# Journal of Chemical & Engineering Data

# Isobaric Vapor-Liquid Equilibria of the Ternary System Pentan-1-ol + Pentyl Acetate + Nonane

Helle Kirss, Mati Kuus, and Enn Siimer\*

Department of Material Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

**ABSTRACT:** Isobaric vapor—liquid equilibria (VLE) were measured for the ternary system pentan-1-ol + pentyl acetate + nonane and for one constituent binary system, pentan-1-ol + pentyl acetate, at the pressures (26.66, 53.33, 79.99, and 101.32) kPa. Boiling temperature (T)—liquid composition (x) relations were obtained by using a semimicroebulliometer. The Wilson equation was used to correlate the binary T-x data and to predict VLE in the ternary system.

# INTRODUCTION

The thermodynamic information of multicomponent vapor liquid equilibria (VLE) is important for testing existing models, for promoting a general understanding of interactions in solutions, and in the design of equipment for separation processes.

In our previous papers<sup>1-5</sup> we presented experimental results of isobaric vapor—liquid equilibrium (VLE) for ternary systems, where the basic binary mixture was alkane (nonane)—alcohol (cyclohexanol, pentan-1-ol). Alkane—alcohol mixtures are used as suitable mixed solvents in the industry and laboratories. The third component was 1,2-dimethylbenzene,<sup>1</sup> hexan-2-one,<sup>2,3</sup> 1-butoxybutane,<sup>4</sup> and methoxybenzene.<sup>5</sup> We have used pentyl acetate as a good solvent for pigments and lacquers in the ternary systems 1,2-dimethylbenzene + pentyl acetate + nonane<sup>6</sup> and methylbenzene + ethylbenzene + pentyl acetate.<sup>7</sup>

In the present work, isobaric VLE data have been obtained at pressures (26.66, 53.33, 79.99, and 101.32) kPa for the ternary system pentan-1-ol + pentyl acetate + nonane, and for one constituent binary system, pentan-1-ol + pentyl acetate. No data for VLE of the ternary system have been found in the literature. VLE of the binary pentan-1-ol + pentyl acetate were studied by Lewell and Kristmanson<sup>8</sup> and Holley<sup>9</sup> at pressures of (100.765 and 102.658 kPa) correspondingly. The binary systems pentyl acetate + nonane and pentan-1-ol + nonane were studied in our papers.<sup>3,4,6</sup>

## EXPERIMENTAL SECTION

**Materials.** Pentan-1-ol, pentyl acetate, and nonane used for the present measurements were the same as in our earlier works.<sup>1,3,6</sup> All substances were twice fractionally distilled in a high-efficiency Teflon rotor column. The samples were collected and stored under argon in glass ampules. The purity, checked by gas chromatography, was greater than 0.997. Densities, measured with a capillary pycnometer, and refractive indices, measured with a calibrated Abbe refractometer, thermostatted within 0.05 K, are compared in Table 1 with those reported in the literature together with normal boiling temperatures.

Apparatus and Procedure. The boiling temperature—liquid composition (T-x) results were obtained at constant pressure in a semimicroebulliometer. The detailed description of the apparatus

Table 1. Densities,  $\rho$ , Refractive Indices,  $n_D$ , at 293.13 K, and Normal Boiling Temperatures,  $T_b$ , of Pure Components

|                                                                                    | $\rho/l$                | $ ho/{ m kg} \cdot { m m}^{-3}$                                                      |                            | n <sub>D</sub>                                                                         | $T_{\rm b}/{ m K}$         |                                                                                        |  |
|------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|--|
| component                                                                          | expt                    | lit.                                                                                 | expt                       | lit.                                                                                   | expt                       | lit.                                                                                   |  |
| pentan-1-ol<br>pentyl acetate<br>nonane<br><sup>a</sup> Ref 10. <sup>b</sup> Ref 1 | 814.5<br>875.4<br>717.6 | 814.8 <sup><i>a</i></sup><br>875.3 <sup><i>a</i></sup><br>717.72 <sup><i>b</i></sup> | 1.4098<br>1.4027<br>1.4055 | 1.4100 <sup><i>a</i></sup><br>1.4028 <sup><i>a</i></sup><br>1.4054 <sup><i>b</i></sup> | 410.86<br>422.59<br>423.97 | 410.95 <sup><i>a</i></sup><br>422.35 <sup><i>a</i></sup><br>423.95 <sup><i>a</i></sup> |  |

Table 2. Isobaric Vapor-Liquid Equilibrium Data: Liquid Phase, Mole Fraction  $(x_1)$ , and Boiling Temperatures (T) in the Binary System Pentan-1-ol (1) + Pentyl Acetate (2)

|       |                  | T/K at P/kPa |           |            |  |  |  |  |  |
|-------|------------------|--------------|-----------|------------|--|--|--|--|--|
| $x_1$ | <i>P</i> = 26.66 | P = 53.33    | P = 79.99 | P = 101.32 |  |  |  |  |  |
| 0.000 | 380.05           | 400.72       | 414.20    | 422.59     |  |  |  |  |  |
| 0.100 | 378.25           | 398.62       | 411.91    | 420.18     |  |  |  |  |  |
| 0.200 | 376.97           | 397.00       | 410.07    | 418.16     |  |  |  |  |  |
| 0.306 | 375.70           | 395.31       | 408.08    | 415.97     |  |  |  |  |  |
| 0.391 | 375.08           | 394.41       | 406.98    | 414.80     |  |  |  |  |  |
| 0.485 | 374.59           | 393.74       | 406.09    | 413.44     |  |  |  |  |  |
| 0.593 | 374.40           | 393.00       | 405.12    | 412.60     |  |  |  |  |  |
| 0.697 | 374.31           | 392.61       | 404.48    | 411.87     |  |  |  |  |  |
| 0.785 | 374.38           | 392.44       | 404.14    | 411.37     |  |  |  |  |  |
| 0.871 | 374.78           | 392.49       | 403.98    | 411.10     |  |  |  |  |  |
| 0.928 | 375.09           | 392.58       | 403.96    | 410.98     |  |  |  |  |  |
| 1.000 | 375.63           | 392.70       | 403.80    | 410.86     |  |  |  |  |  |

and procedure has been reported previously.<sup>6,12</sup> The boiling temperature of the liquid was measured by a specially manufactured thermistor. The pressures were determined using a well-type mercury manometer. The liquid mixtures were prepared by

| Received:  | December 9, 2010  |
|------------|-------------------|
| Accepted:  | January 13, 2011  |
| Published: | February 22, 2011 |



**Figure 1.** Experimental boiling temperature,  $T_b - x_1$ , diagrams for pentan-1-ol (1) + pentyl acetate (2) at pressures: (a)  $\triangle$ , 26.66 kPa;  $\blacktriangle$ , 53.33 kPa; (b)  $\Box$ , 79.99 kPa;  $\blacksquare$ , 101.32 kPa. Calculated by the Wilson equation<sup>13</sup> curves:  $T_b - x_1$  (bold lines),  $T_b - y_1$  (thin lines).

Table 3. Values of  $(\lambda_{ij} - \lambda_{ii})/R$  (the Wilson Equation<sup>13</sup>), Standard Deviations ( $\sigma P$ ; eq 2), and Mean Relative Differences ( $\delta P$ ; eq 3) of Calculated Pressure for the Binary System Pentan-1-ol (1)–Pentyl Acetate (2)

|                                                             | <i>P</i> /kPa = 26.66 | <i>P</i> /kPa = 53.33 | <i>P</i> /kPa = 79.99 | <i>P</i> /kPa = 101.32 |
|-------------------------------------------------------------|-----------------------|-----------------------|-----------------------|------------------------|
| $(\lambda_{12} - \lambda_{11})/R/J \cdot mol^{-1}$          | 845.2                 | 616.1                 | 291.7                 | 71.5                   |
| $(\lambda_{21} - \lambda_{22})/R/J \cdot \mathrm{mol}^{-1}$ | 887.1                 | 759.0                 | 1046.8                | 1363.5                 |
| $\sigma P/\mathrm{kPa}$                                     | 0.095                 | 0.192                 | 0.288                 | 0.413                  |
| $100 \delta P$                                              | 0.249                 | 0.263                 | 0.265                 | 0.280                  |

# Table 4. Coefficients for the Antoine Vapor-PressureEquation (eq 4)

| component                                                      | $A_i$   | $B_i$    | $C_i$    | temperature region/K |
|----------------------------------------------------------------|---------|----------|----------|----------------------|
| pentan-1-ol <sup>a</sup>                                       | 13.2675 | 2277.432 | -147.537 | 375 to 415           |
| pentyl acetate <sup>b</sup>                                    | 14.018  | 3215.228 | -80.532  | 380 to 422           |
| nonane <sup>a</sup><br><sup>a</sup> Ref 4. <sup>b</sup> Ref 6. | 13.8546 | 3224.816 | -74.824  | 375 to 425           |

Table 5. Azeotropic Boiling Temperatures  $(T_{az})$  and Compositions  $(x_1^{az})$  of the Binary System Pentan-1-ol (1) + Pentyl Acetate (2)

| P/kPa          | $T_{\rm az}/{ m K}$ | $x_1^{az}$     |
|----------------|---------------------|----------------|
| 26.66<br>53.33 | 374.3<br>392.4      | 0.694<br>0.862 |
|                |                     |                |

weighing. The uncertainties in obtaining a boiling temperature, pressure, and liquid mole fraction were estimated to be less than 0.05 K, 13 Pa, and  $5 \cdot 10^{-4}$ , respectively.

# RESULTS AND DISCUSSION

The experimental T-x equilibrium data for the binary system pentan-1-ol + pentyl acetate at pressures (26.66, 53.33, 79.99, and 101.32) kPa are reported in Table 2 and presented in Figure 1.

The T-x data in binary systems were fitted with the Wilson model,<sup>13</sup> defined in the form

$$\ln \gamma_i = -\ln(x_i - \Lambda_{ik}x_k) + x_k \left[\frac{\Lambda_{ik}}{x_i + \Lambda_{ik}x_k} - \frac{\Lambda_{ki}}{x_k + \Lambda_{ki}x_i}\right] \quad (1)$$

where  $\gamma_i$  is the activity coefficient of component *i* in the liquid phase.

The Wilson parameters each of four experimental pressures are presented in Table 3.

Additionally Table 3 contains the standard deviation and mean relative error of pressure calculation.

Standard deviations  $\sigma P$  were calculated by

$$\sigma P = \left[\sum_{n=1}^{N} \left(P_{\text{calc}} - P_{\text{expt}}\right)^2 / (N - n)\right]^{1/2}$$
(2)

Table 6. Experimental Vapor-Liquid Equilibria Data for the Ternary System Pentan-1-ol (1) + Pentyl Acetate (2) + Nonane (3) at Four Pressures and Values Calculated by the Wilson Equation (eq 6): Activity Coefficients ( $\gamma_1$ ,  $\gamma_2$ , and  $\gamma_3$ ), Vapor Mole Fractions ( $y_1$  and  $y_2$ ), Excess Gibbs Energy ( $G^E$ ), Pressure ( $P_{calc}$ ), and Differences in Pressure ( $\Delta P = P_{calc} - P_{expt}$ )<sup>*a*</sup>

|       | experimental          | data                  |            |            |                |                       | calculated valu       | es                                |                        |                |
|-------|-----------------------|-----------------------|------------|------------|----------------|-----------------------|-----------------------|-----------------------------------|------------------------|----------------|
| $x_1$ | <i>x</i> <sub>2</sub> | $T_{\rm expt}/{ m K}$ | $\gamma_1$ | $\gamma_2$ | γ <sub>3</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | $G^{\rm E}/J \cdot { m mol}^{-1}$ | P <sub>calc</sub> /kPa | $\Delta P/kPa$ |
|       | $P/kP_2 = 26.66$      |                       |            |            |                |                       |                       |                                   |                        |                |
| 0.123 | 0.123                 | 371.58                | 2.778      | 1.256      | 1.066          | 0.286                 | 0.113                 | 623.9                             | 26.57                  | -0.09          |
| 0.425 | 0.426                 | 371.99                | 1.236      | 1.057      | 1.902          | 0.449                 | 0.336                 | 648.1                             | 26.55                  | -0.12          |
| 0.118 | 0.235                 | 372.38                | 2.449      | 1.169      | 1.109          | 0.248                 | 0.206                 | 649.0                             | 26.87                  | 0.20           |
| 0.267 | 0.534                 | 372.86                | 1.419      | 1.019      | 1.599          | 0.335                 | 0.417                 | 610.8                             | 26.70                  | 0.04           |
| 0.184 | 0.368                 | 371.72                | 1.842      | 1.058      | 1.267          | 0.286                 | 0.288                 | 739.3                             | 26.56                  | -0.11          |
| 0.137 | 0.726                 | 375.47                | 1.530      | 1.005      | 1.538          | 0.207                 | 0.614                 | 377.7                             | 26.84                  | 0.17           |
| 0.267 | 0.466                 | 372.05                | 1.481      | 1.022      | 1.513          | 0.338                 | 0.356                 | 698.1                             | 26.61                  | -0.05          |
| 0.424 | 0.152                 | 369.20                | 1.454      | 1.067      | 1.484          | 0.462                 | 0.108                 | 1031.7                            | 26.64                  | -0.03          |
| 0.234 | 0.117                 | 369.77                | 2.115      | 1.151      | 1.159          | 0.382                 | 0.092                 | 884.4                             | 26.56                  | -0.10          |
| 0.429 | 0.215                 | 369.59                | 1.384      | 1.056      | 1.575          | 0.455                 | 0.155                 | 961.1                             | 26.51                  | -0.15          |
| 0.587 | 0.294                 | 371.70                | 1.122      | 1.127      | 2.303          | 0.552                 | 0.243                 | 625.2                             | 26.71                  | 0.04           |
| 0.747 | 0.126                 | 370.95                | 1.062      | 1.213      | 2.738          | 0.640                 | 0.109                 | 608.5                             | 26.82                  | 0.16           |
| 0.437 | 0.281                 | 370.22                | 1.315      | 1.053      | 1.691          | 0.454                 | 0.207                 | 869.4                             | 26.51                  | -0.15          |
| 0.262 | 0.369                 | 371.14                | 1.598      | 1.037      | 1.395          | 0.344                 | 0.277                 | 798.7                             | 26.53                  | -0.14          |
| 0.578 | 0.133                 | 369.36                | 1.217      | 1.094      | 1.888          | 0.529                 | 0.098                 | 949.1                             | 26.73                  | 0.06           |
| 0.228 | 0.659                 | 374.59                | 1.394      | 1.015      | 1.673          | 0.301                 | 0.543                 | 446.7                             | 26.89                  | 0.22           |
| 0.488 | 0.269                 | 370.42                | 1.248      | 1.068      | 1.830          | 0.482                 | 0.201                 | 838.8                             | 26.67                  | 0.01           |
| 0.676 | 0.108                 | 369.76                | 1.124      | 1.143      | 2.249          | 0.580                 | 0.084                 | 826.5                             | 26.84                  | 0.17           |
| 0.250 | 0.250                 | 370.31                | 1.798      | 1.074      | 1.269          | 0.357                 | 0.189                 | 873.0                             | 26.45                  | -0.21          |
| 0.672 | 0.219                 | 371.63                | 1.082      | 1.176      | 2.565          | 0.605                 | 0.188                 | 590.4                             | 26.82                  | 0.15           |
| 0.151 | 0.566                 | 373.64                | 1.669      | 1.019      | 1.390          | 0.230                 | 0.455                 | 563.0                             | 26.73                  | 0.07           |
|       |                       |                       |            |            | P/kPa = 3      | 53.33                 |                       |                                   |                        |                |
| 0.123 | 0.123                 | 392.03                | 2.509      | 1.154      | 1.049          | 0.301                 | 0.107                 | 544.4                             | 53.44                  | 0.10           |
| 0.425 | 0.426                 | 391.16                | 1.187      | 1.028      | 1.802          | 0.480                 | 0.323                 | 560.2                             | 53.00                  | -0.33          |
| 0.118 | 0.235                 | 392.77                | 2.256      | 1.112      | 1.079          | 0.266                 | 0.201                 | 555.2                             | 52.63                  | 0.30           |
| 0.267 | 0.534                 | 392.64                | 1.337      | 1.006      | 1.510          | 0.357                 | 0.414                 | 531.2                             | 53.38                  | 0.05           |
| 0.184 | 0.368                 | 391.81                | 1.735      | 1.036      | 1.206          | 0.310                 | 0.287                 | 646.2                             | 53.20                  | -0.13          |
| 0.137 | 0.726                 | 395.66                | 1.402      | 1.002      | 1.448          | 0.215                 | 0.618                 | 323.4                             | 53.38                  | 0.05           |
| 0.267 | 0.466                 | 391.88                | 1.402      | 1.007      | 1.427          | 0.364                 | 0.352                 | 613.8                             | 53.38                  | 0.04           |
| 0.424 | 0.152                 | 388.24                | 1.408      | 1.017      | 1.409          | 0.502                 | 0.103                 | 945.6                             | 53.47                  | 0.14           |
| 0.234 | 0.117                 | 389.39                | 1.978      | 1.077      | 1.128          | 0.409                 | 0.087                 | 797.3                             | 53.31                  | -0.03          |
| 0.429 | 0.215                 | 388.67                | 1.341      | 1.015      | 1.488          | 0.495                 | 0.148                 | 873.6                             | 53.17                  | -0.16          |
| 0.587 | 0.294                 | 390.43                | 1.097      | 1.072      | 2.168          | 0.591                 | 0.226                 | 540.9                             | 53.39                  | 0.05           |
| 0.747 | 0.126                 | 389.26                | 1.052      | 1.119      | 2.516          | 0.686                 | 0.097                 | 548.4                             | 53.68                  | 0.34           |
| 0.437 | 0.281                 | 389.20                | 1.273      | 1.016      | 1.594          | 0.492                 | 0.198                 | 781.7                             | 52.87                  | -0.46          |
| 0.262 | 0.369                 | 390.85                | 1.519      | 1.015      | 1.321          | 0.373                 | 0.273                 | 707.7                             | 53.10                  | -0.23          |
| 0.578 | 0.133                 | 387.98                | 1.193      | 1.034      | 1.767          | 0.575                 | 0.091                 | 873.9                             | 53.45                  | 0.12           |
| 0.228 | 0.659                 | 394.53                | 1.295      | 1.006      | 1.586          | 0.315                 | 0.540                 | 377.8                             | 53.68                  | 0.34           |
| 0.488 | 0.269                 | 389.31                | 1.213      | 1.026      | 1.721          | 0.522                 | 0.191                 | 753.3                             | 53.23                  | -0.10          |
| 0.676 | 0.108                 | 388.04                | 1.110      | 1.068      | 2.083          | 0.628                 | 0.076                 | 761.2                             | 53.36                  | 0.03           |
| 0.250 | 0.250                 | 389.99                | 1.707      | 1.037      | 1.215          | 0.388                 | 0.184                 | 778.0                             | 53.06                  | -0.28          |
| 0.672 | 0.219                 | 390.12                | 1.065      | 1.102      | 2.392          | 0.647                 | 0.170                 | 515.0                             | 53.59                  | 0.26           |
| 0.151 | 0.566                 | 393.99                | 1.554      | 1.012      | 1.308          | 0.246                 | 0.460                 | 488.6                             | 53.54                  | 0.20           |
|       |                       |                       |            |            | P/kPa = 2      | 79.99                 |                       |                                   |                        |                |
| 0.123 | 0.123                 | 405.43                | 2.287      | 1.160      | 1.043          | 0.297                 | 0.110                 | 512.6                             | 80.08                  | 0.08           |
| 0.118 | 0.235                 | 406.19                | 2.066      | 1.114      | 1.073          | 0.263                 | 0.205                 | 528.8                             | 80.54                  | 0.54           |
| 0.267 | 0.534                 | 405.46                | 1.282      | 1.000      | 1.484          | 0.363                 | 0.413                 | 487.5                             | 79.77                  | -0.23          |
| 0.184 | 0.368                 | 404.93                | 1.631      | 1.034      | 1.194          | 0.312                 | 0.289                 | 611.7                             | 79.88                  | -0.12          |

603

#### Table 6. Continued

|                       | experimental o        | data                  | calculated values     |            |                |                       |                       |                                   |                        |                |
|-----------------------|-----------------------|-----------------------|-----------------------|------------|----------------|-----------------------|-----------------------|-----------------------------------|------------------------|----------------|
| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $T_{\rm expt}/{ m K}$ | $\gamma_1$            | $\gamma_2$ | γ <sub>3</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | $G^{\rm E}/J \cdot { m mol}^{-1}$ | P <sub>calc</sub> /kPa | $\Delta P/kPa$ |
| 0.137                 | 0.726                 | 408.95                | 1.320                 | 1.000      | 1.430          | 0.215                 | 0.622                 | 296.3                             | 80.13                  | 0.13           |
| 0.267                 | 0.466                 | 404.77                | 1.344                 | 1.000      | 1.403          | 0.371                 | 0.352                 | 570.6                             | 80.02                  | 0.02           |
| 0.424                 | 0.152                 | 400.59                | 1.379                 | 1.001      | 1.367          | 0.521                 | 0.101                 | 895.6                             | 80.10                  | 0.10           |
| 0.234                 | 0.117                 | 402.34                | 1.871                 | 1.079      | 1.112          | 0.415                 | 0.088                 | 750.1                             | 80.07                  | 0.07           |
| 0.429                 | 0.215                 | 401.09                | 1.313                 | 0.997      | 1.445          | 0.513                 | 0.145                 | 824.3                             | 79.78                  | -0.22          |
| 0.587                 | 0.294                 | 402.72                | 1.086                 | 1.040      | 2.089          | 0.611                 | 0.216                 | 493.0                             | 80.25                  | 0.25           |
| 0.747                 | 0.126                 | 401.06                | 1.050                 | 1.064      | 2.401          | 0.709                 | 0.090                 | 518.7                             | 80.34                  | 0.34           |
| 0.437                 | 0.281                 | 401.60                | 1.248                 | 0.998      | 1.548          | 0.509                 | 0.194                 | 732.1                             | 79.22                  | -0.78          |
| 0.262                 | 0.369                 | 403.76                | 1.453                 | 1.009      | 1.300          | 0.381                 | 0.274                 | 664.7                             | 79.77                  | -0.23          |
| 0.578                 | 0.133                 | 400.14                | 1.184                 | 1.000      | 1.695          | 0.599                 | 0.087                 | 832.3                             | 80.30                  | 0.30           |
| 0.228                 | 0.659                 | 407.51                | 1.236                 | 1.002      | 1.558          | 0.319                 | 0.541                 | 337.8                             | 80.24                  | 0.24           |
| 0.488                 | 0.269                 | 401.66                | 1.193                 | 1.002      | 1.666          | 0.541                 | 0.185                 | 704.4                             | 79.84                  | -0.16          |
| 0.676                 | 0.108                 | 399.98                | 1.106                 | 1.021      | 1.987          | 0.653                 | 0.072                 | 727.9                             | 80.01                  | 0.01           |
| 0.250                 | 0.250                 | 402.88                | 1.625                 | 1.034      | 1.196          | 0.395                 | 0.185                 | 734.3                             | 79.66                  | -0.34          |
| 0.672                 | 0.219                 | 402.11                | 1.059                 | 1.058      | 2.294          | 0.669                 | 0.161                 | 473.9                             | 80.23                  | 0.23           |
| 0.151                 | 0.566                 | 407.19                | 1.460                 | 1.010      | 1.295          | 0.247                 | 0.463                 | 459.8                             | 80.27                  | 0.27           |
|                       |                       |                       |                       |            | P/kPa = 1      | .01.32                |                       |                                   |                        |                |
| 0.123                 | 0.123                 | 413.85                | 2.206                 | 1.128      | 1.040          | 0.298                 | 0.108                 | 488.6                             | 101.62                 | 0.29           |
| 0.118                 | 0.235                 | 414.54                | 2.005                 | 1.087      | 1.068          | 0.266                 | 0.202                 | 496.5                             | 101.78                 | 0.45           |
| 0.184                 | 0.368                 | 413.16                | 1.612                 | 1.019      | 1.175          | 0.321                 | 0.287                 | 573.8                             | 101.16                 | -0.17          |
| 0.137                 | 0.726                 | 417.13                | 1.336                 | 1.000      | 1.348          | 0.224                 | 0.622                 | 279.5                             | 101.24                 | -0.09          |
| 0.267                 | 0.466                 | 412.77                | 1.344                 | 0.996      | 1.353          | 0.383                 | 0.351                 | 542.3                             | 101.23                 | -0.10          |
| 0.424                 | 0.152                 | 408.37                | 1.374                 | 0.980      | 1.342          | 0.534                 | 0.098                 | 870.4                             | 101.86                 | 0.52           |
| 0.234                 | 0.117                 | 410.37                | 1.833                 | 1.051      | 1.104          | 0.422                 | 0.086                 | 722.4                             | 101.51                 | 0.18           |
| 0.429                 | 0.215                 | 408.78                | 1.311                 | 0.983      | 1.411          | 0.527                 | 0.142                 | 798.5                             | 101.07                 | -0.27          |
| 0.587                 | 0.294                 | 410.21                | 1.089                 | 1.042      | 1.980          | 0.625                 | 0.214                 | 489.4                             | 101.57                 | 0.24           |
| 0.747                 | 0.126                 | 408.35                | 1.053                 | 1.058      | 2.314          | 0.722                 | 0.088                 | 516.4                             | 101.68                 | 0.35           |
| 0.437                 | 0.281                 | 409.31                | 1.248                 | 0.990      | 1.499          | 0.524                 | 0.192                 | 708.9                             | 100.38                 | -0.95          |
| 0.262                 | 0.369                 | 411.78                | 1.445                 | 0.999      | 1.270          | 0.392                 | 0.271                 | 630.7                             | 100.97                 | -0.36          |
| 0.578                 | 0.133                 | 407.58                | 1.186                 | 0.983      | 1.650          | 0.614                 | 0.084                 | 816.7                             | 101.59                 | 0.25           |
| 0.228                 | 0.659                 | 415.60                | 1.248                 | 1.004      | 1.459          | 0.330                 | 0.539                 | 330.3                             | 101.87                 | 0.53           |
| 0.488                 | 0.269                 | 409.22                | 1.196                 | 0.996      | 1.607          | 0.556                 | 0.183                 | 685.4                             | 100.87                 | -0.46          |
| 0.676                 | 0.108                 | 407.39                | 1.109                 | 1.005      | 1.928          | 0.668                 | 0.070                 | 719.6                             | 101.48                 | 0.15           |
| 0.250                 | 0.250                 | 410.86                | 1.604                 | 1.015      | 1.181          | 0.404                 | 0.182                 | 699.9                             | 100.76                 | -0.57          |
| 0.672                 | 0.219                 | 409.51                | 1.063                 | 1.059      | 2.186          | 0.682                 | 0.159                 | 472.1                             | 101.61                 | 0.27           |
| 0.151                 | 0.566                 | 415.49                | 1.460                 | 1.004      | 1.253          | 0.256                 | 0.463                 | 425.7                             | 101.56                 | 0.23           |
| <sup>a</sup> The mean | n relative abs        | olute difference      | $e(\delta P)$ is 0.34 | 45.        |                |                       |                       |                                   |                        |                |

where  $P_{\text{calc}}$  and  $P_{\text{expt}}$  are the calculated and experimental values of the total pressure, respectively, N is the number of experimental points, and n is the number of parameters in correlation models.

The mean relative error  $\delta P$  between experimental and calculated pressure is defined as:

$$\delta P = \frac{1}{N} \sum_{n=1}^{N} |(P_{\text{expt}} - P_{\text{calc}})/P_{\text{expt}}| \cdot 100$$
(3)

The saturated vapor pressures of pure components  $P_i^0$  were calculated by the Antoine equation

$$\ln(P_i^0/kPa) = A_i - \frac{B_i}{T/K + C_i}$$
(4)

The coefficients  $A_{ii}$ ,  $B_{ij}$ , and  $C_i$  are reported in Table 4.

The experimental VLE data indicate the existence of a minimum boiling azeotrope in the binary system pentan-1-ol + pentyl acetate at the pressures (26.66 and 53.33) kPa but did not at the higher pressures. Holley<sup>9</sup> showed that the system forms an azeotrope at the pressure 102.66 kPa; Lewell and Kristmanson<sup>8</sup> indicated that the system is nonazeotropic at the pressure 100.765 kPa. Berg et al.<sup>14</sup> found also that the system is non-azeotropic at the pressure 101.32 kPa.

The azeotropic points have been determined from the function

$$\alpha_{12} = \frac{y_1 / y_2}{x_1 / x_2} \tag{5}$$

where  $y_i$  is the mole fraction of component *i* in the vapor phase, calculated by the Wilson equation and solving for  $\alpha_{12} = 1$ .

Azeotropic parameters at pressures (26.66 and 53.33) kPa for

the system pentan-1-ol + pentyl acetate are presented in Table 5. The isobaric VLE data for the ternary system are given in Table 6.

Experimental T-x are presented together with calculated values of



**Figure 2.** Boiling temperature isotherms calculated by the Wilson equation<sup>13</sup> for pentan-1-ol (1) + pentyl acetate (2) + nonane (3) at 26.66 kPa. Bold lines in Gibbs triangle: isotherms at (369, 370, 372, 374, and 376) K.

activity coefficients, vapor compositions, excess Gibbs energy, and total pressures predicted by the Wilson equation. For example, the values of activity coefficients in the ternary systems can be calculated from eq 6.

$$\gamma_{i} = \exp\left[1 - \ln\left(\sum_{j=1}^{3} x_{j} \Lambda_{ij}\right) - \sum_{k=1}^{3} \frac{x_{k} \Lambda_{ki}}{\sum\limits_{j=1}^{3} x_{j} \Lambda_{kj}}\right]$$
(6)

In Figure 2, the predicted boiling temperature isotherms for the ternary system at 26.66 kPa are presented on the Gibbs triangle. However, all of the binaries form at 26.66 kPa the minimum boiling azeotropes (pentan-1-ol + pentyl acetate (Table 5), pentan-1-ol + nonane,<sup>3</sup> pentyl acetate + nonane<sup>6</sup>), and quite a considerable deviation from Raoult's law exists, but the ternary system does not exhibit an azeotropic behavior.

### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: enn.siimer@staff.ttu.ee.

#### REFERENCES

(1) Siimer, E.; Kirss, H.; Kuus, M.; Kudryavtseva, L. Isobaric Vapor-Liquid Equilibrium in the Ternary System *o*-Xylene + Nonane + Cyclohexanol. J. Chem. Eng. Data **2002**, 47, 52–55.

(2) Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor-Liquid Equilibria of the Ternary System Methylbutyl Ketone + Nonane + Cyclohexanol. *J. Chem. Eng. Data* **2005**, *50*, 309–311.

(3) Kirss, H.; Siimer, E.; Kuus, M. Isobaric Vapor-Liquid Equilibria of the Ternary System Methylbutyl Ketone + 1-Pentanol + Nonane. *J. Chem. Eng. Data* **2006**, *51*, 153–156.

(4) Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor-Liquid Equilibria of the Ternary System Dibutyl Ether + 1-Pentanol + Nonane. *J. Chem. Eng. Data* **2006**, *51*, 1887–1891.

(5) Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor-Liquid Equilibria of the Ternary System 1-Pentanol + Nonane + Anisole. *J. Chem. Eng. Data* **2008**, *53*, 310–314.

(6) Kirss, H.; Siimer, E.; Kuus, M.; Kudryavtseva, L. Isobaric Vapor-Liquid Equilibria in the System o-Xylene + Amyl Acetate + Nonane. J. Chem. Eng. Data **2001**, *46*, 147–150.

(7) Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor-Liquid Equilibria of the Ternary System Toluene + Ethylbenzene + Amyl Acetate. *J. Chem. Eng. Data* **2004**, *49*, 465–467.

(8) Lewell, P. A.; Kristmanson, D. D. Vapor-Liquid Equilibria in Mixtures of n-Alcohols and Their Esters. *AIChE J.* **1967**, *13*, 814–815.

(9) Holley, C. D. Liquid Mixtures of Minimum Boiling Point. J. Am. Chem. Soc. **1902**, 24, 448–457.

(10) Dean, J. A. Lange's Handbook of Chemistry, 14th ed.; McGraw-Hill: New York, 1992.

(11) TRC Databases for Chemistry and Engineering: Thermodynamic Tables, version 1996-2S; Thermodynamic Research Center, Texas A&M University System: College Station, TX, 1996.

(12) Mihkelson, V.; Kirss, H.; Kudryavtseva, L.; Eisen, O. Vapor-Liquid Equilibrium *T-x* Measurements by a New Semi-Micro Method. *Fluid Phase Equilib.* **1977/1978**, *1*, 201–209.

(13) Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for Excess Free Energy of Mixing. J. Am. Chem. Soc. **1964**, 86, 127–130.

(14) Berg, L.; Yeh, A.-I. The Breaking of Ternary Acetate– Alcohol–Water Azeotropes by Extractive Distillation. *Chem. Eng. Commun.* **1986**, *48*, 93–101.