JOURNAL OF Chemical & ENGINEERING **DATA**

Isothermal Vapor-Liquid Equilibrium of (1-Butanol + 1,8-Cineole) at 10 Temperatures between (278.15 and 323.15) K

Beatriz Gimeno, Marcos Torcal, Ana M. Mainar, and Pascual Perez*

Group of Applied Thermodynamics and Surfaces (GATHERS), Aragon Institute for Engineering Research (I3A), Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain

ABSTRACT: Vapor pressures of (1-butanol + 1,8-cineol) at 10 temperatures between (278.15 and 323.15) K were measured by a static method. The reduction of the vapor pressures for obtaining activity coefficients and excess molar Gibbs energies was carried out by fitting the vapor pressure data to the Wilson equation according with Barker's method. Four equations of state (EOS) were used to correlate the vapor-liquid equilibrium (VLE) and for describing the volumetric behavior of the mixture. Two of them are modifications of the temperature-dependent function $\alpha(T_r)$ in the attractive term of Peng–Robinson equation as proposed by Mathias (PRM) and by Stryjek–Vera (PRSV). In both cases a volume translation (VT) according to Peneloux was considered. The other two models applied are based on the theory of perturbations: statistical associating fluid theory (SAFT) and perturbed-chain statistical associating fluid theory (PC-SAFT). The best description of the phase equilibrium was achieved by the Stryjek-Vera modification, whereas SAFT and PC-SAFT provided the best volumetric results.

■ INTRODUCTION

1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octane (1,8-cineole or eucalyptol) is a very common terpenoid in essential oils. Essential oils are natural products obtained from aromatic plants with many applications in cosmetic, pharmaceutical, and food industries.

On the other hand, in the supercritical fluid extraction, alkanols of short chain are commonly employed as modifiers. These modifiers are added to the carbon dioxide to increase the polarity of the solvent, thus improving its performance in separating the most polar components. 1,8-Cineole is not a very polar compound, but the presence of the modifier could affect its extraction. In this sense information about the thermophysical behavior of mixtures (1-alkanol + 1, 8-cineole), and models or equations of state to describe them in wide conditions, could be of interest for those extraction processes, even if the temperature and pressure conditions are rather different.

In previous papers¹⁻³ we reported the values of some thermophysical properties for the systems (1-alkanol ranging from ethanol to 1-pentanol + 1,8-cineole). Then we report here vapor pressures at 10 temperatures between (278.15 and 323.15) K of (1-butanol + 1,8-cineole). As far as we know, there are no data available in the open literature on vapor pressures of this binary system. From the vapor-liquid equilibrium (VLE), the activity coefficients and the excess molar Gibbs energies were determined.

Four equations of state (EOS) have been tested to describe the VLE of the system. Two of them cubic in the molar volume (Peng-Robinson-Mathias,⁴ PRM, and Peng-Robinson-Stryjek-Vera,⁵ PRSV) were used with volume translation (VT) according to Peneloux,⁶ and the other two were based on perturbation models, statistical associating fluid theory (SAFT)⁷ and perturbed-chain statistical association fluid theory (PC-SAFT).⁸ The interaction parameters, k_{ij} , were adjusted to VLE experimental data, showing a lineal dependence with temperature.

Table 1.	Molar	Volumes	V° and	Vapor	Pressures	P°	of Pure
Compou	nds; Ex	perimenta	l and I	Literatu	ire Values		

	1-bi	ıtanol		1,8-cineole					
	$V^{\circ} \cdot 10^{6} / \text{m}^{3} \cdot \text{mol}^{-1}$	P	°/Pa		$V^{\circ} \cdot 10^{6} / \text{m}^{3} \cdot \text{mol}^{-1}$	₽°/Pa			
T/K	lit. ^{a,b}	exp. ^a	lit. ^c	exp. ^a	lit.	exp. ^a	lit. ⁱ		
278.15	90.3	200	189	164.6	-	71	-		
283.15	90.7	306	286	165.3	-	93	-		
288.15	91.1	452	427	166.1	-	130	133		
293.15	91.5	664	625	166.9	167.5 ^{<i>d</i>} ; 167.6 ^{<i>e</i>,<i>f</i>,<i>g</i>}	178	-		
298.15	92.0	939	901	167.7	-	253	-		
303.15	92.4	1316	1280	168.5	-	346	-		
308.15	92.8	1831	1793	169.2	-	477	-		
313.15	93.3	2526	2477	170.0	170.0 ^{e,h}	627	-		
318.15	93.7	3435	3380	170.9	-	828	-		
323.15	94.2	4545	4556	171.7	-	1101	-		
Used in t	he Barker a	nalysis	. ^b Ref	16. ^c Re	ef 17. ^{<i>d</i>} Ref 3. ^{<i>e</i>} R	ef 2. ^{<i>f</i>} F	Ref 18.		

^g Ref 19. ^h Ref 20. ⁱ Ref 21.

EXPERIMENTAL SECTION

Materials. 1-Butanol and 1,8-cineole were supplied by Aldrich (mole fraction purity > 0.998 and > 0.990, respectively). All of the chemicals were of low water content, stored over molecular sieve (4 Å), and used without further purification. The mass fraction purity was checked by gas chromatography and found to be 0.9999 for 1-butanol and 0.9970 for 1,8-cineole.

Received:	January 5, 2011
Accepted:	February 12, 2011
Published:	March 04, 2011

Table 2. Values of the Vapor Pressure *P*, Deviations $\Delta P = P - P_{calc}$, Activity Coefficients γ_1 and γ_2 , and Excess Molar Gibbs Energies G_m^E

	Р	ΔP			$G_{\mathrm{m}}^{\mathrm{E}}$		Р	ΔP			$G_{\mathrm{m}}^{\mathrm{E}}$
<i>x</i> ₂	Pa	Pa	γ_1	γ_2	$J \cdot mol^{-1}$	<i>x</i> ₂	Pa	Pa	γ_1	γ_2	$J \cdot mol^{-1}$
					1-Butanol (1) -	+ 1,8-Cineole (2	2)				
		_			T/K=	= 278.15		_			
0.0771	196	0	1.0035	1.8330	115	0.5995	147	-5	1.2877	1.1571	436
0.1369	195	4	1.0112	1./196	194	0.6508	146	-1	1.3571	1.1212	419
0.1976	190	3	1.0239	1.6160	263	0.6810	142	-1	1.4041	1.1023	404
0.2/30	102	1	1.04/5	1.3011	280	0.9952	120	-2	1.3655	1.0334	201
0.5467	161	-2	1.0804	1.4020	569 441	0.00346	05	5	2 1012	1.0147	123
0.4037	102	2	1.1/11	1.2331	TT1	0.9540	25	1	2.1012	1.0050	125
0.0771	210	12	1.0026	1 0 2 0 2	1/K=	= 283.15	210	2	1 2007	1 15 40	442
0.07/1	310	13	1.0036	1.8383	118	0.5995	219	-3	1.2896	1.1549	443
0.1309	292	3 15	1.0114	1./223	198	0.6508	215		1.558/	1.1194	425
0.1970	290	15	1.0244	1.0109	209	0.0810	182	-3	1.4034	1.1005	228
0.2/30	2/1	-6	1.0405	1.3003	342	0.8852	152	3	1.3040	1.0323	203
0.3487	233	-2	1.0810	1.4002	397 456	0.00346	133	3	2 0800	1.0145	124
0.4037	240	2	1.1005	1.2300	-150 /T/ /T/	200.15	155	т	2.0070	1.0040	124
		_			T/K=	= 288.15					
0.0771	442	5	1.0037	1.8485	122	0.5995	352	29	1.2930	1.1507	448
0.1369	429	3	1.0119	1./2/3	204	0.6508	308	-1	1.3015	1.115/	429
0.1976	424	11	1.0253	1.0181	2/6	0.6810	285	-15	1.4075	1.0972	413
0.2/30	388	-10	1.0499	1.4984	350	0.9952	201	-0	1.5828	1.0502	202
0.3467	3/0	-4	1.0659	1.3904	405	0.00346	191	。 	2.0626	1.0150	124
0.4037	545	,	1.1704	1.2739	430	0.9540	101	2	2.0020	1.0040	127
					<i>T</i> /K =	= 293.15					
0.0771	640	0	1.0037	1.8410	123	0.5995	478	12	1.2910	1.1490	452
0.1369	635	13	1.0119	1.7208	206	0.6508	441	-3	1.3587	1.1143	432
0.19/6	595	-8	1.0252	1.0123	2/9	0.6810	428	-2	1.4042	1.0960	410
0.2/30	500	-13	1.049/	1.4930	333	0.9952	383	2	1.5//1	1.0495	342
0.5467	510	-1	1.0655	1.3924	409	0.00346	240	-7	2.0491	1.0154	124
0.4837	510	1	1.1/34	1.2432	400	0.9340	249	/	2.0401	1.0045	124
0.0771	000	2	1 0020	1.0204	1/K=	= 298.15	(())	0	1 2007	1 1 4 5 5	455
0.0771	909	3 22	1.0038	1.8394	125	0.5995	608	9	1.2907	1.1455	455
0.1509	901	-10	1.0121	1./1/4	209	0.6911	507	0 —11	1.55/5	1.1114	455
0.1970	807	-12	1.0230	1.0079	263	0.7742	537	-7	1.4022	1.0755	3/3
0.3487	789	4	1.0303	1.4803	414	0.8852	434	8	1.8561	1.0400	204
0.4857	718	-2	1.1761	1.2387	464	0.9346	359	-3	2.0243	1.0043	124
	,	_			т/V -	- 202 15	007	0			
0.0771	1278	10	1.0027	1 8242	1/K=	0 5006	008	_7	1 2964	1 1/22	156
0.1260	1278	24	1.0037	1.0242	210	0.5990	900	11	1.2004	1.1432	430
0.1976	1185	2 4 -7	1.0119	1.7079	210	0.6811	840	-3	1.3960	1.1097	419
0.2736	1143	0	1.0496	1.4804	359	0.7742	742	-2	1.5616	1.0472	344
0.3487	1089	-6	1.0831	1.3810	415	0.8852	604	16	1.8401	1.0127	205
0.4858	997	-5	1.1736	1.2350	466	0.9346	480	-17	2.0041	1.0042	124
		-			T/V -	- 308 15					
0.0771	1774	11	1 0037	1 8142	1/K = 126	0 5004	1257	-10	1 2826	1 1400	150
0.1369	1730	20	1.0037	1.6142	211	0.5770	1237	7	1.2000	1.1407	437
0.1976	1654	-2.	1.0251	1.5899	286	0.6811	1164	-2.	1.3915	1.0904	42.1
0.2736	1596	28	1.0493	1.4739	362	0.7742	1034	5	1.5540	1.0463	345
		-			2			-			0.0

Table 2. Continued

	Р	ΔP			$G_{\mathrm{m}}^{\mathrm{E}}$		Р	ΔP			$G_{\mathrm{m}}^{\mathrm{E}}$
<i>x</i> ₂	Pa	Pa	γ_1	γ_2	$J \cdot mol^{-1}$	<i>x</i> ₂	Pa	Pa	γ_1	γ_2	$J \cdot mol^{-1}$
0.3487	1518	-2	1.0826	1.3756	417	0.8853	814	4	1.8259	1.0125	205
0.4858	1377	-12	1.1722	1.2314	468	0.9347	680	-5	1.9852	1.0041	125
					<i>T</i> /K =	313.15					
0.0771	2435	8	1.0037	1.8057	128	0.5996	1724	1	1.2812	1.1390	461
0.1369	2377	26	1.0118	1.6886	213	0.6509	1643	6	1.3450	1.1063	441
0.1976	2277	4	1.0250	1.5834	288	0.6812	1580	-2	1.3877	1.0891	423
0.2737	2169	-8	1.0491	1.4686	364	0.7743	1369	-20	1.5477	1.0456	347
0.3488	2076	-4	1.0821	1.3712	420	0.8853	1102	15	1.8142	1.0123	206
0.4858	1894	-1	1.1710	1.2284	472	0.9347	915	2	1.9698	1.0041	125
					T/K =	318.15					
0.0771	3304	7	1.0037	1.7958	128	0.5997	2330	9	1.2784	1.1357	462
0.1370	3168	-22	1.0118	1.6792	215	0.6510	2215	14	1.3411	1.1036	441
0.1977	3088	6	1.0250	1.5747	290	0.6812	2124	-2	1.3828	1.0868	423
0.2737	2935	-13	1.0490	1.4608	366	0.7743	1858	-3	1.5387	1.0443	346
0.3488	2809	-4	1.0819	1.3645	422	0.8853	1440	-8	1.7961	1.0119	205
0.4859	2557	0	1.1699	1.2236	473	0.9347	1213	1	1.9453	1.0039	125
					T/K =	323.15					
0.0771	4392	31	1.0036	1.7843	129	0.5997	3060	-7	1.2750	1.1358	466
0.1370	4253	34	1.0116	1.6708	216	0.6511	2917	7	1.3373	1.1038	445
0.1977	4082	5	1.0245	1.5688	291	0.6813	2833	23	1.3789	1.0870	428
0.2737	3891	-7	1.0481	1.4572	368	0.7744	2453	-8	1.5345	1.0445	350
0.3488	3708	-12	1.0804	1.3624	425	0.8854	1924	6	1.7923	1.0120	208
0.4860	3358	-22	1.1674	1.2231	477	0.9348	1596	-12	1.9424	1.0040	126

Apparatus and Procedures. The vapor pressure measurements were performed by a static method. The apparatus is similar to that of Marsh,⁹ except for some experimental details which have been described previously.^{10,11} To prevent condensation effects on the mercury meniscus, the temperature of the manometer and the connecting tube containing the vapor phase was maintained at 325.0 K by circulating water thermostatted to within \pm 0.1 K. The cell volume was about 12 cm³, and 8 cm³ to 10 cm³ of sample was used in each experiment. Each liquid was degassed by magnetic stirring under its own vapor pressure before mixing. They were added successively, by gravity, into the cell immersed in liquid nitrogen. The masses of both components were determined by weighing, and the expanded uncertainty in the mole fraction is 0.0003 (coverage factor k = 2). Manometric levels were read with a cathetometer to within \pm 0.01 mm, and pressure reproducibility was 10 Pa. The temperature of the liquid was measured by means of a digital thermometer A $\Sigma\Lambda$ with a Pt sensor, with an uncertainty of \pm 0.01 K.

Densities to calculate molar volumes were obtained by means of a vibrating tube densimeter Anton Paar DMA 5000. The expanded uncertainty (k = 2) of this property is $\pm 0.04 \text{ kg} \cdot \text{m}^{-3}$. A comparison between experimental and literature data of densities of 1,8-cineole at atmospheric pressure is reported in Table 1. It can be observed that there is a good agreement between both sets of values.

RESULTS AND DISCUSSION

The molar volumes of the pure components used in the Barker analysis together with the experimental vapor pressures, which are compared with values calculated from equations found in the literature, are presented in Table 1. Experimental vapor pressure data of 1-butanol and 1,8-cineole at 10 temperatures between (278.15 and 323.15) K were fitted to the Antoine equations

1-butanol :
$$\ln(P/Pa) = 22.34191 - \frac{3421.246}{T/K - 77.34400}$$
 (1)

1,8-cineole :
$$\ln(P/Pa) = 38.40231 - \frac{17305.69}{T/K + 228.2116}$$
 (2)

Vapor pressures obtained from eqs 1 and 2 show a standard deviation of 12 Pa and a maximum deviation of 25 Pa at 318.15 K for 1-butanol and a standard deviation of 8 Pa and a maximum deviation of 14 Pa at 308.15 K for 1,8-cineole.

The second virial coefficient, at T = 325.0 K, of 1-butanol $(B_{11} = -3918 \cdot 10^{-6} \text{ m}^3 \cdot \text{mol}^{-1})$ and 1,8-cineole $(B_{22} = -5490 \cdot 10^{-6} \text{ m}^3 \cdot \text{mol}^{-1})$ were calculated from the Tsonopoulos¹² correlation. The mixed virial coefficient was calculated according to a cubic combination rule

$$B_{12} = \frac{1}{8} (B_{11}^{1/3} + B_{22}^{1/3})^3 \tag{3}$$

Table 2 shows our vapor pressure measurements along with the activity coefficients and γ_1 , γ_2 , and the excess molar Gibbs free energy $G_{\rm E}^{\rm m}$ values fitted by Barker's method¹³ to the Wilson¹⁴ correlation. The activity coefficients are given by

$$\ln \gamma_{1} = -\ln(x_{1} + \Lambda_{12}x_{2}) + x_{2} \left[\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{21}}{\Lambda_{21}x_{1} + x_{2}} \right]$$
(4)

Table 3. Parameters and Standard Deviations s(Pa) of eqs 4, 5, and 11

	1-bu	utanol (1) + 1,8-cineole	(2)
T/K	Λ_{12}	Λ_{21}	s/Pa
278.15	0.5395	0.4146	9
283.15	0.5482	0.4120	10
288.15	0.5525	0.4106	11
293.15	0.5474	0.4173	9
298.15	0.5490	0.4227	16
303.15	0.5620	0.4172	15
308.15	0.5759	0.4094	16
313.15	0.5873	0.4043	15
318.15	0.6063	0.3920	16
323.15	0.6160	0.3909	25

$$\ln \gamma_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right]$$
(5)

with:

$$\Lambda_{ij} = \frac{V_j^0}{V_i^0} \exp\left(-\frac{\lambda_{ij} - \lambda_{ii}}{RT}\right) \tag{6}$$

where the subscripts 1 and 2 stand for 1-butanol and 1,8-cineole, respectively, V° is the molar volume, and λ 's are the interaction constants between the molecules designated in the subscripts. The vapor pressure is then given by

$$P_{\text{calc}} = x_1 \gamma_1 P_1^{\circ} R_1 + x_2 \gamma_2 P_2^{\circ} R_2 \tag{7}$$

where the nonideality of the vapor phase is accounted for with the corrections

$$R_{1} = \exp\{[(V_{1}^{o} - B_{11})(P - P_{1}^{o}) - P\delta_{12}y_{2}^{2}]/RT\}$$
(8)

$$R_{2} = \exp\{[(V_{2}^{o} - B_{22})(P - P_{2}^{o}) - P\delta_{12}y_{1}^{2}]/RT\}$$
(9)

where y_1 and y_2 are the vapor phase mole fractions of 1-butanol and 1,8-cineole, respectively, and δ_{12}

$$\delta_{12} = 2B_{12} - B_{11} - B_{22} \tag{10}$$

For a given composition, the sample temperature is changed, and a slight variation of the true liquid mole fraction may be detected in Table 2, according to the variable composition of the vapor phase. In Table 3, the Wilson parameters Λ_{12} and Λ_{21} are collected, together with the standard deviations defined by

$$s(Pa) = \left\{ \sum_{i=1}^{N} (\Delta P)_{i}^{2} / (N-m) \right\}^{1/2}$$
(11)

 $\Delta P'$ s are the residual pressures according to Barker's method, N is the number of experimental points, and m is the number of parameters in the corresponding analytical equation. Vapor pressure—liquid composition curves are shown in Figure 1. Figure 2 shows the analytic results for $G_{\rm m}^{\rm E}$.

We tested the consistency of the enthalpies and free energies by means of the Gibbs—Helmholtz equation. We have fitted G_m^E/T data with a second-degree polynomial in 1/T, and according to the Gibbs—Helmholtz equation the derivative gives H_m^E . The H_m^E

Figure 1. Vapor pressures plotted against liquid-phase composition of 1,8-cineole, at working temperatures between (278.15 and 323.15) K; \bullet , experimental data; —, eq 7, for 1-butanol (1) + 1,8-cineole (2).

Figure 2. Excess molar Gibbs energies G_m^E at temperatures between (278.15 and 323.15) K, for 1-butanol (1) + 1,8-cineole (2), plotted as a function of mole fraction of 1,8-cineole.

values, calculated at T = 298.15 K, are shown as curves in Figure 3 together with the H_m^E experimental data found in the literature. The agreement is reasonable considering that the quantitative evaluation of H_m^E from vapor pressures involves considerable

Figure 3. Thermal excess molar functions, at 298.15 K for 1-butanol (1) + 1,8-cineole (2): \bullet , experimental H_m^E (ref 2); —, Gibbs-Helmholtz H_m^E , G_m^{EV} and TS_m^E .

 Table 4. Pure Component Properties and Parameters Used for the Application of the Studied Equations of State

		$M_{ m w}$	$T_{\rm b}$	$T_{\rm c}$	$P_{\rm c}$	
	g٠r	nol ⁻¹	K	K	MPa	ω
1,8-cineole ^a 1-butanol ^b	15 7	4.25 4.122	449.6 390.88	661.12 563.05	2 3.01 5 4.42	9 0.338 3 0.590
PRM-VT		\boldsymbol{P}_1		c/b		range T/K
1,8-cineole ^c 1-butanol ^c		-0.00351 -0.31760	8 19	-0.08649 0.00953	91 33	278-450 278-450
PRSV-VT		k_{ap}		c/b		range T/K
1,8-cineole ^c 1-butanol ^c		0.007355 0.277918		-0.08642 0.00867	.7 '7	278-450 278-450
		$v^{\circ \circ}$	u°•k ⁻	-1	$\epsilon \cdot k^{-1}$	
SAFT	т	$L \cdot mol^{-1}$	K	К	К	range T/K
1,8-cineole ^c 1-butanol ^d	4.842 3.971	0.0178 0.0120	263.4 225.9	-3 - 96 0.01639	2605	278-450 313-493
		$\sigma_{\rm i}$	$\in_{ij} \cdot k^{-1}$		$\in^{A_iB_i} \cdot k^{-1}$	_
PC-SAFT	m_i	Å	K	$k^{A_iB_i}$	K	range T/K
1,8-cineole ^c 1-butanol ^e ^a Ref 1. ^b Dat	3.213 2.751 abase f	4.1566 3.6139 rom PE re	301.92 259.59 ef 22. ^c Tl	- 0.006692 nis work. '	- 2544.6 ¹ Ref 7. ^e Re	278-450 184-563 ef 8.

uncertainty.¹⁵ In the same figure and at the same temperature, TS_m^E curves, obtained from $TS_m^E = H_m^E - G_m^E$, are also plotted.

Equations of State (EOS). Four EOS were tested to describe the phase equilibrium and the volumetric behavior of the 1-butanol (1) + 1,8-cineole (2) mixture. Two of them are modifications of

Table 5. Values of the Coefficients a and b in eq 12 and Regression Coefficient, R

model	а	Ь	R^2
PRM	0.0923	$-2.6356 \cdot 10^{-4}$	0.998
PRSV	-0.0184	$9.238 \cdot 10^{-5}$	0.980
SAFT	-0.0445	$1.5491 \cdot 10^{-4}$	0.993
PC-SAFT	-0.0516	$1.2805 \cdot 10^{-4}$	0.985

Figure 4. Isothermal vapor liquid equilibrium of the 1-butanol (1) + 1,8-cineole (2) system. Full symbols experimental data: \blacksquare , *T* = 278.25 K; \blacktriangle , *T* = 298.15 K; \blacklozenge , *T* = 323.15 K. Open symbols were obtained from the Wilson equation. Lines, EOS correlations: —, PRM-VT; — —, PRSV-VT; · · · · , SAFT; – · – · –, PC-SAFT.

the temperature-dependent function $\alpha(T_r)$ in the attractive term of Peng–Robinson equation as proposed by Mathias (PRM)⁴ and by Stryjek–Vera (PRSV).⁵ To improve the volumetric results, VT according to Peneloux⁶ was considered in both modifications. The other two models applied are based on the theory of perturbations: SAFT⁷ and PC-SAFT.⁸

The properties of the pure compounds used in this work are gathered in Table 4. The cubic EOS parameters for 1,8-cineole and 1-butanol were calculated from the correlation of vapor pressure and saturation properties. The SAFT and PC-SAFT parameters for 1-butanol were taken from literature,^{7,8} and those corresponding to 1,8-cineole were reevaluated to increase their range of application.

To determine the $P\rho T$ behavior of the mixtures, the van der Waals one-fluid mixing rules were used, and classical quadratic combining rules for the cross-terms were selected in all cases. The so-called interaction parameters, k_{ij} , were optimized for each

Figure 5. Volumetric behavior of the 1-butanol (1) + 1,8-cineole (2) system at 298.15 K. •, ref 2; —, PRM-VT; – – –, PRSV-VT; · · · · , SAFT; – · – · –, PC-SAFT.

model showing a lineal dependence with temperature in the experimental range considered.

The fitted parameters for the equation

$$k_{ii} = a + b \cdot T/K \tag{12}$$

appear in Table 5 together with the regression coefficients.

Figure 4 shows the experimental VLE at three temperatures together with the obtained results using the selected EOS. The best results for the correlations of the experimental data of the mixture under study were achieved with PRSV-VT and PRM-VT. The absolute average percentage deviation values (ADD) for these models were (14.22 and 16.70) %, respectively. The ADD obtained for SAFT and PC-SAFT were, respectively, (21.50 and 21.25) %.

The ability of the four EOS to reproduce the volumetric behavior of the system was also tested at 298.15 K. As Figure 5 shows, PRSV-VT and PRM-VT, despite the VT used, give worse results for the excess molar volume compared with the experimental data reported by Alfaro et al.² Although SAFT results for VLE are not as accurate as those of the cubic equations, SAFT is able to approach to the correct volumetric behavior of the real system. PC-SAFT gives the correct sign of the excess molar volume of the binary mixture at least.

AUTHOR INFORMATION

Corresponding Author

*E-mail: pascual@unizar.es. Fax: +34 976 761 202. Phone: +34 976 761 205.

Funding Sources

The authors thank the financial support of MICINN-FEDER (Project CTQ2009-14629-C02-02) and Gobierno de Aragón

(Group E-52). B.G. thanks I3A Fellowship Program and GATH-ERS Group for research facilities.

REFERENCES

 Lasarte, J. M.; Martín, L.; Langa, E.; Urieta, J. S.; Mainar, A. M. Setup and Validation of a PρT Measuring Device. Volumetric Behaviour of the Mixture 1,8-Cineole + Ethanol. J. Chem. Eng. Data 2008, 53, 1393–1400.

(2) Alfaro, P.; Langa, E.; Martínez-López, J. F.; Urieta, J. S.; Mainar, A. M. Thermophysical properties of the binary mixtures (1,8-cineole + 1-alkanol) at T = (298.15 and 313.15) K and at atmospheric pressure. *J. Chem. Thermodyn.* **2010**, *42* (2), 291–303.

(3) Torcal, M.; García-Abarrio, S.; Pardo, J. I.; Mainar, A. M.; Urieta, J. S. P, ρ , T Measurements and Isobaric Vapour-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis. *J. Chem. Eng. Data* **2010**, 55 (12), 5932–5940.

(4) Mathias, P. M. A Versatile Phase Equilibrium Equation of State. *Ind. Eng. Chem. Process Des. Dev.* **1983**, *22*, 385–391.

(5) Stryjek, R.; Vera, J. H. PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures. *Can. J. Chem. Eng.* **1986**, *64*, 323–333.

(6) Peneloux, A.; Rauzy, E.; Freze, R. A Consistent Correction for Redlich-Kwong-Soave Volumes. *Fluid Phase Equilib.* **1982**, *8*, 7–23.

(7) Huang, S. H.; Radosz, M. Equation of State for Small, Large, Polydisperse and Associating Molecules. *Ind. Eng. Chem. Res.* **1990**, 29 (11), 2284–2294.

(8) Gross, J.; Sadowski, G. Application of the Perturbed-Chain SAFT Equation to Associating Systems. *Ind. Eng. Chem. Res.* **2002**, *41* (22), 5510–5515.

(9) Marsh, K. N. Thermodynamics of Octamethylcyclotetrasiloxane Mixtures. *Trans. Faraday Soc.* **1968**, *64*, 883–893.

(10) Pardo, J.; Pérez, P.; Royo, F.; Gracia, M.; Gutiérrez Losa, C. H_{mv}^E V_m^E and G_m^E of {xCl₂HCCHCl₂ + (1-x)C₆H₁₄} at Several Temperatures. *J. Chem. Thermodyn.* **1987**, *19*, 521–526.

(11) Gracia, M.; Sánchez, F.; Pérez, P.; Valero, J.; Gutiérrez Losa, C. Vapour Pressures of (Butan-1-ol + Hexane) at Temperatures Between 283.10 and 323.12 K. J. Chem. Thermodyn. **1992**, 24, 463–471.

(12) Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients. *AIChE J.* **1974**, *20*, 263–273.

(13) Barker, J. A. Determination of Activity Coefficients from Total Pressure Measurements. *Aust. J. Chem.* **1953**, *6*, 207–210.

(14) Wilson, G. M. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. **1964**, *86*, 127–130.

(15) Rowlinson, J. S.; Swinton, F. The Thermodynamics Properties of Solutions of Normal and Branched Alcohols in Benzene and n-Hexane. J. Chem. Thermodyn. **1969**, *1*, 273–291.

(16) TRC-Thermodynamic Tables-Non-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1966; p d-5030.

(17) Ambrose, D.; Ghiassee, N. B. Vapour Pressures and Critical Temperatures of Some Alkanoic Acids: C_1 to C_{10} . *J. Chem. Thermodyn.* **1987**, *19*, 505–519.

(18) Barata, P. A.; Serrano, M. L. Densities and viscosities of thymol plus 1,8-cineol. J. Chem. Eng. Data **1994**, 39 (2), 298–301.

(19) Francesconi, R.; Castellari, C. Densities, viscosities, refractive indices and excess molar enthalpies of methyl tert-butyl ether plus components of pine resins and essential oils at 298.15 K. J. Chem. Eng. Data 2001, 46 (6), 1520–1525.

(20) Sharma, S.; Patel, P. B.; Patel, R. S.; Patel, R. G.; Vora, J. J. Densities and refractive indexes of binary liquid mixtures of eucalyptol with some alcohols. *J. Indian Chem. Soc.* **2007**, *84*, 807–812.

(21) Stull, D. R. Vapour Pressure or Pure Substances. Organic Compound. Ind. Eng. Chem. 1947, 39 (4), 517–540.

(22) Pfohl, O.; Petkov, S.; Brunner, G. "PE" Quickly Makes Available the Newest Equations of State Via the Internet. *Ind. Eng. Chem. Res.* **2000**, 39 (11), 4439–4440.