JOURNAL OF CHEMICAL & ENGINEERING DATA

ARTICLE

pubs.acs.org/jced

Effect of Temperature and Concentration of KBr or KNO₃ on the Volumetric and Transport Properties of Aqueous Solutions of Tripotassium Citrate

Mohammed Taghi Zafarani-Moattar* and Farhad Izadi

Physical Chemistry Department, University of Tabriz, Tabriz, Iran

S Supporting Information

ABSTRACT: Volumetric and transport properties of ternary aqueous solutions of tripotassium citrate in (KBr or KNO₃) + water have been determined in the different molality ranges of KBr and KNO₃ [(0.2, 0.3, 0.4, 0.5, 0.6, and 0.7) mol·kg⁻¹] at T = (293.15 to 313.15) K. The apparent molar volume and apparent molar isentropic compressibility have been calculated from the measured density and speed of sound data for ternary aqueous solutions of tripotassium citrate + (KBr or KNO₃) have been correlated with the Redlich–Mayer equation. Viscosity values of ternary aqueous solutions of tripotassium citrate + (KBr or KNO₃) have been fitted with the Jones–Dole equation. The results obtained have been interpreted in elucidating the effect of KBr or KNO₃ and temperature on the interaction of tripotassium citrate with water. Furthermore, density and viscosity values of ternary aqueous solutions of tripotasting the methods proposed by Laliberté et al. and Zafarani-Moattar et al. for mixtures of inorganic salts.

1. INTRODUCTION

The volumetric properties of electrolyte solutions have proven to be a very useful tool in elucidating the structural interactions (i.e., solute—solvent, solute—solute, and solvent—solvent) occurring in solution, because they may give us an indirect insight into the conformational features of the components in solution. The design and operation of industrial processes that involve electrolyte solutions require knowledge of rigorous models or experimental data to represent the nonideality of the mixtures. Accurate predictions of densities and viscosities of mixed electrolyte solutions are of great importance in industry.^{1,2}

Citrate is biodegradable and nontoxic and could be discharged into biological wastewater treatment plants. Aqueous solutions of potassium citrate are of considerable significance in many other biochemical and chemical processes, and this salt is produced in large quantities and used in the food, cosmetic, pharmaceutical, and chemical industries.³⁻⁶ Densities, speed of sound, and viscosity values of binary aqueous solutions of tripotassium citrate (K₃Cit) are available at very dilute concentrations.^{7,8} These properties have been measured for this system over the entire concentration range at different temperatures in a previous work.⁹ Volumetric and transport properties of binary aqueous solutions of potassium bromide (KBr) and potassium nitrate (KNO₃) are available in the literature. Density and viscosity values of binary aqueous solution of KBr and KNO₃ used in this work were taken from Supporting Information reported by Laliberté.^{10,11}

In this work, volumetric and transport properties of ternary aqueous solutions of K_3Cit+ (KBr or KNO₃) have been determined in the different molality ranges of KBr and KNO₃ [(0.2, 0.3, 0.4, 0.5, 0.6, and 0.7) mol·kg⁻¹] at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. Apparent molar volume

 (V_{ϕ}) and apparent molar isentropic compressibility (K_{ϕ}) values have been calculated from the density and speed of sound data for ternary aqueous solutions of K₃Cit + (KBr or KNO₃), and these quantities have been correlated with the Redlich–Mayer equation. Viscosity values of ternary aqueous solutions of K₃Cit + (KBr or KNO₃) have been fitted with the Jones–Dole equation.¹² Density and viscosity values of ternary aqueous solutions of tripotassium citrate + (KBr or KNO₃) have successfully been predicted on the basis of the Arrhenius type mixing rule using the methods proposed by Laliberté et al.^{10,11} and Zafarani-Moattar and Majdan-Cegincara.¹³

2. EXPERIMENTAL PROCEDURE

2.1. Materials. Tripotassium citrate $(C_6H_5K_3O_7 \cdot H_2O)$ with a minimum mass fraction purity of 0.99, potassium bromide with minimum mass fraction purity of 0.995, and potassium nitrate with minimum mass fraction purity of 0.99 were obtained from Merck. Tripotassium citrate was used without further purification. KBr and KNO₃ were dried in a free convection oven at about 110 °C for 24 h prior to use. The solutions were prepared using double-distilled—deionized water.

2.2. Apparatus and Procedure. The solutions were prepared by mass using an analytical balance (Shimatzu, 321 34553, Shimatzu Co., Japan) with an uncertainty of $\pm 1 \cdot 10^{-7}$ kg. Densities and speed of sounds were measured with a vibrating-tube densimeter (Anton Paar DSA-500, Austria). By this apparatus, the working temperature can be controlled within ± 0.001 K.

Received:	December 16, 2010
Accepted:	April 15, 2011
Published:	May 02, 2011

Table 1. Experimental Density, d, Speed of Sound, u, Viscosity, η , Apparent Molar Volume, V_{ϕ} , and Apparent Molar Isentropic Compressibility, K_{ϕ} , Data for K_3 Cit (1) + (KBr (2) or $KNO_{3}(3)) + H_{2}O(4)$ at Different Temperatures

m_1	$10^{-3} \cdot d$	и	п	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$	0.8001	1.184571	1634.70	1.555	129.69 ± 0.02	-0.853 ± 0.001
1			-7			1.0001	1.211891	1665.84	1.771	130.60 ± 0.01	-0.798 ± 0.001
mol∙kg ^{−1}	kg∙m ⁻³	$m \cdot s^{-1}$	mPa•s	m ³ ·mol ⁻¹	m ³ ·mol ⁻¹ ·Pa ⁻¹	1.2000	1.237331	1696.63	2.011	131.60 ± 0.01	-0.750 ± 0.001
		Т	/K = 293 1	15				T_{ℓ}	/K = 298.	15	
		1	, 10 - 270.1	-1				$m_2 =$	0.2 mol·	kg^{-1}	
		m ₂ =	= 0.2 mol • l	kg 1		0.0000	1.013796	1500.61	0.873		
0.0000	1.015189	1486.97	0.985	112.00 0.00	1 251 4 2 222	0.2000	1.051639	1537.45	0.992	113.69±0.09	-1.305 ± 0.003
0.2000	1.053197	1525.00	1.112	113.00 ± 0.09	-1.371 ± 0.003	0.4000	1.086705	1572.50	1.109	116.33 ± 0.04	-1.191 ± 0.001
0.4000	1.088467	1561.39	1.256	115.53 ± 0.04	-1.255 ± 0.001	0.6000	1.119378	1606.44	1.267	118.49 ± 0.03	-1.099 ± 0.001
0.6000	1.121330	1596.40	1.419	117.67 ± 0.03	-1.157 ± 0.001	0.7995	1.149831	1639.26	1.436	120.34 ± 0.02	-1.021 ± 0.001
0.7995	1.151926	1630.46	1.613	119.57 ± 0.02	-1.074 ± 0.001	1.0000	1.178269	1670.93	1.624	122.19 ± 0.01	-0.950 ± 0.001
1.0000	1.180499	1662.76	1.825	121.45 ± 0.01	-0.998 ± 0.001	1.2001	1.205333	1701.67	1.836	123.43 ± 0.01	-0.891 ± 0.001
1.2001	1.207569	1692.06	2.071	122.81 ± 0.01	-0.927 ± 0.001			$m_2 =$	0.3 mol·	$k\sigma^{-1}$	
		<i>m</i> ₂ =	= 0.3 mol·l	kg^{-1}		0.000	1.022076	1503.20	0.863	~5	
0.0000	1.023339	1488.91	0.975			0.2000	1.059468	1539.38	0.986	116.36 ± 0.09	-1.233 ± 0.003
0.2000	1.060984	1526.38	1.109	115.25 ± 0.09	-1.305 ± 0.003	0.4000	1.094167	1573.39	1.107	118.69 ± 0.04	-1.122 ± 0.001
0.4000	1.095967	1562.41	1.249	117.50 ± 0.04	-1.198 ± 0.001	0.6000	1.126430	1607.40	1.261	120.77 ± 0.03	-1.039 ± 0.001
0.6000	1.128530	1597.40	1.415	119.52 ± 0.03	-1.108 ± 0.001	0.8000	1.156726	1640.00	1.416	122.35 ± 0.02	-0.971 ± 0.001
0.8000	1.158726	1631.06	1.607	121.54 ± 0.02	-1.027 ± 0.001	1.0000	1.184859	1671.16	1.616	124.01 ± 0.01	-0.904 ± 0.001
1.0000	1.186999	1663.76	1.819	123.23 ± 0.01	-0.958 ± 0.001	1.2000	1.211429	1702.11	1.830	125.32 ± 0.01	-0.850 ± 0.001
1.2000	1.213639	1693.64	2.062	124.62 ± 0.01	-0.892 ± 0.001			m. –	0.4 molul	$k \alpha^{-1}$	
			0.4 mol. 1	ra ⁻¹		0.000	1 030172	1504.04	0.411014	xg	
0.0000	1 021606	1400.01	0.970	g		0.2000	1.050172	1540 52	0.980	11913 ± 0.09	-1.190 ± 0.003
0.0000	1.051000	1490.91	1 104	11870 ± 0.09	-1232 ± 0.003	0.4001	1.101344	1575.05	1,106	121.24 ± 0.04	-1.087 ± 0.001
0.2000	1.008012	1563.83	1.104	110.70 ± 0.09 120.64 ± 0.04	-1.232 ± 0.003 -1.137 ± 0.001	0.6000	1.133259	1607.97	1.253	121.21 ± 0.01 123.03 ± 0.02	-1.000 ± 0.001
0.4001	1.105005	1598.18	1.240	120.04 ± 0.04 122.46 ± 0.02	-1.050 ± 0.001	0.8000	1.163131	1640.85	1.400	120.00 ± 0.02 124.56 ± 0.02	-0.934 ± 0.001
0.8000	1.165092	1631.86	1.410	122.40 ± 0.02 123.99 ± 0.02	-0.979 ± 0.001	1.0000	1.191092	1671.89	1.610	125.93 ± 0.01	-0.871 ± 0.001
1.0000	1.193199	1664.03	1.813	125.35 ± 0.01	-0.914 ± 0.001	1.2000	1.217329	1701.55	1.822	127.17 ± 0.01	-0.818 ± 0.001
1.2000	1.219595	1694.10	2.052	126.56 ± 0.01	-0.853 ± 0.001				0.6 m a 1 1	Ira ⁻¹	
			0.5 1.1	-1		0.0000	1 020226	$m_2 =$	0.5 1101-1	g	
0.0000	1 020705	m ₂ =	= 0.5 mol·l	čg		0.0000	1.036330	154245	0.037	121.67 ± 0.08	1.152 ± 0.002
0.0000	1.039/05	1492.//	0.970	121.02 \ 0.00	1.106 0.002	0.2000	1 108605	1576.03	1 105	121.07 ± 0.08 123.30 ± 0.04	-1.132 ± 0.002 -1.036 ± 0.001
0.2000	1.110205	1530.31	1.090	121.03 ± 0.08	-1.196 ± 0.003	0.4000	1.100093	1608.88	1.105	125.39 ± 0.04 125.00 ± 0.02	-1.030 ± 0.001 -0.950 ± 0.001
0.4000	1.110393	1505.65	1.255	122.09 ± 0.04 124.24 ± 0.02	-1.093 ± 0.001	0.8000	1.140300	1641.86	1.396	125.00 ± 0.02 126.47 ± 0.02	-0.890 ± 0.001
0.0000	1.142197	1631.86	1.400	124.24 ± 0.02 125.68 ± 0.02	-0.933 ± 0.001	1.0000	1.197499	1672.03	1.607	127.70 ± 0.01	-0.828 ± 0.001
1.0000	1.1/1092	1665.03	1.309	123.08 ± 0.02 127.06 ± 0.01	-0.933 ± 0.001 -0.877 ± 0.001	1.2000	1.223548	1702.02	1.813	128.77 ± 0.01	-0.781 ± 0.001
1.2000	1.225573	1694.34	2.031	127.00 ± 0.01 128.29 ± 0.01	-0.816 ± 0.001				0 (1)	-1	
112000	1.220070	107 110 1	2.001	-1		0.0000	1.04/107	$m_2 =$	0.6 mol	xg	
		m ₂ =	= 0.6 mol • l	kg 1		0.0000	1.046105	1506.05	0.846	122.04 0.09	1 1 2 2 4 0 002
0.0000	1.047694	1493.36	0.950	100.05 0.00	11(1 0.000	0.2000	1.082110	1543.92	1.104	123.94 ± 0.08 125.52 ± 0.04	-1.133 ± 0.002
0.2000	1.083904	1531.31	1.085	123.07 ± 0.08	-1.164 ± 0.003	0.4000	1.115034	15/7.07	1.104	125.55 ± 0.04 127.07 ± 0.02	-1.006 ± 0.001
0.4000	1.117642	1566.49	1.232	124.63 ± 0.04	-1.057 ± 0.001	0.0000	1.140852	1642.54	1.239	$12/.07 \pm 0.02$ 128.31 ± 0.02	-0.920 ± 0.001 -0.865 ± 0.001
0.6000	1.149060	1600.52	1.394	126.15 ± 0.02	-0.975 ± 0.001	1 0000	1 203469	1673.08	1.590	120.31 ± 0.02 129.44 ± 0.01	-0.805 ± 0.001 -0.806 ± 0.001
0.8000	1.1/8429	1633.21	1.5/4	$12/.48 \pm 0.02$	-0.905 ± 0.001	1.0000	1 2203409	1702.17	1.005	129.77 ± 0.01	-0.300 ± 0.001
1.0000	1.203629	1605.55	2.026	120.77 ± 0.01 120.80 ± 0.01	-0.840 ± 0.001 -0.789 ± 0.001	1.2000	1.229100	1/03.1/	1.007	130.32 ± 0.01	-0.730 ± 0.001
1.2000	1.231337	1095.02	2.020	129.09 ± 0.01	-0.789 ± 0.001			$m_2 =$	0.7 mol·	кg ⁻¹	
		m ₂ =	= 0.7 mol • l	κg ⁻¹		0.0000	1.054223	1509.08	0.832		
0.0000	1.055698	1497.07	0.936			0.2000	1.089751	1544.29	0.975	126.36 ± 0.08	-1.019 ± 0.002
0.2000	1.091370	1532.41	1.083	125.77 ± 0.08	-1.046 ± 0.002	0.4000	1.122809	1577.78	1.100	127.86 ± 0.04	-0.935 ± 0.001
0.4000	1.124606	1567.87	1.220	127.18 ± 0.04	-0.982 ± 0.001	0.6001	1.153782	1610.71	1.233	129.00 ± 0.02	-0.872 ± 0.001
0.6001	1.155637	1601.81	1.378	128.46 ± 0.02	-0.914 ± 0.001	0.8001	1.182596	1643.20	1.388	130.23 ± 0.02	-0.817 ± 0.001

Table 1. Continued

m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa•s	m ³ ·mol ⁻¹	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
0.8001	1.184571	1634.70	1.555	129.69 ± 0.02	-0.853 ± 0.001
1.0001	1.211891	1665.84	1.771	130.60 ± 0.01	-0.798 ± 0.001
1.2000	1.237331	1696.63	2.011	131.60 ± 0.01	-0.750 ± 0.001
		T_{i}	/K = 298.	15	
		$m_2 =$	0.2 mol	kg^{-1}	
0.0000	1.013796	1500.61	0.873	0	
0.2000	1.051639	1537.45	0.992	113.69±0.09	-1.305 ± 0.003
0.4000	1.086705	1572.50	1.109	116.33 ± 0.04	-1.191 ± 0.001
0.6000	1.119378	1606.44	1.267	118.49 ± 0.03	-1.099 ± 0.001
0.7995	1.149831	1639.26	1.436	120.34 ± 0.02	-1.021 ± 0.001
1.0000	1.178269	1670.93	1.624	122.19 ± 0.01	-0.950 ± 0.001
1.2001	1.205333	1701.67	1.836	123.43 ± 0.01	-0.891 ± 0.001
		<i>m</i> ₂ =	0.3 mol•	kg^{-1}	
0.0000	1.022076	1503.20	0.863		
0.2000	1.059468	1539.38	0.986	116.36 ± 0.09	-1.233 ± 0.003
0.4000	1.094167	1573.39	1.107	118.69 ± 0.04	-1.122 ± 0.001
0.6000	1.126430	1607.40	1.261	120.77 ± 0.03	-1.039 ± 0.001
0.8000	1.156726	1640.00	1.416	122.35 ± 0.02	-0.971 ± 0.001
1.0000	1.184859	1671.16	1.616	124.01 ± 0.01	-0.904 ± 0.001
1.2000	1.211429	1702.11	1.830	125.32 ± 0.01	-0.850 ± 0.001
		<i>m</i> ₂ =	0.4 mol•	kg^{-1}	
0.0000	1.030172	1504.04	0.860		
0.2000	1.067069	1540.52	0.980	119.13 ± 0.09	-1.190 ± 0.003
0.4001	1.101344	1575.05	1.106	121.24 ± 0.04	-1.087 ± 0.001
0.6000	1.133259	1607.97	1.253	123.03 ± 0.02	-1.000 ± 0.001
0.8000	1.163131	1640.85	1.400	124.56 ± 0.02	-0.934 ± 0.001
1.0000	1.191092	1671.89	1.610	125.93 ± 0.01	-0.871 ± 0.001
1.2000	1.217329	1701.55	1.822	127.17 ± 0.01	-0.818 ± 0.001
		$m_2 =$	0.5 mol•	kg^{-1}	
0.0000	1.038336	1506.46	0.857		
0.2000	1.074768	1543.45	0.979	121.67 ± 0.08	-1.152 ± 0.002
0.4000	1.108695	1576.93	1.105	123.39 ± 0.04	-1.036 ± 0.001
0.6000	1.140300	1608.88	1.245	125.00 ± 0.02	-0.950 ± 0.001
0.8000	1.169802	1641.86	1.396	126.47 ± 0.02	-0.890 ± 0.001
1.0000	1.197499	1672.03	1.607	127.70 ± 0.01	-0.828 ± 0.001
1.2000	1.223548	1702.02	1.813	128.77 ± 0.01	-0.781 ± 0.001
		$m_2 =$	0.6 mol•	kg^{-1}	
0.0000	1.046105	1506.05	0.846		
0.2000	1.082110	1543.92	0.978	123.94 ± 0.08	-1.133 ± 0.002
0.4000	1.115634	1577.07	1.104	125.53 ± 0.04	-1.006 ± 0.001
0.6000	1.146832	1609.00	1.239	127.07 ± 0.02	-0.920 ± 0.001
0.8000	1.176075	1642.54	1.390	128.31 ± 0.02	-0.865 ± 0.001
1.0000	1.203469	1673.08	1.603	129.44 ± 0.01	-0.806 ± 0.001
1.2000	1.229108	1703.17	1.807	130.52 ± 0.01	-0.756 ± 0.001
		$m_2 =$	0.7 mol•	kg^{-1}	
0.0000	1.054223	1509.08	0.832		
0.2000	1.089751	1544.29	0.975	126.36 ± 0.08	-1.019 ± 0.002
0.4000	1.122809	1577.78	1.100	127.86 ± 0.04	-0.935 ± 0.001
0.6001	1.153782	1610.71	1.233	129.00 ± 0.02	-0.872 ± 0.001

Table 1. Continued

m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$	m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa∙s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$	$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa•s	m ³ ·mol ⁻¹	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
1.0001	1.209758	1674.30	1.587	131.17 ± 0.01	-0.767 ± 0.001	1.2000	1.232980	1709.51	1.617	132.46 ± 0.01	-0.689 ± 0.001
1.2000	1.235303	1703.55	1.791	132.01 ± 0.01	-0.719 ± 0.001			T	/K = 308.	15	
		T_{c}	/K = 303.1	15				<i>m</i> 2 =	0.2 mol•	$k\sigma^{-1}$	
		$m_2 =$	0.2 mol·l	kg^{-1}		0.0000	1.010632	1523.42	0.698	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.0000	1.012300	1512.48	0.782	0		0.2000	1.048148	1558.28	0.802	115.06±0.09	-1.202 ± 0.003
0.2000	1.049999	1548.28	0.899	114.29 ± 0.09	-1.251 ± 0.003	0.4000	1.082959	1590.71	0.901	117.54 ± 0.04	-1.090 ± 0.001
0.4000	1.085029	1582.79	1.003	116.67 ± 0.04	-1.149 ± 0.001	0.6000	1.115440	1623.05	1.028	119.56 ± 0.03	-1.011 ± 0.001
0.6000	1.117591	1615.18	1.133	118.87 ± 0.03	-1.054 ± 0.001	0.7995	1.145752	1653.95	1.162	121.30 ± 0.02	-0.940 ± 0.001
0.7995	1.147901	1647.27	1.289	120.79 ± 0.02	-0.980 ± 0.001	1.0000	1.174110	1684.53	1.311	123.03 ± 0.01	-0.879 ± 0.001
1.0000	1.176300	1678.28	1.458	122.59 ± 0.01	-0.914 ± 0.001	1.2001	1.201175	1713.44	1.487	124.13 ± 0.01	-0.825 ± 0.001
1.2001	1.203315	1708.10	1.648	123.80 ± 0.01	-0.857 ± 0.001			<i>m</i> ₂ =	0.3 mol•	kg^{-1}	
		$m_2 =$	0.3 mol·	xg^{-1}		0.0000	1.018897	1524.57	0.688		
0.0000	1.020507	1514.18	0.772			0.2000	1.055956	1559.39	0.802	117.76 ± 0.09	-1.151 ± 0.002
0.2000	1.057747	1549.42	0.897	116.99 ± 0.09	-1.184 ± 0.003	0.4000	1.090367	1591.39	0.900	120.00 ± 0.04	-1.040 ± 0.001
0.4000	1.092267	1583.39	1.000	119.39 ± 0.04	-1.088 ± 0.001	0.6000	1.122530	1623.40	1.022	121.77 ± 0.03	-0.966 ± 0.001
0.6000	1.124530	1616.40	1.127	121.22 ± 0.03	-1.008 ± 0.001	0.8000	1.152606	1654.46	1.159	123.35 ± 0.02	-0.900 ± 0.001
1.0000	1.154626	1679.76	1.282	122.92 ± 0.02 124.42 ± 0.01	-0.936 ± 0.001	1.0000	1.180/49	1084./0	1.30/	124.80 ± 0.01 126.25 ± 0.01	-0.843 ± 0.001
1.2000	1.209412	1708.23	1.646	124.45 ± 0.01 125.64 ± 0.01	-0.820 ± 0.001	1.2000	1.200970	1/13./9	1.7/2	120.25 ± 0.01	-0.790 ± 0.001
112000	11207 112	1,00120	0.4 1.1	-1	0.020 ± 0.001			m ₂ =	• 0.4 mol•	kg 1	
0.0000	1.029555	$m_2 =$	0.4 mol	cg		0.0000	1.026732	1526.42	0.682	120.24 0.00	1 002 0 002
0.0000	1.028555	1510.04	0.709	110.70 ± 0.00	1.140 ± 0.002	0.2000	1.003355	1500.82	0.801	120.24 ± 0.09 122.24 ± 0.04	-1.093 ± 0.002
0.2000	1.003314	1584.63	0.893	119.70 ± 0.09 121.75 ± 0.04	-1.140 ± 0.002 -1.036 ± 0.001	0.4001	1.09/413	1674 54	1 019	122.24 ± 0.04 124.00 ± 0.02	-0.937 ± 0.001 -0.921 ± 0.001
0.6000	1.131285	1617.20	1.120	121.75 ± 0.01 123.53 ± 0.02	-0.960 ± 0.001	0.8000	1.158816	1655.20	1.155	121.00 ± 0.02 125.47 ± 0.02	-0.859 ± 0.001
0.8000	1.161058	1648.90	1.277	125.04 ± 0.02	-0.894 ± 0.001	1.0000	1.186571	1685.41	1.300	126.86 ± 0.01	-0.805 ± 0.001
1.0000	1.188880	1678.90	1.435	126.45 ± 0.01	-0.834 ± 0.001	1.2000	1.212659	1713.90	1.470	128.07 ± 0.01	-0.754 ± 0.001
1.2000	1.215236	1708.56	1.644	127.51 ± 0.01	-0.783 ± 0.001			<i>m</i> 2 =	0.5 mol	$k\sigma^{-1}$	
		$m_2 =$	0.5 mol•l	kg^{-1}		0.0000	1.035001	1527.70	0.678		
0.0000	1.036786	1517.15	0.765	0		0.2000	1.071163	1561.53	0.800	122.77 ± 0.08	-1.033 ± 0.002
0.2000	1.073072	1553.01	0.893	122.28 ± 0.08	-1.101 ± 0.002	0.4000	1.104895	1593.93	0.894	124.34 ± 0.04	-0.951 ± 0.001
0.4000	1.106895	1586.23	0.995	123.91 ± 0.04	-1.001 ± 0.001	0.6000	1.136257	1625.18	1.011	125.99 ± 0.02	-0.880 ± 0.001
0.6000	1.138397	1618.58	1.118	125.49 ± 0.02	-0.925 ± 0.001	0.8000	1.165642	1655.86	1.151	127.34 ± 0.02	-0.822 ± 0.001
0.8000	1.167822	1648.86	1.276	126.92 ± 0.02	-0.855 ± 0.001	1.0000	1.193109	1685.83	1.295	128.61 ± 0.01	-0.771 ± 0.001
1.0000	1.195409	1678.03	1.426	128.17 ± 0.01	-0.795 ± 0.001	1.2000	1.218962	1714.26	1.460	129.69 ± 0.01	-0.723 ± 0.001
1.2000	1.221249	1708.94	1.643	129.33 ± 0.01	-0.751 ± 0.001			<i>m</i> ₂ =	0.6 mol•	kg^{-1}	
		$m_2 =$	0.6 mol •]	sg^{-1}		0.0000	1.042987	1527.77	0.674		
0.0000	1.044604	1517.90	0.760			0.2000	1.078643	1562.42	0.799	125.41 ± 0.08	-1.009 ± 0.002
0.2000	1.079290	1555.73	0.891	124.71 ± 0.08	-1.066 ± 0.002	0.4000	1.111892	1594.00	0.891	126.85 ± 0.04	-0.912 ± 0.001
0.4000	1.113833	1587.56	0.993	126.16 ± 0.04	-0.968 ± 0.001	0.6000	1.142836	1625.74	1.008	128.32 ± 0.02	-0.848 ± 0.001
0.6000	1.1448/3	1619.92	1.116	127.72 ± 0.02	-0.893 ± 0.001	0.8000	1.171855	1656.97	1.148	129.50 ± 0.02 120.72 ± 0.01	-0.795 ± 0.001
1.0000	1.1/3930	1680.57	1.275	129.01 ± 0.02 130.02 ± 0.01	-0.820 ± 0.001 -0.772 ± 0.001	1.0000	1.198884	1714 94	1.291	130.75 ± 0.01 131.54 ± 0.01	-0.741 ± 0.001 -0.698 ± 0.001
1.2000	1.227006	1709.16	1.641	130.02 ± 0.01 130.96 ± 0.01	-0.723 ± 0.001	1.2000	1.224014	1/17.77	1.455	101.07 ± 0.01	0.070 ± 0.001
			0.7 m al 1	-1		0.0000	1.050610	$m_2 = 1520.56$: 0.7 mol	kg 1	
0.0000	1.052518	$m_2 = 1520.44$	0.7 1101-1	œ		0.0000	1.050010	1529.30	0.004	127.29 ± 0.09	0.040 ± 0.002
0.0000	1.032318	1553.85	0.881	12673+0.08	-0.956 ± 0.002	0.2000	1.00392/	1505.20	0.19/	127.20 ± 0.08 128.65 ± 0.04	-0.740 ± 0.002 -0.871 ± 0.001
0.4000	1.120899	1586.60	0.990	128.28 ± 0.08	-0.889 ± 0.002	0.6001	1.149507	162631	1.000	120.03 ± 0.04 129.92 ± 0.02	-0.808 ± 0.001
0.6001	1.151711	1619.29	1,113	129.51 ± 0.07	-0.835 ± 0.001	0.8001	1.178099	1657.55	1.145	131.18 ± 0.02	-0.759 ± 0.001
0.8001	1.180386	1650.03	1.271	130.78 ± 0.02	-0.778 ± 0.001	1,0001	1.205051	1686.95	1.275	132.13 ± 0.01	-0.711 ± 0.001
1.0001	1.207480	1680.21	1.422	131.67 ± 0.01	-0.731 ± 0.001	1.2000	1.230391	1715.66	1.442	132.97 ± 0.01	-0.669 ± 0.001

Table 1. Continued

Table 1. Continued

m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa•s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
		Т	/K = 313.1	5	
		-,	0.2 1.1	-1	
0.0000	1 000742	$m_2 =$	0.2 mol·l	kg	
0.0000	1.008/42	1532.35	0.022	115.79 ± 0.00	1.157 ± 0.002
0.2000	1.040084	1500.18	0.727	113.78 ± 0.03	$4 - 1.137 \pm 0.003$
0.4000	1.112202	1620.57	0.027	110.03 ± 0.03	-1.033 ± 0.001
0.0000	1.113293	1659.00	1.042	119.00 ± 0.00	-0.981 ± 0.001
1,0000	1.171599	1688.92	1.042	121.90 ± 0.02 123.56 ± 0.02	-0.849 ± 0.001
1 2001	1 198543	1717 19	1.170	123.30 ± 0.01 124.67 ± 0.01	$1 -0.797 \pm 0.001$
1.2001	1.1705 15	1/1/.1/	1.010	-1	0.777 ± 0.001
0.0000	1.01/00/	m ₂ =	0.3 mol·l	kg -	
0.0000	1.016994	1532.80	0.612	110.27 0.00	1112 0.002
0.2000	1.053923	1500.07	0.727	$118.2/\pm0.09$	-1.112 ± 0.002
0.4000	1.088207	1598.39	0.825	120.52 ± 0.04	$+ -1.012 \pm 0.001$
0.0000	1.120330	1650.46	1.020	122.10 ± 0.03	-0.941 ± 0.001
1.0000	1.150350	1680.06	1.039	123.09 ± 0.02	$2 - 0.073 \pm 0.001$
1.0000	1.1/6409	1089.00	1.10/	125.10 ± 0.0	-0.818 ± 0.001
1.2000	1.207/03	1/1/.32	1.555	-1	1 -0.707 ± 0.001
		$m_2 =$	0.4 mol·l	kg ⁻¹	
0.0000	1.024777	1534.70	0.608		
0.2000	1.061293	1568.05	0.726	120.65 ± 0.09	$9 -1.054 \pm 0.002$
0.4001	1.095226	1599.46	0.820	122.70 ± 0.04	$4 -0.962 \pm 0.001$
0.6000	1.126887	1630.92	0.920	124.36 ± 0.03	-0.897 ± 0.001
0.8000	1.156455	1659.76	1.037	125.89 ± 0.02	$2 -0.829 \pm 0.001$
1.0000	1.184160	1689.87	1.183	$12/.24 \pm 0.01$	$1 - 0.780 \pm 0.001$
1.2000	1.210150	1/1/.99	1.323	128.4/±0.0	$1 - 0.732 \pm 0.001$
		$m_2 =$	0.5 mol·l	kg ⁻¹	
0.0000	1.032880	1535.45	0.605		
0.2000	1.068894	1568.72	0.725	123.37 ± 0.08	$3 - 1.006 \pm 0.002$
0.4000	1.102545	1599.75	0.818	124.79 ± 0.04	$4 -0.919 \pm 0.001$
0.6000	1.133897	1631.18	0.918	126.29 ± 0.02	$2 -0.859 \pm 0.001$
0.8000	1.163192	1660.06	1.030	127.67 ± 0.02	-0.796 ± 0.001
1.0000	1.190609	1090.13	1.175	128.92 ± 0.0	-0.750 ± 0.001
1.2000	1.2104/6	1/18.16	1.321	129.95 ± 0.0	-0.704 ± 0.001
		<i>m</i> ₂ =	0.6 mol∙l	kg ⁻¹	
0.0000	1.041011	1535.92	0.602		
0.2000	1.076533	1569.74	0.725	125.95 ± 0.08	$8 -0.976 \pm 0.002$
0.4000	1.109646	1600.10	0.812	127.41 ± 0.04	$4 -0.877 \pm 0.001$
0.6000	1.140560	1631.49	0.912	128.73 ± 0.02	$2 -0.821 \pm 0.001$
0.8000	1.169537	1661.94	1.028	129.86 ± 0.02	$2 -0.770 \pm 0.001$
1.0000	1.196429	1691.84	1.170	131.15 ± 0.01	$1 - 0.723 \pm 0.001$
1.2000	1.222219	1718.48	1.317	131.85 ± 0.01	$1 - 0.676 \pm 0.001$
		m ₂ =	0.7 mol∙l	kg^{-1}	
0.0000	1.048619	1538.14	0.595		
0.2000	1.083798	1570.11	0.725	127.76 ± 0.08	$8 -0.895 \pm 0.002$
0.4000	1.116570	1600.76	0.808	129.15 ± 0.04	$4 -0.825 \pm 0.001$
0.6001	1.147249	1631.75	0.903	130.29 ± 0.02	$2 -0.776 \pm 0.001$
0.8001	1.175736	1662.54	1.022	131.57 ± 0.02	$2 -0.731 \pm 0.001$
1.0001	1.202572	1692.27	1.167	132.55 ± 0.02	$1 - 0.689 \pm 0.001$

Table 1. Continued

m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa∙s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
		$m_2 =$	0.2 mol·l	$c\sigma^{-1}$	
0.0000	1.010621	1490.65	0.980	0	
0.1500	1.039472	1519.25	1.088	111.49 ± 0.12	-1.415 ± 0.004
0.3002	1.066788	1547.06	1.196	113.49 ± 0.06	-1.323 ± 0.002
0.4498	1.092547	1573.15	1.316	115.31 ± 0.04	-1.233 ± 0.001
0.6000	1.117053	1599.93	1.448	116.99 ± 0.03	-1.167 ± 0.001
0.7499	1.140178	1624.91	1.592	118.63 ± 0.02	-1.098 ± 0.001
0.9000	1.162337	1650.59	1.753	119.93 ± 0.02	-1.045 ± 0.001
		$m_2 =$	0.3 mol·l	σ^{-1}	
0.0000	1.016689	1493.50	0.977	6	
0.1500	1.045154	1521.83	1.083	114.39 ± 0.12	-1.352 ± 0.004
0.3000	1.072098	1549.76	1.193	116.17 ± 0.06	-1.273 ± 0.002
0.4500	1.097607	1576.45	1.313	117.84 ± 0.04	-1.193 ± 0.001
0.6000	1.121853	1603.23	1.447	119.28 ± 0.03	-1.129 ± 0.001
0.7500	1.144798	1628.21	1.591	120.72 ± 0.02	-1.063 ± 0.001
0.9001	1.166446	1652.18	1.750	122.22 ± 0.02	-1.002 ± 0.001
		m. –	0.4 mol.l	α^{-1}	
0.0000	1 022681	1497 36	0.973	-5	
0.1500	1.050841	1525.02	1.080	11670 ± 0.12	-1278 ± 0.004
0.3000	1.077477	1552.00	1 190	118.43 ± 0.06	1.270 ± 0.001
0.4502	1.077477	1578.38	1.170	110.45 ± 0.00 119.84 ± 0.04	-1.130 ± 0.002
0.6002	1 126844	1604.38	1 4 4 4	121.14 ± 0.03	-1.070 ± 0.001
0.7500	1 149536	1629 51	1.588	121.14 ± 0.03 122.50 ± 0.02	-1.013 ± 0.001
0.9018	1.171390	1654.99	1.745	122.50 ± 0.02 123.75 ± 0.02	-0.963 ± 0.001
019010	111/10/0		0.5 mol.1	ra^{-1}	
0.0000	1 028500	m ₃ –	0.3 1101-1	g	
0.1500	1.020399	1528.00	1.077	11024 ± 0.12	-1208 ± 0.004
0.1500	1.082677	1520.09	1.077	119.24 ± 0.12 120.96 ± 0.05	-1.134 ± 0.002
0.3000	1.002077	1580.08	1.100	120.90 ± 0.03 122.23 ± 0.03	$= 1.137 \pm 0.002$
0.4500	1 1 3 1 3 4 4	1606.38	1.304	122.23 ± 0.03 123.50 ± 0.02	-1.018 ± 0.001
0.7500	1 1 5 3 9 3 6	1631.91	1.1583	123.50 ± 0.02 124.56 ± 0.02	-0.969 ± 0.001
0.9000	1.175546	1656.57	1.735	121.50 ± 0.02 125.45 ± 0.02	-0.923 ± 0.001
019000	1170010		0.6 mol. 1	-1	0.020 - 0.001
0.0000	1 03/600	1504.40	0.067	S.	
0.1500	1.057009	1531.64	1.065	12130 ± 0.11	-1.171 ± 0.003
0.1300	1.002133	1558.41	1.005	121.50 ± 0.11 122.05 ± 0.05	-1.171 ± 0.003
0.4500	1 112847	1584.09	1.100	122.95 ± 0.03 124.15 ± 0.03	-1.036 ± 0.001
0.4300	1.112047	1609.52	1.200	124.13 ± 0.03 125.29 ± 0.02	-0.985 ± 0.001
0.7502	1.158528	1635 32	1.563	12650 ± 0.02	-0.935 ± 0.001
0.9048	1.130526	1659.66	1.303	120.30 ± 0.02 127.29 ± 0.01	-0.885 ± 0.001
0.9010	1.100570		0.7 mal 1		0.003 ± 0.001
0.0000	1 040267	$m_3 = 1507.61$	0.062	ઝ	
0.0000	1.04030/	152/01	1.047	122 62 - 0 11	1.105 ± 0.002
0.1500	1.00/33/	1550.71	1.04/	125.02 ± 0.11	-1.103 ± 0.003
0.2999	1.093208	1500./1	1.145	125.00 ± 0.05 126.25 ± 0.03	-1.049 ± 0.002
0.4501	1.11/030	1500./0	1.201	120.33 ± 0.03	-0.992 ± 0.001
0.0001	1.140/18	1650.00	1.378	127.33 ± 0.02 129.77 ± 0.02	-0.737 ± 0.001
0.0050	1 1 2 4 6 9 0	1662.11	1.020	120.77 ± 0.02 120.17 ± 0.01	0.851 ± 0.001

T/K = 298.15

$0.9052 \quad 1.184628 \quad 1662.11 \quad 1.700 \quad 129.17 \pm 0.01 \quad -0.851 \pm 0.001$

 $m_3 = 0.2 \text{ mol} \cdot \text{kg}^{-1}$

Journal of Chemical & Engineering Data

Table 1. Continued

mol

0.7500

0.9000

m_1	$10^{-3} \cdot d$	и	η	$10^3 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$				
ol \cdot kg ⁻¹	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa•s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$				
0.0000	1.009415	1504.00	0.871						
0.1500	1.038147	1531.68	0.967	112.17 ± 0.12	-1.347 ± 0.004				
0.3002	1.065297	1558.53	1.062	114.33 ± 0.06	-1.257 ± 0.002				
0.4498	1.090949	1584.38	1.168	116.07 ± 0.04	-1.179 ± 0.001				
0.6000	1.115407	1609.91	1.285	117.63 ± 0.03	-1.112 ± 0.001				
0.7499	1.138542	1633.91	1.412	119.12 ± 0.02	-1.047 ± 0.001				
0.9000	1.160502	1659.12	1.552	120.55 ± 0.02	-0.997 ± 0.001				
$m_3 = 0.3 \text{ mol} \cdot \text{kg}^{-1}$									
0.0000	1.015467	1506.99	0.869						
0.1500	1.043810	1534.42	0.965	115.09 ± 0.12	-1.285 ± 0.004				
0.3000	1.070618	1560.76	1.060	116.91 ± 0.06	-1.198 ± 0.002				
0.4500	1.096047	1586.95	1.164	118.49 ± 0.04	-1.131 ± 0.001				
0.6000	1.120203	1612.23	1.282	119.89 ± 0.03	-1.068 ± 0.001				
0.7500	1.143078	1636.91	1.409	121.29 ± 0.02	-1.010 ± 0.001				
0.9001	1.164806	1660.72	1.545	122.61 ± 0.02	-0.956 ± 0.001				
		<i>m</i> ₃ =	0.4 mol·l	cg^{-1}					
0.0000	1.02125	1510.14	0.867						
0.1500	1.049288	1537.24	0.959	117.39 ± 0.12	-1.228 ± 0.003				
0.3000	1.075803	1563.48	1.056	119.12 ± 0.06	-1.149 ± 0.002				
0.4502	1.100969	1589.65	1.157	120.64 ± 0.04	-1.087 ± 0.001				
0.6002	1.124855	1615.14	1.277	121.95 ± 0.03	-1.029 ± 0.001				
0.7500	1.147435	1639.60	1.408	123.28 ± 0.02	-0.973 ± 0.001				
0.9018	1.169293	1662.91	1.537	124.40 ± 0.02	-0.919 ± 0.001				
		<i>m</i> ₃ =	0.5 mol·l	cg^{-1}					
0.0000	1.027126	1513.37	0.862						
0.1500	1.054811	1540.10	0.952	119.94 ± 0.12	-1.169 ± 0.003				
0.3000	1.080977	1566.00	1.050	121.60 ± 0.05	-1.094 ± 0.002				
0.4500	1.105864	1591.38	1.155	122.85 ± 0.03	-1.033 ± 0.001				
0.6000	1.129474	1616.38	1.276	124.07 ± 0.02	-0.978 ± 0.001				

 $m_3 = 0.6 \,\mathrm{mol} \cdot \mathrm{kg}^{-1}$

 $1.151936 \hspace{.1in} 1641.51 \hspace{.1in} 1.400 \hspace{.1in} 125.17 \pm 0.02 \hspace{.1in} -0.932 \pm 0.001$

 $1.173430 \hspace{.1in} 1664.63 \hspace{.1in} 1.532 \hspace{.1in} 126.07 \pm 0.02 \hspace{.1in} -0.883 \pm 0.001$

0.0000	1.032835	1517.00	0.862		
0.1500	1.060218	1543.38	0.950	122.10 ± 0.11	-1.114 ± 0.003
0.2999	1.086080	1568.78	1.046	123.66 ± 0.05	-1.041 ± 0.002
0.4500	1.110731	1594.12	1.141	124.79 ± 0.03	-0.987 ± 0.001
0.5974	1.133676	1618.92	1.275	125.94 ± 0.02	-0.940 ± 0.001
0.7502	1.156277	1643.72	1.397	127.04 ± 0.02	-0.891 ± 0.001
0.9048	1.178268	1667.92	1.528	127.80 ± 0.01	-0.847 ± 0.001

$m_3 = 0.7 \,\mathrm{mol} \cdot \mathrm{kg}^{-1}$

0.0000	1.038556	1520.05	0.859	
0.1500	1.065619	1545.61	0.930	$124.33 \pm 0.11 \ -1.045 \pm 0.003$
0.2999	1.091217	1571.22	1.023	$125.67 \pm 0.05 -0.994 \pm 0.002$
0.4501	1.115515	1596.51	1.116	$126.91 \pm 0.03 \ -0.944 \pm 0.001$
0.6001	1.138579	1620.82	1.250	$127.98 \pm 0.02 \ -0.894 \pm 0.001$
0.8333	1.172456	1658.02	1.450	$129.20 \pm 0.02 \ -0.829 \pm 0.001$
0.9052	1.182361	1669.58	1.503	$129.60 \pm 0.01 \ -0.812 \pm 0.001$

T/K = 303.15

$m_3 = 0.2 \text{ mol} \cdot \text{kg}^{-1}$

	ARTICLE
$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$

m_1	$10^{-3} \cdot d$	и	η	$10^{6} \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa•s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
0.1500	1.036418	1542.67	0.866	112.81 ± 0.12	-1.298 ± 0.004
0.3002	1.063416	1569.27	0.946	115.09 ± 0.06	-1.217 ± 0.002
0.4498	1.088974	1593.75	1.037	116.75 ± 0.04	-1.131 ± 0.001
0.6000	1.113207	1619.00	1.140	118.48 ± 0.03	-1.070 ± 0.001
0.7499	1.136282	1642.46	1.252	119.87 ± 0.02	-1.008 ± 0.001
0.9000	1.158360	1666.29	1.373	121.05 ± 0.02	-0.958 ± 0.001
		m ₃ =	0.3 mol∙k	g^{-1}	
0.0000	1.013822	1518.72	0.776		
0.1500	1.042068	1545.57	0.863	115.60 ± 0.12	-1.239 ± 0.003
0.3000	1.068768	1571.06	0.943	117.47 ± 0.06	-1.151 ± 0.002
0.4500	1.094097	1596.15	1.033	119.05 ± 0.04	-1.082 ± 0.001
0.6000	1.118203	1619.93	1.137	120.38 ± 0.03	-1.017 ± 0.001
0.7500	1.140978	1644.91	1.247	121.80 ± 0.02	-0.969 ± 0.001
0.9001	1.162656	1669.07	1.370	123.09 ± 0.02	-0.922 ± 0.001
		m ₃ =	0.4 mol∙k	g^{-1}	
0.0000	1.019623	1522.03	0.775		
0.1500	1.047515	1548.39	0.861	118.22 ± 0.12	-1.175 ± 0.003
0.3000	1.073949	1573.98	0.941	119.75 ± 0.06	-1.102 ± 0.002
0.4502	1.098986	1598.93	1.031	121.31 ± 0.04	-1.037 ± 0.001
0.6002	1.122767	1623.76	1.134	122.61 ± 0.03	-0.983 ± 0.001
0.7500	1.145364	1647.20	1.245	123.78 ± 0.02	-0.929 ± 0.001
0.9018	1.167054	1669.53	1.367	124.99 ± 0.02	-0.876 ± 0.001
		m ₃ =	0.5 mol∙k	cg^{-1}	
0.0000	1.025396	1524.67	0.774		
0.1500	1.052995	1550.91	0.858	120.39 ± 0.12	-1.130 ± 0.003
0.3000	1.079077	1575.90	0.937	122.05 ± 0.05	-1.051 ± 0.002
0.4500	1.103864	1599.98	1.028	123.34 ± 0.03	-0.986 ± 0.001
0.6000	1.127444	1624.98	1.130	124.47 ± 0.02	-0.941 ± 0.001
0.7500	1.149836	1649.51	1.240	125.58 ± 0.02	-0.897 ± 0.001
0.9000	1.171162	1672.32	1.361	126.59 ± 0.02	-0.851 ± 0.001
		m ₃ =	0.6 mol∙k	g^{-1}	
0.0000	1.031201	1528.36	0.773		
0.1500	1.058498	1553.92	0.856	122.56 ± 0.11	-1.065 ± 0.003
0.2999	1.084279	1578.22	0.933	124.12 ± 0.05	-0.991 ± 0.002
0.4500	1.108823	1602.83	1.022	125.30 ± 0.03	-0.941 ± 0.001
0.5974	1.131625	1626.41	1.125	126.54 ± 0.02	-0.893 ± 0.001
0.7502	1.154181	1650.56	1.238	127.57 ± 0.02	-0.849 ± 0.001
0.9048	1.176093	1674.52	1.354	128.32 ± 0.01	-0.810 ± 0.001
		m ₃ =	0.7 mol∙k	g^{-1}	
0.0000	1.036791	1530.91	0.772		
0.1500	1.063782	1555.97	0.835	124.70 ± 0.11	-1.011 ± 0.003
0.2999	1.089258	1580.99	0.908	126.20 ± 0.05	-0.959 ± 0.002
0.4501	1.113501	1605.12	1.004	127.37 ± 0.03	-0.905 ± 0.001
0.6001	1.136481	1628.78	1.101	128.45 ± 0.02	-0.857 ± 0.001
0.8333	1.170293	1665.03	1.289	129.61 ± 0.02	-0.796 ± 0.001
0.9052	1.180155	1676.01	1.339	130.02 ± 0.01	-0.778 ± 0.001
0.,002		10,0.01			0.,,0 ± 0.001
		$T_{/}$	K = 308.1	5	

Table 1. Continued

 $m_3 = 0.2 \text{ mol} \cdot \text{kg}^{-1}$

 $0.1500 \quad 1.034543 \quad 1552.29 \quad 0.782 \quad 113.75 \pm 0.12 \ -1.246 \pm 0.003$

0.0000 1.006091 1525.97 0.672

и

 $m\!\cdot\!s^{-1}$

1.061469 1577.40

1.086882 1601.82

1.111036 1625.95

1.134107 1649.31

1.156087 1672.50

η

mPa•s

0.853

0.935

1.024

Table 1. Continued

 m_1

 $mol \cdot kg^{-1}$

0.3002

0.4498

0.6000

0.7499

0.9000

 $10^{-3} \cdot d$

 $kg \cdot m^{-3}$

 $10^6 \cdot V_{\phi}$ $10^{13} \cdot K_{\phi}$ $m^3\!\cdot\!mol^{-1} \quad m^3\!\cdot\!mol^{-1}\!\cdot\!Pa^{-1}$ $115.74 \pm 0.06 \ -1.158 \pm 0.002$ $117.47 \pm 0.04 \ -1.087 \pm 0.001$ $119.13 \pm 0.03 \ -1.025 \pm 0.001$ $1.132 \quad 120.38 \pm 0.02 \quad -0.970 \pm 0.001$ $1.234 \quad 121.58 \pm 0.02 \quad -0.922 \pm 0.001$

	$m_3 = 0.3 \text{ mol} \cdot \text{kg}^{-1}$									
	0.0000	1.011973	1528.82	0.670						
	0.1500	1.040103	1555.02	0.778	116.23 ± 0.12	-1.196 ± 0.003				
	0.3000	1.066698	1579.96	0.852	118.07 ± 0.06	-1.112 ± 0.002				
	0.4500	1.091947	1604.15	0.930	119.59 ± 0.04	-1.043 ± 0.001				
	0.6000	1.116003	1627.03	1.018	120.85 ± 0.03	-0.979 ± 0.001				
	0.7500	1.138778	1650.01	1.119	122.18 ± 0.02	-0.926 ± 0.001				
	0.9001	1.160397	1673.88	1.225	123.46 ± 0.02	-0.885 ± 0.001				
$m_3 = 0.4 \mathrm{mol} \cdot \mathrm{kg}^{-1}$										
	0.0000	1.017788	1531.37	0.669						
	0.1500	1.045566	1556.96	0.775	118.84 ± 0.12	-1.130 ± 0.003				
	0.3000	1.071871	1582.08	0.850	120.42 ± 0.06	-1.065 ± 0.002				
	0.4502	1.096831	1605.93	0.924	121.90 ± 0.04	-0.997 ± 0.001				
	0.6002	1.120566	1630.50	1.016	123.12 ± 0.03	-0.950 ± 0.001				
	0.7500	1.143057	1652.85	1.115	124.32 ± 0.02	-0.895 ± 0.001				
	0.9018	1.164806	1674.59	1.210	125.37 ± 0.02	-0.845 ± 0.001				
			$m_3 = 0.$.5 mol∙k	g^{-1}					
	0.0000	1.023575	1534.27	0.678						
	0.1500	1.0510//	1550 74	0 770	120.00 0.12	1.00/ 1.0.002				

 $0.770 \quad 120.98 \pm 0.12 \quad -1.086 \pm 0.003$ 0.1500 1.051066 1559.74 $0.844 \quad 122.53 \pm 0.05 \ -1.011 \pm 0.002$ 0.3000 1.077077 1584.00 0.4500 1.101814 1607.88 0.923 $123.75 \pm 0.03 \ -0.954 \pm 0.001$ 0.6000 1.125344 1631.38 $1.010 \quad 124.85 \pm 0.02 \quad -0.904 \pm 0.001$ $1.108 \quad 125.99 \pm 0.02 \quad -0.858 \pm 0.001$ 0.7500 1.147646 1654.51 1.206 127.04 \pm 0.02 -0.820 ± 0.001 0.9000 1.168859 1677.91

$m_3 = 0.6 \text{ mol} \cdot \text{kg}^{-1}$

0.0000	1.029215	1536.77	0.666		
0.1500	1.056393	1562.00	0.766	123.21 ± 0.11	-1.039 ± 0.003
0.2999	1.082110	1586.22	0.837	124.61 ± 0.05	-0.971 ± 0.002
0.4500	1.106555	1610.25	0.920	125.81 ± 0.03	-0.919 ± 0.001
0.5974	1.129365	1633.10	1.004	126.90 ± 0.02	-0.870 ± 0.001
0.7502	1.151900	1657.53	1.102	127.89 ± 0.02	-0.831 ± 0.001
0.9048	1.173701	1679.64	1.198	128.70 ± 0.01	-0.786 ± 0.001

$m_3 = 0.7 \,\mathrm{mol} \cdot \mathrm{kg}^{-1}$

0.0000	1.034869	1539.38	0.665	125.55 ± 0.11	-0.978 ± 0.003
0.1500	1.061709	1563.96	0.754	126.79 ± 0.05	-0.927 ± 0.002
0.2999	1.087123	1588.27	0.805	127.98 ± 0.03	-0.878 ± 0.001
0.4501	1.111255	1612.19	0.900	128.93 ± 0.02	-0.832 ± 0.001
0.6001	1.134218	1635.29	0.990	130.05 ± 0.02	-0.772 ± 0.001
0.8333	1.167944	1670.64	1.130	130.36 ± 0.01	-0.755 ± 0.001
0.9052	1.177874	1681.39	1.183	125.55 ± 0.11	-0.978 ± 0.003

T/K = 313.15

$m_3 = 0.2 \text{ mol} \cdot \text{kg}^{-1}$

0.0000	1.004283	1534.64	0.595	
0.1500	1.032598	1560.35	0.710	$114.51 \pm 0.12 \ -1.205 \pm 0.003$
0.3002	1.059388	1585.02	0.774	$116.51 \pm 0.06 \ -1.123 \pm 0.002$

ARTICLE

Table 1. Continued

m_1	$10^{-3} \cdot d$	и	η	$10^6 \cdot V_{\phi}$	$10^{13} \cdot K_{\phi}$
$mol \cdot kg^{-1}$	$kg \cdot m^{-3}$	$m \cdot s^{-1}$	mPa·s	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$
0.4498	1.084610	1608.79	0.848	118.37 ± 0.04	-1.051 ± 0.001
0.6000	1.108770	1632.35	0.930	119.78 ± 0.03	-0.993 ± 0.001
0.7499	1.131726	1654.98	1.029	121.04 ± 0.02	-0.939 ± 0.001
0.9000	1.153556	1677.95	1.119	122.28 ± 0.02	-0.894 ± 0.001
		$m_3 =$	0.3 mol·l	cg^{-1}	
0.0000	1.009980	1537.54	0.593	0	
0.1500	1.037991	1562.68	0.719	116.87 ± 0.12	-1.143 ± 0.003
0.3000	1.064498	1587.06	0.785	118.62 ± 0.06	-1.070 ± 0.002
0.4500	1.089647	1611.05	0.846	120.15 ± 0.04	-1.010 ± 0.001
0.6000	1.113603	1633.53	0.925	121.41 ± 0.03	-0.949 ± 0.001
0.7500	1.136278	1656.41	1.015	122.75 ± 0.02	-0.900 ± 0.001
0.9001	1.157937	1678.88	1.113	123.89 ± 0.02	-0.857 ± 0.001
		$m_3 =$	0.4 mol•l	xg^{-1}	
0.0000	1.015895	1539.73	0.585	0	
0.1500	1.043535	1564.97	0.710	119.61 ± 0.12	-1.102 ± 0.003
0.3000	1.069751	1589.19	0.777	121.05 ± 0.06	-1.030 ± 0.002
0.4502	1.094688	1612.41	0.840	122.34 ± 0.04	-0.965 ± 0.001
0.6002	1.118424	1635.66	0.922	123.44 ± 0.03	-0.915 ± 0.001
0.7500	1.140817	1658.25	1.010	124.69 ± 0.02	-0.868 ± 0.001
0.9018	1.162351	1679.28	1.109	125.90 ± 0.02	-0.817 ± 0.001
		$m_3 =$	0.5 mol·l	xg^{-1}	
0.0000	1.021558	1542.48	0.577	0	
0.1500	1.048893	1567.29	0.698	121.86 ± 0.11	-1.047 ± 0.003
0.3000	1.074817	1591.00	0.765	123.20 ± 0.05	-0.978 ± 0.002
0.4500	1.099494	1614.38	0.830	124.30 ± 0.03	-0.924 ± 0.001
0.6000	1.122894	1637.38	0.917	125.46 ± 0.02	-0.876 ± 0.001
0.7500	1.145236	1660.51	1.006	126.42 ± 0.02	-0.836 ± 0.001
0.9000	1.166368	1682.16	1.107	127.49 ± 0.02	-0.793 ± 0.001
		$m_3 =$	0.6 mol•l	xg^{-1}	
0.0000	1.027232	1544.85	0.569	0	
0.1500	1.054265	1569.17	0.689	124.03 ± 0.11	-0.994 ± 0.003
0.2999	1.079893	1593.05	0.759	125.26 ± 0.05	-0.939 ± 0.002
0.4500	1.104278	1616.50	0.826	126.36 ± 0.03	-0.889 ± 0.001
0.5974	1.127052	1640.00	0.915	127.36 ± 0.02	-0.851 ± 0.001
0.7502	1.149572	1663.82	0.991	128.27 ± 0.02	-0.812 ± 0.001
0.9048	1.171247	1686.10	1.106	129.14 ± 0.01	-0.769 ± 0.001
		$m_3 =$	0.7 mol·l	cg^{-1}	
0.0000	1.032757	1547.68	0.563	-	
0.1500	1.059488	1571.46	0.690	126.15 ± 0.11	-0.940 ± 0.003
0.2999	1.084815	1594.95	0.753	127.33 ± 0.05	-0.890 ± 0.002
0.4501	1.108933	1618.30	0.815	128.35 ± 0.03	-0.846 ± 0.001
0.6001	1.131858	1641.06	0.900	129.26 ± 0.02	-0.804 ± 0.001
0.8333	1.165439	1675.64	1.050	130.45 ± 0.02	-0.747 ± 0.001
0.9052	1.175331	1685.71	1.105	130.77 ± 0.01	-0.729 ± 0.001

The apparatus was calibrated at each temperature with doubledistilled-deionized water and dry air. For pure water, the values (998.203, 997.043, 995.647, 994.028, and 992.216) $kg \cdot m^{-3}$ for density and (1482.76, 1496.96, 1508.85, 1520.15, and 1529.56) $m \cdot s^{-1}$ for ultrasonic velocity were obtained, respectively, at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K.

Figure 1. Plot of the apparent molar volume, V_{ϕ} , a: K₃Cit + KBr + H₂O; b: K₃Cit + KNO₃ + H₂O, against the square root of K₃Cit molality, $m_1^{0.5}$, at T = 298.15 K in aqueous solutions of KNO₃ or KBr at different molalities: \triangle , 0.2; \bigcirc , 0.3; \Box , 0.4; \times , 0.5; \blacktriangle , 0.6; \diamondsuit , 0.7; solid line, eq 5.

Figure 2. Plot of apparent molar molar volume of K₃Cit, V_{ϕ} , against the square root of K₃Cit molality, $m_1^{0.5}$, at T = 298.15 K in aqueous solutions of, \bullet , KBr ($m_2 = 0.5 \text{ mol} \cdot \text{kg}^{-1}$); \blacklozenge , KNO₃ ($m_3 = 0.5 \text{ mol} \cdot \text{kg}^{-1}$); \bigstar , KCl (0.55 mol $\cdot \text{kg}^{-1}$, taken from ref 9); solid line, eq 5.

The apparatus was also tested with the density of a known molality of aqueous NaCl using the data given by Pitzer et al.¹⁴ The uncertainty in the measurement of density and speed of sound was estimated to be 0.003 kg·m⁻³ for density and 0.1 m·s⁻¹ for ultrasonic velocity. The viscosities of solutions were determined with a suspended Ubbelohde-type viscometer at T = (293.15 to 313.15) K in which the temperature was controlled with a precision of 0.01 K with

Figure 3. Plot of apparent molar isentropic compressibility of K₃Cit, K_{ϕ} , a: K₃Cit + KBr + H₂O; b: K₃Cit + KNO₃ + H₂O, against square root of K₃Cit molality, $m_1^{0.5}$, at T = 298.15 K: in aqueous solutions of KNO₃ at different molalities: \triangle , 0.2; \bigcirc , 0.3; \Box , 0.4; \diamond , 0.5; \blacktriangle , 0.6; \times , 0.7; solid line, eq 10.

Figure 4. Plot of apparent molar isentropic compressibility of K₃Cit, V_{ϕ} , against square root of K₃Cit molality, $m_1^{0.5}$, at T = 298.15 K in aqueous solutions of, \bullet , KBr ($m_2 = 0.7 \text{ mol} \cdot \text{kg}^{-1}$); \bullet , KNO₃ ($m_3 = 0.7 \text{ mol} \cdot \text{kg}^{-1}$); \bullet , KNO₃ ($m_3 = 0.5 \text{ mol} \cdot \text{kg}^{-1}$); \bullet , KCl (0.55 mol $\cdot \text{kg}^{-1}$, taken from ref 9); solid line, eq 10.

a thermostat (Julabo, MD-18V, Germany). The flow times were measured using a stopwatch. The precision of the stopwatch used was \pm 0.01 s. The dynamic viscosity, η , was

calculated by the following relation:

$$\eta = dK(t - \theta) \tag{1}$$

where t is the flow time; K is the viscometer constant; θ is the Hagenbach correction factor; and d is the density. The viscometer constant, K, is determined by calibrating at the working temperatures with distilled water using viscosity values from the literature.¹⁵ The uncertainty for the dynamic viscosity determination was estimated to be \pm 0.5 %. Each measurement was repeated five times.

3. RESULTS AND DISCUSSION

Density, speed of sound, and viscosity measurements for K₃Cit in aqueous solutions of (KBr or KNO₃) in the different molality ranges of KBr and KNO₃ [(0.2, 0.3, 0.4, 0.5, 0.6, and 0.7) mol·kg⁻¹] at different K₃Cit concentrations were made at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The values of density, *d*, speed of sound, *u*, and viscosity, η , for the ternary aqueous solution of K₃Cit + (KBr or KNO₃) are reported in

Table 2. Values of $V_{\phi}^{0}/(\text{cm}^{3} \cdot \text{mol}^{-1})$ of K₃Cit at Different Temperatures and Different Concentrations of KBr or KNO₃

		T/K					
system	293.15	298.15	303.15	308.15	313.15		
	V_{ϕ}^{0}						
$K_3Cit+KBr\ (0.2\ m)+H_2O$	107.45	107.44	108.58	109.05	110.62		
$K_3Cit + KBr (0.3 m) + H_2O$	111.53	110.99	111.45	113.23	113.79		
$K_3Cit + KBr \ (0.4 \ m) + H_2O$	114.27	114.34	114.80	115.81	116.26		
$K_3Cit+KBr\ (0.5\ m)+H_2O$	118.11	117.81	118.98	119.36	120.6		
$K_3Cit + KBr \ (0.6 \ m) + H_2O$	120.10	120.43	121.05	122.11	122.78		
$K_3Cit+KBr\ (0.7\ m)+H_2O$	122.77	123.10	122.92	124.16	124.74		
$K_{3}Cit+KNO_{3}\left(0.2\ m\right)+H_{2}O$	107.63	107.98	107.71	109.14	109.67		
$K_{3}Cit+KNO_{3}\left(0.3\text{ m}\right) +H_{2}O$	111.55	111.85	112.17	112.82	113.43		
$K_{3}Cit+KNO_{3}\left(0.4\ m\right)+H_{2}O$	113.84	113.95	115.19	115.53	117.57		
$K_{3}Cit+KNO_{3}\left(0.5\ m\right)+H_{2}O$	115.37	116.39	117.01	118.22	119.70		
$K_{3}Cit+KNO_{3}\left(0.6\ m\right)+H_{2}O$	117.75	118.71	118.91	120.04	121.57		
$K_{3}Cit+KNO_{3}\left(0.7\ m\right)+H_{2}O$	119.90	120.92	120.85	122.18	123.50		

Table 1. The apparent molar volumes and apparent molar isentropic compressibility of the K_3Cit in aqueous (KBr or KNO₃) solutions were computed from the measured density and speed of sound values using eqs 2 and 3, respectively:¹⁶

$$V_{\phi} = \frac{M_1}{d} - \frac{(d - d_0)}{m_1 d d_0}$$
(2)

$$K_{\phi} = \frac{(k_{\rm s}d_0 - k_{\rm s0}d)}{m_1 dd_0} + \frac{M_1 k_{\rm s}}{d}$$
(3)

where M_1 is the molar mass of K₃Cit.; m_1 is the molality of the K₃Cit; d and d_0 are the densities of solution and solvent, respectively; k_s and k_{s0} are the isentropic compressibility of the solution and solvent, respectively. The (KBr or KNO₃) + water is considered as the solvent. Using the sound velocity and density values, the isentropic compressibility, k_s (kPa⁻¹), values were calculated for the investigated mixtures from the Laplace–Newton equation:

$$k_{\rm s} = d^{-1} u^{-2} \tag{4}$$

The results obtained have also been reported in Table 1. In Figure 1, the concentration dependence of V_{ϕ} for K₃Cit in different molalities of aqueous solutions of KBr and KNO3, respectively, has been shown at 298.15 K as an example. Similar behavior has been observed for other temperatures. From Table 1 and Figure 1, it can be seen that the apparent molar volumes of K₃Cit in aqueous KBr and KNO₃ solutions increase with an increase in the K₃Cit molality. In the electrolyte solutions, the solute-solute interactions are characterized by positive slopes of V_{ϕ} versus concentration plots.¹⁷ This is attributed to the phenomenon, described in terms of destructive overlap of cospheres,^{18,19} resulting in a net decrease of solvation, thereby increasing the solute volume. In Figure 2 the apparent molar volumes of K₃Cit + KBr + H₂O and K₃Cit + KNO₃ + H₂O have been plotted at the KBr and KNO₃ molality of 0.5 at T =298.15 K. From Figure 2, it can be seen that there is a positive transfer of volume of K₃Cit from aqueous KNO₃ solution to an aqueous KBr solution. This indicates that the potassium citrate ions in aqueous KBr solutions are larger than in aqueous KNO3 solutions. The strong interactions between KBr and the water molecule induce the dehydration of ions of K₃Cit more than

Table 3. Fitting Parameters of eq 6 and Term $(\partial^2 V_{\phi}^0 / \partial T^2)_P$ along with the Absolute Average Relative Deviation (AARD)

					$10^3 (\partial^2 V_{\phi}^0 / \partial T^2)_P$
system	A_0	A_1	$10^3 \cdot A_2$	$100 \cdot \text{AARD}^a$	$cm^6 \cdot mol^{-2} \cdot K^{-2}$
$K_3Cit + KBr \left(0.2 \text{ m} \right) + H_2O$	107.39 ± 0.09	0.02 ± 0.02	7.11 ± 1.00	0.46	9.26
$K_3Cit + KBr (0.3 m) + H_2O$	110.46 ± 0.12	0.09 ± 0.04	4.34 ± 1.75	0.27	8.68
$K_3Cit + KBr (0.4 m) + H_2O$	114.19 ± 0.13	0.03 ± 0.03	3.74 ± 1.58	0.16	4.62
$K_3Cit + KBr (0.5 m) + H_2O$	117.99 ± 0.19	0.0003 ± 0.04	6.54 ± 1.51	0.23	3.32
$K_3Cit + KBr (0.6 m) + H_2O$	120.05 ± 0.09	0.08 ± 0.02	3.20 ± 1.13	0.12	6.40
$K_3Cit + KBr (0.7 m) + H_2O$	122.81 ± 0.07	-0.01 ± 0.02	5.49 ± 1.25	0.22	10.98
$K_{3}Cit + KNO_{3} (0.2 m) + H_{2}O$	107.67 ± 0.07	$-0.0.01 \pm 0.03$	5.89 ± 1.47	0.27	1.94
$K_{3}Cit + KNO_{3}(0.3 m) + H_{2}O$	111.55 ± 0.01	0.04 ± 0.003	2.71 ± 0.23	0.04	3.02
$K_3Cit+KNO_3\left(0.4\ m\right)+H_2O$	113.83 ± 0.04	0.01 ± 0.03	8.46 ± 1.28	0.26	17.20
$K_{3}Cit + KNO_{3} (0.5 m) + H_{2}O$	115.46 ± 0.14	0.12 ± 0.03	4.31 ± 0.57	0.12	8.62
$K_{3}Cit + KNO_{3} (0.6 m) + H_{2}O$	117.90 ± 0.24	0.06 ± 0.05	5.91 ± 1.44	0.20	11.82
$K_{3}Cit + KNO_{3} (0.7 m) + H_{2}O$	120.06 ± 0.27	0.05 ± 0.05	5.71 ± 1.47	0.27	1.70
$a_{\text{AADD}} = 1/N\Sigma^N (V = 0) V$	0)/17 01				

 $^{u} \text{AARD} = 1/N\Sigma_{i}^{v} | (V_{\phi, \exp_{i}} - V_{\phi, \operatorname{cal}_{i}})/V_{\phi, \exp_{i}} |.$

			T/K		
system	293.15	298.15	303.15	308.15	313.15
		$10^{13} K_{\phi}^{0}$			
$K_{3}Cit + KBr (0.3 m) + H_{2}O$	-1.532 ± 0.026	-1.486 ± 0.023	-1.437 ± 0.022	-1.426 ± 0.024	-1.405 ± 0.017
$K_3Cit + KBr (0.4 m) + H_2O$	-1.450 ± 0.012	-1.443 ± 0.006	-1.386 ± 0.003	-1.336 ± 0.014	-1.279 ± 0.002
$K_3Cit + KBr \ (0.5 \ m) + H_2O$	-1.450 ± 0.012	-1.428 ± 0.015	-1.344 ± 0.007	-1.292 ± 0.007	-1.234 ± 0.005
$K_3Cit + KBr \ (0.6 \ m) + H_2O$	-1.404 ± 0.016	-1.295 ± 0.002	-1.240 ± 0.001	-1.204 ± 0.008	-1.144 ± 0.010
$K_3Cit+KBr\ (0.7\ m)+H_2O$	-1.171 ± 0.018	-1.200 ± 0.007	-1.080 ± 0.003	-1.081 ± 0.002	-1.045 ± 0.002
$K_3Cit+KBr\ (0.2\ m)+H_2O$	-1.651 ± 0.014	-1.578 ± 0.007	-1.505 ± 0.017	-1.470 ± 0.006	-1.388 ± 0.009
$K_{3}Cit+KNO_{3}\left(0.2\ m\right)+H_{2}O$	-1.634 ± 0.018	-1.549 ± 0.010	-1.496 ± 0.022	-1.450 ± 0.004	-1.402 ± 0.009
$K_{3}Cit+KNO_{3}\left(0.3\ m\right)+H_{2}O$	-1.499 ± 0.009	-1.459 ± 0.009	-1.454 ± 0.007	-1.403 ± 0.012	-1.338 ± 0.022
$K_{3}Cit+KNO_{3}\left(0.4\ m\right)+H_{2}O$	-1.424 ± 0.003	-1.372 ± 0.008	-1.305 ± 0.006	-1.237 ± 0.007	-1.238 ± 0.008
$K_{3}Cit+KNO_{3}\left(0.5\ m\right)+H_{2}O$	-1.356 ± 0.003	-1.328 ± 0.003	-1.321 ± 0.006	-1.261 ± 0.002	-1.208 ± 0.004
$K_3Cit + KNO_3 \left(0.6 \text{ m}\right) + H_2O$	-1.318 ± 0.006	-1.262 ± 0.008	-1.228 ± 0.007	-1.184 ± 0.004	-1.110 ± 0.006
$K_3Cit+KNO_3\left(0.7\ m\right)+H_2O$	-1.216 ± 0.013	-1.137 ± 0.009	-1.122 ± 0.014	-1.090 ± 0.009	-1.040 ± 0.002

Table 4. Values of $K_0^0/(m^3 \cdot mol^{-1} \cdot Pa^{-1})$ of K₃Cit at Different Temperatures and Different Concentrations of KBr and KNO₃

Table 5. Viscosity *B*-Coefficients of K₃Cit in Aqueous (KBr or KNO₃) at Different Temperatures

			T/K		
system	293.15	298.15	303.15	308.15	313.15
$K_3Cit + KBr (0.2 m) + H_2O$	1.4683	1.4623	1.4331	1.4526	1.4084
$K_3Cit + KBr \ (0.3 \ m) + H_2O$	1.4700	1.4676	1.4346	1.4371	1.3907
$K_3Cit+KBr\ (0.4\ m)+H_2O$	1.4799	1.4745	1.4402	1.4214	1.3844
$K_3Cit + KBr \ (0.5 \ m) + H_2O$	1.4712	1.4692	1.4425	1.4121	1.3813
$K_3Cit + KBr \ (0.6 \ m) + H_2O$	1.4817	1.4636	1.4485	1.4056	1.3903
$K_3Cit+KBr\ (0.7\ m)+H_2O$	1.4775	1.4325	1.4196	1.3923	1.3890
$K_{3}Cit+KNO_{3}\left(0.2\ m\right)+H_{2}O$	1.2221	1.2101	1.1724	1.1067	1.0754
$K_{3}Cit+KNO_{3}\left(0.3\ m\right)+H_{2}O$	1.2373	1.2061	1.1818	1.1610	0.9578
$K_{3}Cit+KNO_{3}\left(0.4\ m\right)+H_{2}O$	1.2369	1.2197	1.1859	1.0556	0.992
$K_{3}Cit+KNO_{3}\left(0.5\ m\right)+H_{2}O$	1.2362	1.2344	1.1931	1.0960	1.0752
$K_{3}Cit+KNO_{3}\left(0.6\ m\right)+H_{2}O$	1.2924	1.2503	1.1909	1.0731	1.0654
$K_{3}Cit+KNO_{3}\left(0.7\ m\right)+H_{2}O$	1.3271	1.3262	1.3118	1.1719	1.1496

KNO₃, and therefore at high KBr concentrations, the water molecules around the K₃Cit become less, thereby increasing the solute volume. The apparent molar volumes of K₃Cit + KCl + H₂O taken from previous works⁹ have also been plotted at a KCl molality of 0.55 at T = 298.15 K. It is obvious that V_{ϕ} of K₃Cit in aqueous KCl solutions are smaller than V_{ϕ} of K₃Cit in aqueous KBr and KNO₃ solutions considering that the V_{ϕ} values of K₃Cit in KCl with a molality of 0.55 mol·kg⁻¹ are smaller than those corresponding to a KCl molality of 0.55 mol·kg⁻¹.

The values of K_{ϕ} are plotted as a function of K₃Cit concentration at various KBr and KNO₃ concentrations at 298.15 K in Figure 3. Similar trends have been observed for other temperatures. From Table 1 and Figure 3, it is obvious that the value of apparent molar isentropic compressibility of K₃Cit in aqueous (KBr or KNO₃) solutions is negative, and it increases with increasing concentration of K₃Cit and temperature. Figure 3 also shows that at each temperature and at a constant salt concentration the value of K_{ϕ} of K₃Cit increases as the concentration of (KBr or KNO₃) increases. The strong interactions between (KBr or KNO₃) and water molecules induce the dehydration of ions, and therefore at high (KBr or KNO_3) concentrations, the water molecules around the K₃Cit become more compressible than those at lower KBr or KNO₃ concentrations. In Figure 4 the apparent molar volumes of $K_3Cit + KBr + H_2O$ and $K_3Cit + KNO_3 + H_2O$ have been plotted at the KBr and KNO₃ molalities of (0.5 and 0.7) mol·kg⁻¹, respectively, at T = 298.15 K. From Figure 4 it can be seen that the water molecules around the K₃Cit in aqueous KBr solution are more compressible than those in aqueous KNO₃ solution. This indicates that interactions between KBr and water molecules are stronger than the interaction of KNO₃ with water. When the concentration of KBr became larger, it is clear that the difference between compressibility of water molecules around K₃Cit in aqueous KBr and KNO₃ solutions became more obvious. The apparent molar isentropic compressibility of K₃Cit + KCl + H₂O taken from previous work⁹ has also been plotted at a KCl molality of 0.55 at T = 298.15 K. It is obvious that water molecules around the K₃Cit in aqueous KCl solution are of lower compressibility than those for K₃Cit in aqueous KBr and KNO₃ solutions even at a KCl molality of 0.55.

The Redlich–Mayer-type equation in the form^{20,21}

$$V_{\phi} = V_{\phi}^{0} + S_{V} m_{1}^{0.5} + B_{V} m_{1} \tag{5}$$

was used to obtain $V_{\phi n}^0$ the limiting apparent molar volume of K_3Cit at different temperatures and different (KBr or KNO₃) concentrations. In this equation, S_V and B_V are the empirical parameters which depend on solute, solvent, and temperature. The limiting apparent molar volume (V_{ϕ}^0) , S_V , and B_V values have been obtained from the correlation of V_{ϕ} values with the Redlich–Mayer equation. The V_{ϕ}^0 values have been given in Table 2. The S_V and S_V values for KBr and KNO₃ along with the absolute average relative deviation (AARD) were reported in Tables S1 and S2 as Supporting Information. The value of the apparent molar volume is an important property. At infinite dilution, each ion is surrounded only by the solvent molecules and is infinitely distant from other ions. It follows that V_{ϕ}^0 is unaffected by ion–ion interaction, and it is a measure only of the ion–solvent interaction.^{22,23}

Figure 5. Plot of viscosity of K₃Cit, η , a: K₃Cit + KBr + H₂O; b: K₃Cit + KNO₃ + H₂O, against the square root of K₃Cit molality, $m_1^{0.5}$, in aqueous solution of KBr or KNO₃ (m_2 , $m_3 = 0.4 \text{ mol} \cdot \text{kg}^{-1}$) at different temperatures: +, 293.15 K; **I**, 298.15 K; **A**, 303.15 K; **O**, 308.15; **♦**, 313.15 K; solid line, eq 21.

The temperature dependency of V_{ϕ}^{0} calculated from eq 5 was expressed in a polynomial form as follows

$$V_{\phi}^{0} = A_{0} + A_{1}(T - 293.15) + A_{2}(T - 293.15)^{2}$$
 (6)

The parameters A_0 , A_1 , and A_2 of eq 6 were calculated from the correlation of V_{ϕ}^0 values at different temperatures and different (KBr or KNO₃) concentrations. The obtained parameters along with the standard deviation (σ) of V_{ϕ}^0 values have been given in Table 3. In fact, the apparent molar volume is equal to the infinite dilution partial molar volume; therefore, due to the additivity principle at infinite dilution, we have

$$V_{\phi}^{0}(K_{3}\text{Cit}) = 3V_{\phi}^{0}(K^{+}) + V_{\phi}^{0}(\text{Cit}^{3-})$$
(7)

The apparent molar volume of ions can be expressed as the sum of two contributions, 23

$$V_{\phi}^{0}(\text{ion}) = V_{\phi}^{0}(\text{int}) + V_{\phi}^{0}(\text{elect})$$
(8)

where V_{ϕ}^{0} (int) is the intrinsic (related to the size of the ions and to packing effects) apparent molar volume and V_{ϕ}^{0} (elect) is the electrostriction apparent molar volume related to ion– solvent interactions (i.e., the decrease in volume due to hydration). The term $\partial V_{\phi}^{0}(\text{int})/\partial T$ contributes negligibly to the overall temperature dependence of V_{ϕ}^{0} (ion), and therefore an increase in the V_{ϕ}^{0} by increasing temperature occurs with a loss of hydration.

For determining the structure-making and structure-breaking capacities of the solute in different mixed solvents, the following equation of Hepler ²⁴ was used

$$(\partial C_P / \partial T)_P = - (\partial^2 V_{\phi}^0 / \partial T^2)_P \tag{9}$$

The values in eq 9 are also listed in Table 3. It can be seen that $(\partial^2 V_{\phi}^0(\text{int})/\partial T^2)$ all are positive over the temperature range under investigation, indicating an obvious structure-making tendency of K₃Cit in aqueous (KBr or KNO₃) solutions.

The limiting apparent molar isentropic compressibility (K_{ϕ}^{0}) was obtained from the fitting of K_{ϕ} with an equation as²⁵

$$K_{\phi} = K_{\phi}^{0} + S_{K} m_{1}^{0.5} + B_{K} m_{1} \tag{10}$$

where S_K and B_K are empirical parameters. Values of K_{ϕ}^0 at different temperatures and (KBr or KNO₃) concentrations calculated from eq 10 are given in Table 4. The values of S_K and B_K along with the absolute average relative deviation (AARD) were reported in Tables S3 and S4 as Supporting Information. As can be seen from Table 4, K_{ϕ}^0 values are negative and increase with increasing temperature and (KBr or KNO₃) concentration. The negative values of K_{ϕ} and K_{ϕ}^0 of K₃Cit in aqueous (KBr or KNO₃) solutions indicate that the water molecules around the K₃Cit ions are less compressible than the water molecules in the bulk solution. By differentiating eq 8 with respect to pressure, we obtain

$$K_{\phi}^{0}(\text{ion}) = K_{\phi}^{0}(\text{int}) + K_{\phi}^{0}(\text{elect})$$
(11)

where $K_{\phi}^{0}(\text{int}) = -(\partial V_{\phi}^{0}(\text{int})/\partial P)_{T}$ is the intrinsic apparent molar compressibility and $K_{\phi}^{0}(\text{elect}) = -(\partial V_{\phi}^{0}(\text{elect})/\partial P)_{T}$ is the electrostriction apparent molar compressibility. Because the effect of pressure on the volume of crystals is small, one would expect $K_{\phi}^{0}(\text{int})$ to be positive and close to zero.²⁶ Thus $K_{\phi}^{0}(\text{ion})$ is due mainly to $K_{\phi}^{0}(\text{elect})$. In fact, the negative values of K_{ϕ} and K_{ϕ}^{0} of K₃Cit in aqueous (KBr or KNO₃) solutions are attributed to the strong attractive interactions due to the hydration of ions at low temperatures. By increasing temperature, ion—solvent interactions are weakened, and therefore at high temperatures, the water molecules around the K₃Cit become more compressible than those at lower temperatures.

Viscosity values (η) of ternary aqueous solutions of K₃Cit + (KBr or KNO₃) have also been measured in this work. The results obtained are given in Table 1. The relative viscosities, η_r ($\eta_r = \eta/\eta_0$, where η and η_0 are the viscosities of solution and solvent, respectively), have been used to calculate the viscosity *B*-coefficients of K₃Cit using the Jones–Dole equation¹² where *c* is molarity:

$$\eta_{\rm r} = 1 + Ac^{0.5} + Bc \tag{12}$$

The values of the *B* coefficients have been reported in Table 5. In general, the viscosity *B*-coefficients reflect solute—solvent interactions.²⁷ It is well-established that the viscosity *B*-coefficient is a measure of solute—solvent interactions and is directly dependent on the size, shape, and charge of the solute molecules. The values of the viscosity *B*-coefficients for K₃Cit in water and in aqueous (KBr or KNO₃) solutions at the five different temperatures are positive indicating that the ion—solvent interactions are strong.²⁸ The d*B*/d*T* values, which give important information

regarding the structure-making agent and structure-breaking role of the solute in solvent media, are a better criterion²⁹ than the *B*-coefficient. The negative dB/dT values of K₃Cit in water and aqueous (KBr or KNO₃) solutions reported in Table 5 show that K₃Cit acts as a structure-making agent.

3.1. Prediction of Density. To predict the density of ternary aqueous K_3 Cit + (KBr or KNO₃) solutions the method proposed by Laliberté and Cooper ¹⁰ has been used. First the apparent specific volumes (V_{app}) of binary aqueous solutions have been calculated with the following equation,

$$V_{\rm app} = 1 - \frac{\left(\frac{d(1-w_2)}{d_0}\right)}{dw_2}$$
 (13)

where w_2 refers to the mass fraction of K₃Cit and *d* is the density of binary aqueous solution of K₃Cit, KBr, or KNO₃. Density values for binary aqueous solution of K₃Cit have been taken from ref 7. The calculated V_{app} values were correlated with the following equation:¹¹

$$V_{\rm app} = \frac{(1 - w_{\rm H_2O}) + C_2 + C_3 t}{(C_0 (1 - w_{\rm H_2O}) + C_1) \exp(0.000001(t + C_4)^2)}$$
(14)

where C_0 to C_4 are adjustable parameters and t is the temperature in Celsius.

The parameters of this equation for the K_3 Cit + H₂O and KNO₃ + H₂O systems were taken from our previous work⁹ and the Supporting Information of ref 11, respectively. The obtained parameters of eq 14 (C_0 to C_4) for the binary aqueous solution of KBr are 0.012, 1.501 \cdot 10⁴, 4.379, 1.139 \cdot 10⁻³, and 4 \cdot 10⁻³, respectively, with an absolute average relative deviation (AARD) value of 0.085. Density values of K_3 Cit + (KBr or KNO₃) solutions can be predicted with the equation:¹¹

$$\ln \eta = w_{\rm H_2O} \ln \eta_{\rm H_2O} + w_{\rm K_3Cit} \ln \eta_{\rm K_3Cit/H_2O} + w_{\rm KCl} \ln \eta_{\rm KCl/H_2O}$$
(15)

where

$$d_{\rm H_2O} = (((((-2.8054253 \times 10^{-10}t + 1.0556302 \cdot 10^{-7})t - 4.6170461 \cdot 10^{-5})t - 0.0079870401)t + 16.945176)t + 999.83952) + 0.01687985t - (16)$$

 $V_{\rm app,K_3Cit/H_2O}$ and $V_{\rm app,(KBr \, or \, KNO_3)/H_2O}$ have been calculated at the corresponding mass fraction of the ternary solutions from the parameters of eq 14 obtained in this work for KBr and those reported previously for aqueous K_3Cit^9 and KNO_3 .¹⁰ The absolute average relative deviation obtained between predicted and measured density values (100 AARD = 0.04) for ternary aqueous solutions of $K_3Cit + KBr$ and (100 AARD = 0.03) for ternary aqueous solutions of $K_3Cit + KNO_3$ at working temperatures indicating that the prediction method proposed by Laliberté and Cooper¹¹ is satisfactory for prediction of density of the investigated ternary systems, at different temperatures.

3.2. Prediction of Viscosity. To predict the viscosity of ternary aqueous $K_3Cit + (KBr \text{ or } KNO_3)$ solutions, first the solute viscosities, η_e , have been calculated from the data reported in refs 9 and 13 and Supporting Information of

ref 10 with the following equation:

$$\eta_{\rm e} = \left(\frac{\eta}{\eta_{\rm H_2O}}\right)^{1/w_2} \tag{17}$$

where

$$\eta_{\rm H_2O} = \frac{t + 246}{(0.05594t + 5.2842)t + 137.37}$$
(18)

The η_e values obtained for the binary aqueous solutions of K₃Cit, KBr, and KNO₃ were correlated using empirical eq 19 proposed by Laliberté¹⁰ and semiempirical eq 20 used by Zafarani-Moattar and Majdan-Cegincara:¹³

$$\eta_{\rm e} = \frac{\exp((C_0(1 - w_{\rm H_2O})^{C_1} + C_2)/(C_3t + 1))}{C_4(1 - w_{\rm H_2O})^{C_5} + 1}$$
(19)

$$\eta_{\rm e} = C_0 \exp(C_1/t - C_2)\exp(C_3m + C_4m^2)$$
 (20)

The parameters of eqs 19 and 20 for binary aqueous solutions of K_3 Cit have been taken from ref 9. The parameters of eq 19 and 20 for binary aqueous solutions of KBr and KNO₃ were taken from refs 10 and 13, respectively. The viscosity values of ternary aqueous K_3 Cit + (KBr or KNO₃) solutions were predicted by the Arrhenius type mixing rule as follows:

$$d_{K_{3}Cit + (KBr or KNO_{3})/H_{2}O} = \frac{1}{\frac{w_{H_{2}O}}{d_{H_{2}O}} + w_{K_{3}Cit}V_{app, K_{3}Cit/H_{2}O} + w_{KCl}V_{app, (KBr or KNO_{3})/H_{2}O}}$$
(21)

The estimated 100 AARD values between the measured viscosity values and predicted values by eq 21 for ternary aqueous K_3 Cit + KBr solutions are 2.09 and 0.70 using the eqs of 19 and 20, respectively. Also, for ternary aqueous $K_3Cit + KNO_3$ solutions 100 AARD values of 2.24 and 1.14 are obtained by the equations proposed by Laliberté (eq 19) and Zafarani-Moattar and Majdan-Cegincara (eq 20), respectively. From the results obtained, it is obvious that both of these methods have good performance in the prediction of viscosity values of K₃Cit + $(KBr or KNO_3) + H_2O$, especially using the procedure given in our previous work.¹³ To see the performance of eq 21 in the prediction of viscosity values of aqueous ternary system of K₃Cit + KCl in a better manner, experimental and predicted viscosity values have been plotted against the square root of K₃Cit molality at the KBr or KNO_3 concentration of 0.4 mol·kg⁻¹ at different temperatures as in Figure 5. As can be seen from the figure it is also obvious that performance of eq 21 is good in the prediction of viscosity values of the investigated systems.

4. CONCLUSIONS

Density, speed of sound, and viscosity for ternary aqueous solutions of $K_3Cit + (KBr \text{ or } KNO_3)$ have been measured over the entire concentration range at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The values of apparent molar volumes and apparent molar isentropic compressibilities of solutions were calculated from the measured data. The results show a positive transfer of volume of K_3Cit from an aqueous solution to an aqueous (KBr or KNO₃) solution. Also, the results show that the apparent molar volumes of tripotassiumm citrate increase as

the concentration of potassium citrate increases. The apparent molar isentropic compressibility of K₃Cit in ternary solutions has negative values at each temperature. The negative values of apparent molar isentropic compressibility of K₃Cit imply that the water molecules around the K₃Cit ions are less compressible than the water molecules in the bulk solutions. The viscosity B-coefficient values of K₃Cit in the ternary aqueous solutions of $K_3Cit + (KBr \mbox{ or } KNO_3)$ show that $K_3Cit \mbox{ acts as a structure-}$ making agent. The viscosity and density values of ternary aqueous K_3 Cit + (KBr or KNO₃) systems have been predicted using parameters obtained from the binary aqueous solutions. The results obtained show that the performance of prediction methods proposed by Laliberté and Cooper for density and Laliberté and Zafarani-Moattar and Majdan-Cegincara for viscosity is excellent for the ternary aqueous system containing an organic and an inorganic salt.

ASSOCIATED CONTENT

Supporting Information. Parameters of eqs 5 and 10 (four tables). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: +98 411 3340191. E-mail: zafarani47@yahoo.com.

REFERENCES

(1) Chandra, A.; Bagchi, B. The classical transport laws of electrochemistry: new microscopic approach to ionic conductance and viscosity. *J. Phys. Chem.* **2000**, *104*, 9067–9080.

(2) Chandra, A.; Bagchi, B. Ionic contribution to the viscosity of dilute electrolyte solutions: Towards a microscopic theory. *J. Chem. Phys.* **2000**, *113*, 3226–3232.

(3) Bouchard, E. F.; Meritt, E. G. *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 6, pp 150–179.

(4) Van Ness, J. H. *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 13, pp 80–103.

(5) Berger, S. E. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 13, pp 103-121.

(6) Kertes, A. S.; King, C. Extraction chemistry of fermentation product carboxylic acids. J. Biotechnol. Bioeng. **1986**, 28, 269–281.

(7) Sadeghi, R.; Ziamajidi, F. Thermodynamic Properties of Tripotassium Citrate in Water and in Aqueous Solutions of Polypropylene Oxide 400 over a Range of Temperatures. *J. Chem. Eng. Data* **2007**, *52*, 1753–1759.

(8) Sadeghi, R.; Goodarzi, B.; Karami, K. Effect of Potassium Citrate Salts on the Transport Behavior of L-Alanine in Aqueous Solutions at T = (293.15 to 308.15) K. J. Chem. Eng. Data **2009**, 54, 791–794.

(9) Zafarani-Moattar, M. T.; Izadi, F. Effect of KCl on the volumetric and transport properties of aqueous tri-potassium citrate solutions at different temperatures. *J. Chem. Thermodyn.* **2011**, *43*, 552–561.

(10) Laliberté, M. Model for Calculating the Viscosity of Aqueous Solutions. *J. Chem. Eng. Data* **2007**, *52*, 321–335.

(11) Laliberté, M.; Cooper, W. E. Model for Calculating the Density of Aqueous Electrolyte Solutions. *J. Chem. Eng. Data* **2004**, *49*, 1141–1151.

(12) Jones, G.; Dole, M. The Viscosity of Aqueous Solutions of Strong Electrolytes with Special Reference To Barium Chloride. *J. Am. Chem. Soc.* **1929**, *51*, 2950–2964.

(13) Zafarani-Moattar, M. T.; Majdan-Cegincara, R. Viscosity Modeling and Prediction of Aqueous Mixed Electrolyte Solutions. *Ind. Eng. Chem. Res.* **2009**, *48*, 5833–5844.

(14) Pitzer, K. S.; Peiper, J. C.; Busey, R. H. Thermodynamic properties of sodium chloride solutions. J. Phys. Chem. Ref. Data 1984, 13, 1–102.

(15) Marsh, K. N. Recommended reference materials for the realization of physicochemical properties; Blackwell Scientific Publications Ltd.: Cambridge, MA, 1987.

(16) Surdo, A. L.; Alzola, E. M.; Millero, F. J. The (P.V.T) properties of concentrated aqueous electrolytes. *J. Chem. Thermodyn.* **1982**, *14*, 649–662.

(17) Millero, F. J. The Molal volumes of electrolytes. *Chem. Rev.* 1971, 71, 147-176.

(18) Gurney, R. W. Ionic Processes in Solutions; McGraw-Hill: New York, 1954.

(19) Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C. Apparent Molal Volumes of Alkali Halides in Water at 25°. Influence of Structural Hydration Interactions on the Concentration Dependence. *J. Phys. Chem.* **1969**, *73*, 3346–3351.

(20) Redlich, O.; Mayer, D. M. The molal volumes of electrolytes. *Chem. Rev.* **1964**, 64, 221–227.

(21) Pinheiro, L. M. V.; Calado., A, R. T.; Reis, J. C. R.; Viana, C. A. N. Shape effects in the partial molar volume of tetraethyl phosphonium and ammonium iodides in six nonaqueous solvents. *J. Solution Chem.* **2003**, *32*, 41–52.

(22) Marcus, Y.; Hefter, G. Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. *Chem. Rev.* 2004, *104*, 3405–3452.

(23) Millero, F. J.; Ward, G. K.; Lepple, F. K.; Foff, E. V. Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45° at 1 atm. *J. Phys. Chem.* **1974**, *78*, 1636–1643.

(24) Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. *Can. J. Chem.* **1969**, *47*, 4613–4617.

(25) Dey, N. C.; Bhuyan, J.; Haque, I. Partial molar volumes and Partial molar adiabatic compressibilities of Fe(III) tetrafluoroborate complexes with DMSO, pyridine, and pyridine derivatives. *J. Solution Chem.* **2003**, *32*, 547–558.

(26) Noyes, R. M. Assignment of Individual Ionic Contributions to Properties of Aqueous Ions. J. Am. Chem. Soc. **1964**, 86, 971–979.

(27) Zhao, H. Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. *Biophys. Chem.* **2006**, *122*, 157–183.

(28) Jenkins, H. D. B.; Marcus, Y. Viscosity B-coefficients of ions in solution. *Chem. Rev.* **1995**, *95*, 2695–2724.

(29) Sarma, T. S.; Ahluwalia, J. C. Experimental studies on the structure of aqueous solutions of hydrophobic solutes. *Chem. Soc. Rev.* **1973**, *2*, 217–232.