weight and
lipophilicity of drug molecule candidates, with a resulting de-
crease in aqueous solubility and hence bioavailability.1,2 Often
times, multiple cosolvents may be mixed to satisfy pharmaceu-
tical requirements of solubility, toxicity, and price. It follows that
the ability to predict which solvents will be most effective in
dissolving the solute would be exceedingly useful.

As a result of the vast possibility of solvents and chemical
composition of the candidate pharmaceutical, along with the
time and expense associated with experimental solubility mea-
surements, it is desirable to have methods that can predict the
ability of a given solvent to dissolve a particular solute. Because
solvation is a complex phenomenon in which many different
competing forces interact to determine the behavior of a given
solute-solvent system, the development of such methods is
extremely challenging. An astounding amount of research has
been done in this area, but it is still generally the case that the
prediction of solvation behavior relies upon semiempirical
correlations and group contribution methods.2-9 These meth-
ods often require a substantial amount of experimental data to
make meaningful predictions. Given this situation, it is desirable
to have atomistic-based molecular dynamics and Monte Carlo
models that can predict solubility with little or no experimental

data as input. Not only would such methods provide guidance in
solvent selection, but atomistic models give insight into the
molecular level details governing solubility behavior.

Only a limited number of molecular modeling approaches
have been used to predict the solubility limit of solids.10-13 In
some cases, atomistic simulations have been performed to
compute parameters for empirical correlations,10 while in others,
simulations have been used to directly compute the solubility
limit of solutes in solvents.11-13 In the latter case, the phase
equilibria condition requires equality of the temperature, pres-
sure, and chemical potential of each species between the phases
in equilibrium. Computing the chemical potential in such
systems is a nontrivial task. In addition, these methods require
knowledge of the experimental crystal structure of the solute and
the ability to accurately model the solute in both the solid and the
condensed phases. While many force fields are optimized for
performance in the liquid phase,14 extending these force fields to
model crystalline solids often leads to unsatisfactory results.15,16

It follows that the ability to avoid modeling the solid phase
altogether would prove advantageous.

In this work, a procedure for estimating the solubility limit of
large, sparingly soluble solutes in a variety of solvents is pre-
sented. A single experimental reference data point is used for
each solute in conjunction with an atomistic free energy simula-
tion of the solute in the solvents of interest. In this manner,
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simulations of the crystalline solid are avoided altogether.
Solubility predictions may be made in any solvent of interest,
given that a reasonable force field for the solvent exists. Further-
more, any combination of cosolvents may be studied without
increasing the computational difficulty of the prediction. If the
solubility limit is known in a pure solvent or at a given cosolvent
concentration, the method allows one to readily predict the
influence of adding or removing additional cosolvent on the
solubility limit.

’METHODOLOGY

Solid-Liquid Equilibrium. The solubility of solid substances
in pure and mixed solvents is described by the classical equations
of solid-liquid equilibrium.3-5 Consider the case of a pure solid
solute “A” dissolved in a solvent. The chemical potential of
species A in the liquid phase (“L”) at a temperature T and
pressure P is

μLAðT, P, xAÞ ¼ μ0AðT, PÞ þ RT ln
f LA ðT, P, xAÞ
f 0AðT, PÞ

ð1Þ

where μA
0 and fA

0 are the reference state chemical potential and
fugacity, respectively, and fA

L(T,P,xA) is the fugacity of the solute
in the liquid solution at the solubility limit mole fraction xA. The
chemical potential of the pure solid phase (“S”) of A in
equilibrium with the solution is

μSAðT, PÞ ¼ μ0AðT, PÞ þ RT ln
f SAðT, PÞ
f 0AðT, PÞ

ð2Þ

where fA
S(T,P) is the fugacity of the pure solid at T and P, and it is

assumed that no solvent dissolves into the crystalline solute.
The phase equilibrium condition is

f SAðT, PÞ ¼ f LA ðT, P, xAÞ ð3Þ
The liquid phase fugacity can be written in terms of the reference
fugacity and the appropriate activity coefficient γA as

f LA ðT, P, xAÞ ¼ γAðT, P, xAÞxAf 0AðT, PÞ ð4Þ
Substituting eq 4 into eq 3, the limiting solubility is given by

xA ¼ f SAðT, PÞ
γAðT, P, xAÞf 0AðT, PÞ

ð5Þ

Equation 5 is exact given the assumption of a pure solid phase and
requires knowledge of the pure solid fugacity and the activity
coefficient of the solute in the solution phase relative to the
(arbitrary) reference state. These quantities can be computed
from a molecular simulation to estimate the limiting solubility, as
has been shown in previous work.11-13 To do so, however,
requires that the free energy of the solid phase be computed,
which besides being difficult requires knowledge of the solid
phase structure. In addition, the composition dependence of the
activity coefficient must be found by performing a series of
calculations at varying solute compositions. For low solubility
substances, we make the assumption that the activity coefficient
is relatively insensitive to the solute concentration up to the
(low) solubility limit. Specifically, we assume that

γAðT, P, xAÞ � γAðT, P, x
�
AÞ ð6Þ

where xA* corresponds to the solute concentration associated with
a single solute molecule in a simulation box of solvent molecules.

This assumption is analogous to that made in similar studies.7,8

From the definition of the residual chemical potential and activity
coefficient

RT ln γAðT, P, x
�
AÞ ¼ μresA ðT, P, x�AÞ- μresA, pureðT, PÞ ð7Þ

the solubility limit can be written as

ln xA ¼ -
1
RT

μresA ðT, P, x�AÞ þ
1
RT

μresA, pureðT, PÞ

þ ln
f SAðT, PÞ
f 0AðT, PÞ

 !
ð8Þ

Recognizing that the last two terms are pure component proper-
ties of A, the limiting solubility can be expressed as

ln xA ¼ -
1
RT

μresA ðT, P, x�AÞ þ ζAðT, PÞ ð9Þ

where ζA is a constant parameter for a given solute (regardless of
the solvent) and is set by a single experimental solubility data
point. The term μA

res is readily obtained from a single molecular
simulation at concentration xA* , as discussed below. Equation 9 is
the main result and will be used to estimate the solubilities of the
three solutes in a range of different solvents.

’COMPUTATIONAL DETAILS

Computing the Residual Chemical Potential. An expanded
ensemble (EE) procedure was used to compute μA

res. Details of
this method are provided elsewhere,17 so only a brief summary of
the essential concepts is provided here. The basic idea behind the
EEmethod18-21 is to construct an augmented ensemble as a sum
of M þ 1 subensembles. This series of subensembles connects
two systems of interest by gradually performing transitions
between the two systems. In the present work, the systems of
interest are a noninteracting solute molecule in a pure solvent
and a single fully interacting solute in the solvent, with both states
at the same temperature and pressure. A single solute in the
solvent corresponds to a solute mole fraction xA* . The free energy
difference between these two systems gives μA

res. The intermedi-
ate subensembles between the noninteracting and the fully
interacting solute subensembles serve to scale the intermolecular
interaction potential of the solute. A specific subensemble is
designated by index m, while the intermolecular Lennard-Jones
(LJ) and electrostatic interactions are regulated by the suben-
semble dependent coupling parameters λm

LJ and λm
elec, respec-

tively. These coupling parameters vary from 0e λm
LJe 1 and 0e

λm
elec e 1.
While within a given subensemble, the configurational phase

space is sampled by molecular dynamics within the isothermal-
isobaric (NPT) ensemble. Periodically, a stochastic transition to
an adjacent subensemble is attempted. These transitions are
accepted using an appropriate acceptance rule.17 As a result of the
bulky size of the solute molecules, the free energy difference
between adjacent subensembles tends to be large, and hence the
probability of accepting transitions is small. To increase the
acceptance probability of these moves, a biasing scheme that
utilizes a combined Wang-Landau (WL)22-24 and Bennett's
acceptance ratio (BAR)25,26 method is used. The difference in
free energy between the two end states at m = 0 andm =M (and
hence μA

res in eq 9) is determined using the BAR procedure.
Complete details can be found elsewhere.17
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Force Fields. For the solvents and solutes, nonbonded inter-
molecular interactions were treated using a combined LJ and
fixed point charge model of the form

UnbðrijÞ ¼ 4εij
σij

rij

 !12

-
σij

rij

 !6
2
4

3
5þ 1

4πε0

qiqj
rij

ð10Þ

where rij, εij, σij, qi, and qj are the site separation distance between
atoms i and j, well-depth of the LJ interaction, distance at which
the LJ interaction is zero, and partial charge values, respectively.
For interactions between unlike LJ sites, Lorentz-Berthelot27

combining rules were employed, in which the LJ size parameter
was obtained as an arithmetic mean

σij ¼ 1
2
ðσii þ σjjÞ ð11Þ

and the LJ well-depth was obtained as a geometric mean

εij ¼ ffiffiffiffiffiffiffiffi
εiiεjj

p ð12Þ
LJ parameters and partial charges for hexane, octane, ethanol,

1-octanol, and cyclohexane were taken from the united-atom
transferable potential for phase equilibria (TraPPE-UA) force
field.28-30 Parameters for benzene were taken from the explicit
hydrogen analog (TraPPE-EH).31 The model for 1,4-dioxane
was taken from the work of Yazaydin and Thompson.32

The solutes studied were 1,2,4,5-tetramethylbenzene, phenan-
threne, and fluorene. Structures of these solutes are given in
Figure 1. These solutes were chosen because experimental
solubility data exists for these species in the solvents studied
here, they are large cyclic compounds representative of drug-like
molecules, and they have relatively low solubilities in the studied
solvents. LJ parameters for the solute molecules were taken from
the general AMBER force field (GAFF).33,34 GAFF has been
shown to perform well in simulations of hydration free
energies,35-37 and it is used extensively to model pharmaceutical
compounds.
To obtain partial charges for the solutes, geometries were first

optimized at the B3LYP/cc-pVTZ level of theory, followed by
single point energy calculations at the HF/6-31G* level of

theory38 as suggested previously.33,35,39,40 All of the ab initio
calculations were performed with Gaussian 09.41 Partial charges
were then obtained from the electrostatic potential using the
restrained electrostatic potential (RESP)42,43 method in ANTE-
CHAMBER (part of the AMBER 11 simulation suite).44,45

To prevent instabilities in the trajectory when the solute
was nearly decoupled from the system, that is when λm

LJ ≈ 0,
solute-solvent intermolecular nonbonded LJ interactions were
modeled with a modified, “soft-core” potential, ULJ

sc of the
form46-48

Usc
LJðrij;mÞ

¼ 4λLJm εij
σ12
ij

½ð1- λLJm ÞRLJσ6
ij þ r6ij �2

-
σ6
ij

½ð1- λLJm ÞRLJσ6
ij þ r6ij �

( )

ð13Þ
where rij, εij, and σij are the same LJ parameters as in eq 10, λm

LJ is
the subensemble dependent coupling strength of the LJ poten-
tial, and RLJ is a constant, taken in this study to be 1/2. When
the solute is fully coupled to the system, λm

LJ = 1, and eq 13
reduces to the normal LJ potential given by eq 10. When the
solute is nearly decoupled, λm

LJ approaches 0, and eq 13 becomes a
smooth interaction function that allows solvent molecules to
overlap the solute with finite energy. When the solute is
decoupled from the system, λm

LJ = 0 and the solute has no
interaction with the solvent (but it maintains its intramolecular
potential). Thus, the potential form in eq 13 correctly represents
the limiting behavior of the solute-solvent interactions, while
eliminating instabilities when λm

LJf0. Electrostatic intermolecu-
lar interactions are decoupled in a linear fashion via the coupling
parameter λm

elec; a detailed description regarding the decoupling
of intermolecular interactions with Ewald summation may be
found elsewhere.17

The same standard LJ interaction potential (eq 10) and
combining rules were used for all intramolecular nonbonded
interactions by all pairs of atoms separated by four or more
bonds. For the case in which the intramolecular sites are
separated by exactly three bonds, the LJ and electrostatic
interactions were scaled by factors of 1/2 and 5/6, respectively,
for the solutes and benzene. This was done to be consistent with
the AMBER formalism. For 1,4-dioxane, the scaling factors for LJ
and electrostatic interactions were both 1/2.32 For the TraPPE-
UA solvents, no scaling was used.
All of the molecules were modeled with flexible bonds, angles,

and dihedral angles. The bond stretching and angle bending
intramolecular interaction between sites separated by one and
two bonds respectively were modeled by simple harmonic
potentials of the form

UbondðrijÞ ¼ kijðrij - r0ijÞ2 ð14Þ

and

UangleðθijkÞ ¼ kijkðθijk - θ0ijkÞ2 ð15Þ

where kij, rij, and rij
0 are the force constant, distance between sites i

and j, and the corresponding nominal bond length, respectively.
Likewise, kijk, θijk, and θijk

0 are the force constant, angle between
sites i, j, and k, and the corresponding nominal bond angle,
respectively. The torsional potential describing the intramole-
cular interaction between sites separated by three bonds was

Figure 1. Chemical structures of the studied solutes.
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modeled by a potential of the form

UtorsðφijklÞ ¼ ∑
5

n¼0
Kncos

nðφijkl - 180oÞ ð16Þ

where φijkl is the dihedral angle between sites i, j, k, and l, and the
Kn coefficients are constants. The same torsional potential
was used to describe improper dihedral angles, meant to keep
planar groups planar. The TraPPE-UA models have rigid bond
lengths, and TraPPE-EH benzene is completely rigid; to avoid
the use of constraints during themolecular dynamics simulations,
missing harmonic bond, harmonic angle, and torsional potential
parameters were taken from the AMBER Parm99 force field.39,40

For all of the other molecules, except for 1,4-dioxane (where the
parameters came directly from the literature),32 intramolecular
parameters were taken fromGAFF. All of the force field files used
in the present study are provided in the Supporting Information.
Simulation Parameters.All simulations were performed with

a modified version of the molecular dynamics simulation package
M.DynaMix 5.2.49,50 For all systems studied in this work, LJ
interactions were truncated at a distance of rcut = 16 Å, and
standard uniform fluid tail corrections were applied to both the
energy and pressure, assuming g(r) = 1 beyond the cutoff.27

Electrostatic interactions were evaluated with an Ewald summa-
tion with tin foil boundary conditions,27,51 with real space
interactions truncated at rcut. A damping parameter of Rrcut =
3.14 was used, and the maximum number of reciprocal space
lattice vectors was set by Kmax = 7.55. The integration of the
equations of motion was performed with the multiple-time step
method of Tuckerman and coworkers52 in Cartesian coordinates.
A short time step of 0.2 fs was used for fast intramolecular degrees
of freedom and nonbonded interactions within a cutoff of rshort =
5 Å, and a time step of 2 fs was used for all other interactions. An
Andersen thermostat53 and Andersen-Hoover barostat53-55

were used with the collision time for the thermostat set to 0.5
ps, and the time constant for the barostat set to 2 ps. Modifica-
tions to M.DynaMix include implementation of the Andersen
thermostat, the “soft-core” potential (eq 13), separate decou-
pling of LJ and electrostatic interactions for EE calculations, WL-
BAR, modification of the Ewald summation with EE fractional
particles, and other minor additions.
The systems were set up by first randomly packing a cubic

box56 with pure solvent molecules. In all cases, the number of
solvent molecules was chosen such that for a box length of
approximately 40 Å, the system was near the experimental
density at ambient conditions.57 This led to systems havingNsolv

solvent molecules of 312 hexane, 252 octane, 696 ethanol, 228
1-octanol, 384 cyclohexane, 456 benzene, and 444 1,4-dioxane
molecules. Thus, xA* = 1/(Nsolv þ 1) varied from 0.001 to 0.004.
Short microcanonical (NVE) runs of 2 ps were then performed
on each system to remove any intramolecular strain. Next, the
systems were equilibrated in an NPT ensemble at elevated
temperatures below the normal boiling point57 and at a pressure
of 1 bar. The NPT runs were for 2.25 ns, with configurations
saved every 0.25 ns over the last 1.25 ns. For each solvent, these
five configurations were saved, the velocities were reinitialized
from a Maxwell-Boltzmann distribution with a unique seed to
the random number generator and then further equilibrated for 1
ns at 298 K and 1 bar. This yielded five independent solvent
boxes. For every combination of independent solvent box and
solute, the gas phase minimized solute molecule was randomly

placed inside the solvent box, and the velocities of the entire
system were again reinitialized with a unique random seed.
Production runs were carried out in an EE-NPT ensemble at

298 K and 1 bar for a total of 20 ns. Each of the five independent
systems for each solvent was initialized with a unique random
seed for the random number generator used by the thermostat
and for the EE random walk. The system began in the sub-
ensemble with a noninteracting solute molecule, and attempts to
change subensembles were made every 20 fs. Over the first 0.5 ns,
the random walk was carried out with WL biasing. During
the entire course of the simulation, transition energies
(in both directions) were computed each time a transition
between subensembles was attempted/proposed, and new sub-
ensemble weights were computed from BAR every 0.5 ns.17 The
solute was taken from noninteracting to fully interacting by first
bringing the intermolecular LJ interaction to full strength
and then adding in any intermolecular electrostatic interactions.
The addition of the LJ and electrostatic interactions were
performed separately in MLJ = 15 and Melec = 5 steps, respec-
tively, for a total of M = 20 steps (where in the reference
subensemble m = 0, the solute molecule is decoupled from the
system). For the first MLJ steps, the intermolecular electrostatic
interactions were turned off, and the intermolecular LJ interac-
tions were strengthened as λm

LJ = {0.05, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 1.0} over the
range 1eme 15. The unequally spaced λm

LJ values were chosen
to agree with previous work of Dill and coworkers.35,36,58 If the
solvent had partial charges, the intermolecular electrostatic
interactions were then strengthened as λm

elec = {0.2, 0.4, 0.6,
0.8, and 1.0} over the range 16e me 20. Note that, for hexane,
octane, and cyclohexane, electrostatic steps were not necessary. A
detailed description regarding the decoupling of intermolecular
interactions with Ewald summationmay be found in our previous
work.17

The reported residual chemical potentials were taken as the
mean value of the five independent production runs for
each solute-solvent combination, and the uncertainty was taken
as the bootstrap standard error.59-61 To compute the bootstrap
standard error for each solute-solvent combination, the
estimate of the chemical potential from each of the five produc-
tion runs was taken to be an independent data point. Next,
1000 sets containing five data points each were created by
randomly selecting five of our independent data points, with
replacement. The mean of each set was computed, creating a
bootstrap sample of 1000 estimates of the residual chemical
potential. The bootstrap standard error was then found as the
standard error of the bootstrap sample relative to the mean of the
five independent production runs for each solute-solvent
combination.

’RESULTS AND DISCUSSION

By application of the Markov principle,62 ensemble averages
may be computed within each EE subensemble. Therefore, the
partial molar residual enthalpy of the solute, hA

res, was determined
from ensemble averages of the enthalpy of the solution in the
fully coupled (HM) and decoupled (H0) states as

1
RT

hresA ðT, P, x�AÞ ¼ 1
RT

HMðT, P, x�AÞ-
1
RT

H0ðT, P, x�AÞ ð17Þ

Likewise, the partial molar residual entropy of the
solute, sA

res, was obtained from the fundamental thermodynamic
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relation5

1
R
sresðT, P, x�AÞ ¼ 1

RT
hresðT, P, x�AÞ-

1
RT

μresðT, P, x�AÞ ð18Þ

A summary of the computed residual chemical potential,
partial molar residual enthalpy, and partial molar residual entropy
for each solute in each solvent is given in Tables 1 to 3. In all
cases, the computed partial molar residual enthalpy is the same
order of magnitude as the uncertainty of the computed residual
chemical potential. The results indicate that the residual entropy
is the dominant component in determining the residual chemical
potential. In other words, the solvation process for these solutes
is nearly entirely entropically driven, as might be expected given
their low solubility.

To compute the solubility limit using eq 9, a reference
experimental solubility is needed to determine the parameter
ζA for each solute. The results in Tables 1 to 3 suggest that the
calculated chemical potential for the solutes in hexane are found
with the greatest precision. Therefore, the required solute-
dependent constant ζA was found by using the simulation
results for solute solubility in hexane. By forcing the hexane
solubility in eq 9 to match the experimental data, ζA was set

for each solute and used to estimate the solubility in other
solvents. Experimental solubility data are given in Tables 4 to 6.
Using eq 9, the solute constants at 298 K and 1 bar are found to
be ζA =-13.73( 0.02, ζA =-19.89( 0.02, and ζA =-18.44(
0.05 for 1,2,4,5-tetramethylbenzene, phenanthrene, and fluor-
ene, respectively. Using this constant, the solubility limit of the
solute in any other solvent can be estimated from an EE
simulation. Note that the constant ζA could have been deter-
mined using data for any solvent; results were found to be
essentially the same if the reference solvent were chosen to be
octane, ethanol, or cyclohexane. Differences were observed if
1-octanol was chosen as the reference solvent, which is attributed
to the rather larger uncertainties in the computed residual
chemical potential for 1-octanol, presumably due to sampling

Table 1. Summary of the Computed Residual Chemical
Potential and Each of Its Components for 1,2,4,5-
Tetramethylbenzene

solvent (1/RT)μres (1/RT)hres (1/R)sres

hexane -12.19( 0.02 -0.052 ( 0.003 12.14( 0.02

octane -12.17( 0.05 -0.083 ( 0.010 12.09( 0.05

ethanol -10.09( 0.04 -0.024 ( 0.002 10.07( 0.04

1-octanol -11.27( 0.11 -0.122 ( 0.009 11.15( 0.11

cyclohexane -12.43( 0.03 -0.046( 0.001 12.38( 0.03

benzene -11.68( 0.04 -0.035( 0.003 11.65( 0.04

1,4-dioxane -11.06( 0.03 -0.033( 0.002 11.03( 0.03

Table 2. Summary of the Computed Residual Chemical
Potential and Each of Its Components for Phenanthrene

solvent (1/RT)μres (1/RT)hres (1/R)sres

hexane -16.44( 0.02 -0.065 ( 0.014 16.38( 0.02

octane -16.74( 0.04 -0.093 ( 0.007 16.65( 0.04

ethanol -15.00( 0.06 -0.029 ( 0.001 14.97( 0.06

1-octanol -16.63( 0.18 -0.157 ( 0.026 16.47( 0.18

cyclohexane -16.79( 0.02 -0.062( 0.001 16.73( 0.02

benzene -17.19( 0.04 -0.050( 0.005 17.14( 0.04

1,4-dioxane -16.94( 0.07 -0.056( 0.003 16.88( 0.07

Table 3. Summary of the Computed Residual Chemical
Potential and Each of Its Components for Fluorene

solvent (1/RT)μres (1/RT)hres (1/R)sres

hexane -14.95( 0.05 -0.073 ( 0.004 14.88( 0.05

octane -15.00( 0.04 -0.092 ( 0.006 14.91( 0.04

ethanol -13.54( 0.05 -0.024 ( 0.004 13.52( 0.05

1-octanol -14.54( 0.20 -0.185 ( 0.018 14.36( 0.20

cyclohexane -15.20( 0.04 -0.053( 0.001 15.15( 0.04

benzene -15.51( 0.05 -0.045( 0.003 15.47( 0.05

1,4-dioxane -15.34( 0.07 -0.047( 0.004 15.29( 0.07

Table 4. Comparison of the Experimental Solubility,65 the
Solubility Predicted in This Study, and the Solubility Pre-
dicted by the Water to Solvent (WfS) and Gas to Solvent
(GfS) Forms of the Abraham General Solvation Mod-
el64,65,68 for 1,2,4,5-Tetramethylbenzenea

ln X (mole fraction)

solvent experiment this work Abraham WfS Abraham GfS

hexane -1.545 -1.54( 0.03 -2.434 -2.071

octane -1.552 -1.56 ( 0.05 -1.931 -1.987

ethanol -3.709 -3.64( 0.04 -3.530 -3.344

1-octanol -2.123 -2.46( 0.11 -2.524 -2.281

cyclohexane -1.587 -1.30( 0.04 -2.013 -2.024

benzene -2.05( 0.04 -1.276 -0.865

1,4-dioxane -2.67( 0.04 -2.035 -1.842

AE total 0.448 1.144 0.903

AE alkane 0.295 1.694 1.398

AE alcohol 0.344 0.439 0.398
aThe predictions of the current study use eq 9 with hexane as a
reference, giving ςA =-13.73( 0.02. The reported solubility is in units
of mole fraction, and AE corresponds to the absolute error.

Table 5. Comparison of the Experimental Solubility,6 the
Solubility Predicted in This Study, and the Solubility Pre-
dicted by the Water to Solvent (WfS) and Gas to Solvent
(GfS) Forms of the Abraham General Solvation Model6,64,68

for Phenanthrenea

ln X (mole fraction)

solvent experiment this work Abraham WfS Abraham GfS

hexane -3.445 -3.45( 0.03 -3.793 -3.305

octane -3.114 -3.15 ( 0.04 -2.939 -2.908

ethanol -4.497 -4.89( 0.06 -4.187 -3.992

1-octanol -2.915 -3.26( 0.18 -3.032 -2.832

cyclohexane -3.311 -3.10( 0.03 -2.629 -2.890

benzene -1.710 -2.70( 0.04 -1.046 -0.465

1,4-dioxane -2.95 ( 0.07 -1.480 -1.228

AE total 0.565 0.929 0.708

AE alkane 0.247 1.205 0.767

AE alcohol 0.523 0.497 0.512
aThe predictions of the current study use eq 9 with hexane as a
reference, giving ςA =-19.89( 0.02. The reported solubility is in units
of mole fraction, and AE corresponds to the absolute error.
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difficulties. It has been well-documented63 that 1-octanol is
difficult to sample in atomistic simulations due to the formation
of aggregates and other inhomogeneities. To minimize these
difficulties, five independent 20 ns simulations were conducted.

A summary of the solubility limit predictions obtained in this
study, along with a comparison with experiment and the predic-
tions obtained from the Abraham general solvationmodel,6,64-68

are presented graphically in Figures 2 to 4. Results are tabulated
in Tables 4 to 6. In general, the simulations perform extremely
well compared to the Abrahammodel. This is encouraging, since
the Abraham model is generally thought to perform at least as
well as the mobile order theory and the universial functional
activity coefficient (UNIFAC) and modified UNIFAC
(Dortmund) models currently used in the pharmaceutical and
chemical industries.6 To compare the simulation predictions
and the predictions of the Abraham general solvation model

against experimental data quantitatively, the absolute error, AE,
defined as

AE ¼ ∑
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln xmodel - ln xexperimentÞ2

q
ð19Þ

was computed for each solute. In eq 19, xmodel and xexperiment are
the predicted solubility of the model and the experimental
solubility, respectively, in units of mole fraction. The summation
is over all systems except the hexane system against which ζA was
regressed. Note that the solubilities predicted by the Abraham
general solvation model are in units of molarity. These were
converted to mole fractions using the solute molar volumes
published with the Abraham general solvation model,6,65-67

reference solvent molar volumes,57 and the corresponding con-
version used in the Abraham general solvation model to convert
experimental mole fractions to molarities.6,65-67

For 1,2,4,5-tetramethylbenzene, the estimated solubility ob-
tained from the present work is in much better agreement with
the experiment than the predictions of the Abraham solvation

Table 6. Comparison of the Experimental Solubility,66,67 the
Solubility Predicted in This Study, and the Solubility Predicted
by the Water to Solvent (WfS) and Gas to Solvent (GfS)
Forms of the Abraham General Solvation Model64,66-68 for
Fluorenea

ln X (mole fraction)

solvent experiment this work AbrahamWfS Abraham GfS

hexane -3.493 -3.49( 0.07 -3.974 -3.532

octane -3.283 -3.44 ( 0.06 -3.268 -3.242

ethanol -4.902 -4.90( 0.07 -4.529 -4.423

1-octanol -3.248 -3.90( 0.21 -3.464 -3.268

cyclohexane -3.279 -3.24( 0.06 -3.118 -3.238

benzene -2.93( 0.07 -1.883 -1.397

1,4-dioxane -3.10( 0.09 -2.352 -2.177

AE total 0.672 0.666 0.484

AE alkane 0.196 0.657 0.121

AE alcohol 0.652 0.431 0.479
aThe predictions of the current study use eq 9 with hexane as a
reference, giving ςA =-18.44( 0.05. The reported solubility is in units
of mole fraction, and AE corresponds to the absolute error.

Figure 2. Comparison of the experimental solubility,65 the solubility
predicted by the water to solvent (WfS) and gas to solvent (GfS)
forms of the Abraham general solvation model,64,65,68 and the solubility
predicted in this study for 1,2,4,5-tetramethylbenzene. The reported
solubility is in units of mole fraction.

Figure 3. Comparison of the experimental solubility,6 the solubility
predicted by the water to solvent (WfS) and gas to solvent (GfS)
forms of the Abraham general solvation model,6,64,68 and the solubility
predicted in this study for phenanthrene. The reported solubility is in
units of mole fraction.

Figure 4. Comparison of the experimental solubility,66,67 the solubility
predicted by the water to solvent (WfS) and gas to solvent (GfS)
forms of the Abraham general solvation model,64,66-68 and the solubility
predicted in this study for fluorene. The reported solubility is in units of
mole fraction.
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model for both alkanes and alcohols. In the case of phenanthrene,
the present study exhibits superior performance for the alkanes,
but not for alcohols. The AE for alcohols is enclosed by the AE of
the two predictions of the Abraham model. The overall AE for
the alkanes and alcohols, however, is smaller for the present study
than for that obtained with the Abrahammodel. We note that, for
the solubility of phenanthrene in benzene, reference data are
presented that are extrapolated from solubility data at other
conditions.6 For this case, the AE for the model of the present
study is in between the AE for the two predictions of the
Abraham general solvation model, with the present study under
predicting the solubility, and the Abraham general solvation
model over predicting the solubility. Lastly, for fluorene the AE
for the model of the present study is in between the AE for the
two predictions of the Abraham general solvation model for
alkanes and is inferior to the Abraham general solvation model
for alcohols. However, the overall deviation is in close agreement
with the water to solvent prediction of the Abraham general
solvation model. For the cases in which experimental data are not
available for benzene and 1,4-dioxane, the present study deviates
from the Abraham general solvation model. Unfortunately,
the lack of experimental data prevents a determination of which
model is more accurate. It is important to note that the
predictions from the present study show the same general trends
as the Abraham solvation model, but that only a single
experimental data point is required. This is in contrast to the
Abraham model, which requires extensive parametrization
against experimental data.

This suggests that, in the absence of large amounts of
experimental data, the approach presented here can give rela-
tively accurate estimates of the solubility limit of low solubility
solutes and most certainly is capable of capturing solubility
trends.

’SUMMARY AND CONCLUSIONS

A method has been proposed to predict the solubility limit of
low solubility solids. A single experimental reference solubility is
required for each solute, as well as a single free energy simulation
of the solute-solvent system. For the case of three solutes
(1,2,4,5-tetramethylbenzene, phenanthrene, and fluorene), the
method yields accurate solubility predictions for alkane and
alcohol solvents. The predictions are found to be comparable
to the Abraham general solvationmodel, but themethod requires
far fewer experimental data points to parameterize the model.
Predictions for the solubility of these three solutes in solvents for
which experimental data are not available are in qualitative
agreement with the predictions of the Abraham general solvation
model. While the results are not perfect and only a limited range
of solvents have been explored, the results are extremely promis-
ing, suggesting that the proposed method may be used to help
guide experiment with regards to selecting a solvent to dissolve a
particular solid. Furthermore, now that the solute-dependent
constants have been found for the studied systems, the solubility
of these solutes in any pure or mixed solvent may be predicted by
performing a single free energy calculation in the solvent of
interest. These promising results warrant further studies to probe
the application to a wider range of solvents and solutes of
pharmaceutical interest.

Lastly, the method enables one to obtain physical insight into
the reasons for the observed solubility trends, something that is
often difficult to obtain with more empirical models. In the

present study, it was found that enthalpic interactions play a small
role in the solubility; instead, the solubility of these solute-
solvent systems is dominated by entropic effects. Using a single
experimental data point obviates the need to compute the free
energy of the crystalline phase, something that can be done but
with great difficulty.13 It should be relatively straightforward to
extend this method to cosolvent systems.

We are happy to submit this paper as part of the John M.
Prausnitz Festschrift. Much of the underlying molecular thermo-
dynamic theory for the method can be found in the seminal
monograph “Molecular Thermodynamics of Fluid-Phase
Equilibria”5 by Prausnitz, Lichtenthaler, and de Azevedo. This
text and the writings of Prof. Prausnitz have continued to inspire
us to think about ways of linking the very fundamental topic of
molecular interactions with applications that are at the heart of
chemical engineering. The present paper attempts to follow this
model by using advanced molecular simulation methods and a
small amount of experimental data tomake solubility predictions.
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