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ABSTRACT: In this article, artificial neural network group contribution (ANN-GC) method is applied to calculate and estimate
critical properties including the critical pressure, temperature, and volume and acentric factors of pure compounds. About 1700
chemical compounds from various chemical families have been investigated to propose a comprehensive and predictive model.
Using this dedicated model, we obtain satisfactory results quantified by the following absolute average deviations of the calculated
and estimated properties from existing experimental values: 1.1 % for critical pressure, 0.9 % for critical temperature, 1.4 % for critical
volume, and 3.7 % for acentric factor.

1. INTRODUCTION

Physical properties of chemical compounds, including the
critical temperature (Tc), pressure (Pc), and volume (Vc), and
also the acentric factor (ω) are of great interest for researchers
and engineers in the past and present years mainly for designing
and modeling chemical processes. The applications of such
properties can be summarized as follows:
1 Corresponding states theory;1

2 Determination of the equation-of-state parameters for
modeling the phase behavior of the systems encountered
in the processes, for example, oil refineries, petrochemical
companies, pharmaceutical, and food engineering pro-
cesses, and so forth;1,2

3 Modeling the fluid transport systems in industrial projects,
for example, oil and gas production, petroleum fluid
transportation;1,2 and,

4 Determination of thermal and transport properties such as
enthalpies, heats of vaporization, viscosities, and interfacial
tension.3

However, experimental determination of these property va-
lues is time-consuming, costly, and sometimes a challenge since
some of high molecular weight or larger compounds may
chemically degrade before they reach critical conditions.1,3�5

Consequently, representation and predictionmethods have been
widely presented in the literature for providing the property
values when experimental ones are not available.

Most of the calculation and estimation methods for critical
properties and acentric factors are based on group contributions
(GC), that is, the properties of a molecule are normally estab-
lished from contributions from its elements.1 The conceptual
basis is that the intermolecular forces that determine the
constants of interest depend mostly on the bonds between the

atoms of themolecules.1 Therefore, eachmolecule is treated as to
be composed of fundamental groups, each one giving a con-
tribution to the property of interest, which is calculated by adding
together the contributions of each group.5

So far, many group-contributionmethods have been proposed
such as the methods by Kudchadker and Zwolinski,6 Lydersen,7

Joback and Reid,8 Marrero and Gani,9 Kudchadker et al.,10

Thodos,11�14 Ambrose and Ghiasse,15 Wilson and Jasperson,16

Marrero-Morej�on and Pardillo-Fontdevila,17 Lydersen and
Tsochev,18 and Dalmazzone et al.19 The method proposed by
Thodos11,12 is based on van der Waals interaction and repulsion
parameters of paraffins, which have later extended to other
homologous series.3,13,14 One of the first successful group

Figure 1. Schematic structure of the FFANN used in this study.65
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contribution methods to estimate critical properties has been
developed by Lydersen7 in 1955.1 As, the capabilities of the
mathematical correlations and computer techniques have been
improved, more accurate optimized values of the models have
been obtained. Examples are the methods of Joback,20 Constan-
tinou and Gani,21Wilson and Jasperson,16 andMarrero-Morejon
and Pardillo-Fontdevila.17

Joback20 reevaluated Lydersen's group contribution scheme,7

added several new functional groups, determined new contribution

values, and used normal boiling point temperature and number of
atoms for estimation of the critical properties.1 There are other
similarmethods presented by Somayajulu,22 who has also utilized
the boiling point to estimate critical properties.3

Constantinou and Gani21 developed an advanced group
contribution method based on the universal functional activity
coefficient (UNIFAC) groups. They added second-order group
contributions to account for configuration such as isomers,
multiple groups located close together, resonance structures,

Figure 2. Comparison between the calculated and estimated results of the first model and experimental values32 of critical temperatures.

Figure 3. Comparison between the calculated and estimated results of the first model and experimental values32 of critical pressures.



2462 dx.doi.org/10.1021/je200019g |J. Chem. Eng. Data 2011, 56, 2460–2476

Journal of Chemical & Engineering Data ARTICLE

and so forth.1 Their method has been widely used in chemical
engineering problems.1

Several authors (Kreglewski and Zwolinski,23 Gasem,24 Gasem
et al.,25 Tsonopolous andTan,26Magoulas and Tassios,27 Teja and
Smith,28 Marano and Holder,29 and Morgan and Kobayashi30)
have developed correlations for critical properties based on the
number of carbon atoms. For instance, Gasem and co-workers25

developed the asymptotic behavior correlation (ABC) model
framework to predict the physical properties of n-paraffins apply-
ing number of carbon atoms and two scaling coefficients. Correla-
tions between critical pressure and temperature and molecular
weight have been proposed by Kontogeorgis and Tassios.31

Comparison between the aforementioned methods regarding
the number of the investigated compounds, the average absolute
deviations, and range of applicability are well reported in the
Properties of Gases and Liquids by Poling et al.1 and elsewhere.3,5

In spite of the fact that these calculation and estimation
methods are simple to apply, they have significant drawbacks:
� Not all of groups encountered in various chemical com-

pounds are investigated; that is, these methods do not
cover a wide range of chemical compounds;

� The results for stereoisomers are not conclusive;5

� They are not adequately accurate.1,3�5

Recently, the quantitative structure�property relationship
(QSPR) models have been applied to overcome the following
drawbacks.3,5 A QSPR model consists of a correlation between
the property of interest and a variety of molecular features
(named descriptors) that range from structural and topological
indices to electronic and quanto-chemical properties.3,5 Godavarthy
et al.3 proposed a QSPRmodel for the calculation and estimation of

the critical properties. They obtained reliable results with average
absolute deviation of 3.7 % for Tc, 0.49 % for Pc, and 5.2 % for Vc
regarding 1230 chemical compounds. Another QSPR approach was
done by Sola and co-workers,5 who have studied 155 chemical
compounds for the representation of critical pressure and tempera-
ture. They have reported the root-mean-square errors of (12.6 and
9.66) K regarding the “Training” and “Validation” sets, respectively
for critical temperature results and those of (0.25 and 0.28) MPa for
critical pressure results.

Even with the use of the two mentioned QSPR methods, the
average deviations are still high compared to the experimental
values, and the models are not as comprehensive and predictive
as expected. In this work, we present a new approach based on
the artificial neural network group contribution method (ANN-
GC) for the calculation and estimation of critical properties and
acentric factors of around 1700 chemical compounds.

2. MATERIALS AND METHODS

2.1. Materials.The DIPPR 80132 database has special applica-
tions in developing new methods for the representation and
prediction of physical properties because it contains a large
number of pure compounds with their evaluated physical proper-
ties. This database has been used here to provide a data set for
calculation/estimation of critical properties and acentric factors.
About 1700 pure compounds from 81 different chemical groups
are investigated, and the related values of the critical temperature,

Table 1. Functional Groups Used to Develop the Model for
Calculation/Estimation of Properties and Acentric Factors of
2-Methyl-1-pentene

aGroup contribution identification (for observing complete list of the
group contributions, see the Supporting Information files). bThe super-
script represents the formal oxidation number.

Table 2. Statistical Parameters of the Presented Models for
Critical Temperature

statistical parameter value value

Training Set FirstModel SecondModel
R2a 0.983 0.994

absolute average deviationb 1.5 % 0.9%

standard deviation error 131.6 134.0

mean square error 295.3 107.2

Nc 1373 1359

Validation Set

R2 0.977 0.996

absolute average deviation 1.6 % 0.8%

standard deviation error 130.81 117.6

mean square error 389.3 60.5

N 171 169

Test Set

R2 0.984 0.992

absolute average deviation 1.8 % 1.0%

standard deviation error 143.65 128.9

mean square error 355 132.5

N 171 169

Training þ Validation þ Test Set

R2 0.983 0.994

absolute average deviation 1.5 % 0.9%

standard deviation error 132.74 131.9

mean square error 310.6 105.1

N 1715 1697
a Squared correlation coefficient. b% AAD = (100/N)∑i

N((|Calc.(i)/
Est.(i) � Exp.(i)|)/Exp.(i)). cNumber of data points.
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pressure, volume, and acentric factors are considered for the
calculations. The names of the investigated compounds, formu-
las, and chemical families and the uncertainties of the experi-
mental values are presented as Supporting Information.
2.2. Development of New Group Contributions. Having

defined the database, the chemical structures of all of the studied
compounds are analyzed using an algorithm comparing the
chemical groups to define the most efficient contributions for
evaluation of the desired property. Consequently, 149 functional

groups have been found to be more efficient for the representa-
tion and prediction of the critical temperatures, 149 for the
critical pressures, 166 for the critical volume, and 166 for acentric
factor of the investigated pure compounds. The numbers of the
group contributions are different due to the slightly different
number of chemical compounds for the calculation and estima-
tion of each property. This is mainly because of the different
number of evaluated data points for each property in the DIPPR
80132 data set. It should be noted that, for the representation and

Figure 4. Comparison between the calculated and estimated results of the first model and experimental values32 of critical volumes.

Figure 5. Comparison between the calculated and estimated results of the first model and experimental values32 of acentric factors.
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prediction of properties, the same chemical groups are selected.
The functional groups used in this study are presented as
Supporting Information. The tables of their numbers of occur-
rences in pure compounds used in this work have been also
presented as Supporting Information. Table 1 shows an example
of occurrences of the group contributions in 2-methyl-1-pentene.
These chemical groups are used as the proposed model
parameters.
2.3. Generation of ANN-GC. The first calculation step, and

perhaps the most significant one, is to search for a relationship

between the chemical functional groups and the desired physical
properties. The simplest method for this purpose is the assump-
tion of the existence of a multilinear relationship between these
groups and the desired property (here the critical properties and
acentric factor).33 This technique is a similar method used in the
most of classical group contribution methods.34 Several calcula-
tions show that the application of the mentioned methodology
for the current problem brings about poor results. Consequently,
the nonlinear mathematical method of artificial neural network
(ANN) is preferred and investigated.

Figure 6. Comparison between the calculated and estimated results of the second model and experimental values32 of critical temperatures.

Figure 7. Comparison between the calculated and estimated results of the second model and experimental values32 of critical pressures.
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ANNs are extensively used in various scientific and engineering
problems,33�65 for example, calculations and estimations of physical
and chemical properties of different pure compounds.48�61,63,64

These capable mathematical tools are generally applied to study
the complicated systems, e.g., phase behavior of fluid mixtures
containing clathrate/semiclathrate hydrates.41,43,45,47 The theo-
retical explanations about neural networks can be found
elsewhere.66 Using the ANN toolbox of the MATLAB software
(Mathworks Inc.), a three-layer feed forward artificial neural
network (FFANN) has been developed for the problem. The

typical structure of a FFANN is schematically presented in
Figure 1. The capabilities of this kind of ANNs have been
demonstrated in previous works.33�65

All of the functional groups and also the property values of
pure compounds are normalized between�1 andþ1 to decrease
computational errors. This can be performed using maximum
and minimum values of each functional group for input data and
using maximum and minimum values of desired properties for
output parameters. Later, the database is divided into three
subdata sets including the “Training” set, the “Validation”

Figure 9. Comparison between the calculated and estimated results of the second model and experimental values32 of acentric factors.

Figure 8. Comparison between the calculated and estimated results of the second model and experimental values32 of critical volumes.
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set, and the “Test” set. In this work, the “Training” set is used
to generate the ANN structure, the “Validation (optimization)”
set is applied for optimization of the model, and the “Test
(prediction)” set is used to investigate the prediction capability
and validity of the obtained model. The process of division of
database into three subdata sets is performed randomly. For this
purpose, about 80 %, 10 %, and 10 % of the main data set are
randomly selected for the “Training” set (about 1370 com-
pounds), the “Validation” set (around 170 compounds), and
the “Test” set (about 170 compounds). The effect of the percent

allocation of the three subdata sets from the database on the
accuracy of the ANN model has been studied elsewhere.66,67

As a matter of fact, generating an ANNmodel is determination
of the weight matrices and bias vectors.33�65 These parameters
should be obtained byminimization of an objective function. The
objective function used in this study is sum of squares of errors
between the outputs of the ANN (calculated and estimated
properties) and the target values (experimental critical proper-
ties and acentric factors). This minimization is performed by
Levenberg�Marquardt (LM)66 optimization strategy. There

Figure 10. Second model predicted results of critical temperatures for outlier points (0) of the first model.

Figure 11. Second model predicted results of critical pressures for outlier points (0) of the first model.
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are also more accurate optimization methods other than this
algorithm; however, they need much more convergence time.
In other words, the more accurate optimization, the more time
is needed for the algorithm to converge to the global optimum.
The LM66 is most-widely used algorithm for training due to
being robust and accurate enough to deal with the considered
system.33�65

In most cases, the number of neurons in the hidden layer (n) is
fixed. Therefore, the main goal is to produce an ANN model,
which is able to predict the target values as accurately as possible.

This step is repeated until the best ANN is obtained. Generally and
especially in three-layer FFANNs, it is more efficient that the
number of neurons in the hidden layer is optimized according to
the accuracy of the obtained FFANN.33�61

3. RESULTS AND DISCUSSION

An optimized FFANN has been obtained using the aforemen-
tioned procedure for the calculation and estimation of the critical
properties and acentric factors of studied compounds. For this

Figure 12. Second model predicted results of critical volumes for outlier points (0) of the first model.

Figure 13. Second model predicted results of acentric factors for outlier points (0) of the first model.
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purpose, several 3FFANNsmodules have been generated assum-
ing numbers 1 through 50 for n (number of neurons in hidden
layer) using the previously described procedure. The most
accurate results without overfitting are observed for n = 15. It
should be noted that this value is not the global value, because the
optimization method used to train the ANN has great effects on
the obtained value.32 Therefore, the developed three-layer
FFANNs have the structure of 149-15-1, 149-15-1, 166-15-1,
and 166-15-1 regarding the Tc, Pc, Vc, and ω.

The mat file (MATLAB file format) of the obtained ANNs
containing all of the parameters of the model has been presented
as Supporting Information. Moreover, the instruction for run-
ning the program (mat file) is presented in the Appendix. The
calculated and estimated properties are shown in Figures 2 to 5 in
comparison with the experimental values.32 A more meticulous
investigation of the results show that there are some compounds
for which the presented model results lead to much higher
absolute deviations from experimental values.32 There are two

Figure 14. Deviation ranges of the results of the two developed models over all of the investigated compounds for critical temperatures.

Figure 15. Deviation ranges of the results of the two developed models over all of the investigated compounds for critical pressures.
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main reasons for existence of such outliers. First, the model is
not able to represent or predict the properties of a portion of
compounds with high accuracy. For instance, the developed
model cannot estimate and calculate the small and simple
molecules properties accurately because the majority of GC
values are zero for the related compounds (e.g., methane).
Therefore, the input parameters treated as the input para-
meters of the model cannot handle enough information to
calculate and estimate the chemical structure of the related
compound. The second reason is that we may suspect that
corresponding experimental values are not accurate or may be
somehow erroneous because of the existing difficulties in

experimental measurements especially those where complex
chemical structures are involved. For further investigation of
the reliability of such data, we have pursued the following
procedure:

1 Eliminating the outlier data points from the investigated
experimental values.12

2 Developing a new ANN-GC model for calculation/estima-
tion of the remaining properties values.

3 Prediction (estimation) of the eliminated outlier data points
values using the new developed model for further checking
the reliability of these values.

Figure 16. Deviation ranges of the results of the two developed models over all of the investigated compounds for critical volumes.

Figure 17. Deviation ranges of the results of the two developed models over all of the investigated compounds for acentric factors.
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The results of the new developedmodel are shown in Figures 6
to 9. Figures 10 to 13 show the new predicted results for the
eliminated outlier set from the main data set. More detailed
results including the absolute deviations of the represented and
predicted properties using the first and the second models are
reported in Figures 14 to 17. Besides, the statistical parameters of

both kinds of the models for each property are reported in
Tables 2 to 5. As can be observed, the new model leads to the
absolute deviation exceeding 20 % for none of the compounds
from the new sets of data excluding the outliers for critical
temperatures and pressures, 1 compound for critical volume, and
38 compounds for acentric factor. The average absolute devia-
tions of this new adjusted model are about 1.1 % for Pc, 0.9 % for
Tc, 1.4 % for Vc, and 3.7 % for the acentric factor while they are
about 2.5 % for Pc, 1.5 % for Tc, 2.2 % for Vc, and 5.3 % for the
acentric factor with model adjusted on all data (doubtful data
included). All of the calculated and estimated results applying
both of the models, the number of occurrences of the functional
groups in all of investigated pure compounds, and the absolute
deviations of the obtained results have been presented as
Supporting Information. Tables 6 to 9 also illustrate the devia-
tions of the final models over each chemical families.

It is inferred from the results that some of the predicted
(estimated) physical property values for outlier (eliminated) data
points bring about higher deviations (over 20 %) than the other
deviation ranges even in the new developed model. We can refer
to two possible reasons for this concept. At the first place,
existence of the outlier points may lead the model not to be as
accurate as possible. In other words, the obtained model con-
sidering the outlier points for “Training” process may not be
predictive for the investigated chemical compounds in “Test
(prediction)” process. Second, selecting the cut off value of the
outliers (here it is 20 %) is so significant in developing the new
(second) model. To the best of our knowledge, no definite
procedure for selecting the cutoff value has been proposed in the

Table 3. Statistical Parameters of the Presented Models for
Critical Pressure

statistical parameter value value

Training Set FirstModel SecondModel
R2 0.987 0.999
absolute average deviation 2.5% 1.0%
standard deviation error 20.1 19.2
mean square error 5.5 0.4
N 1373 1358

Validation Set
R2 0.978 0.998
absolute average deviation 2.3% 1.3%
standard deviation error 13.0 20.5
mean square error 3.8 0.8
N 171 169

Test Set
R2 0.986 0.999
absolute average deviation 2.1% 1.0%
standard deviation error 21.1 22.7
mean square error 6.5 0.5
N 171 169

Training þ Validation þ Test Set
R2 0.986 0.999
absolute average deviation 2.5% 1.1%
standard deviation error 19.6 19.7
mean square error 5.4 0.4
N 1715 1696

Table 4. Statistical Parameters of the Presented Models for
Critical Volumes

statistical parameter value value

Training Set FirstModel SecondModel
R2 0.998 0.999
absolute average deviation 2.2% 1.4%
standard deviation error 0.3 0.3
mean square error 0 0
N 1375 1366

Validation Set
R2 0.998 0.998
absolute average deviation 1.8% 1.4%
standard deviation error 0.3 0.3
mean square error 0 0
N 171 170

Test Set
R2 0.998 0.999
absolute average deviation 2.3% 1.2%
standard deviation error 0.3 0.3
mean square error 0 0
N 171 170

Training þ Validation þ Test Set
R2 0.998 0.999
absolute average deviation 2.2% 1.4%
standard deviation error 0.3 0.3
mean square error 0 0
N 1717 1706

Table 5. Statistical Parameters of the Presented Models for
Acentric Factors

statistical parameter value value

Training Set FirstModel SecondModel
R2 0.987 0.992

absolute average deviation 5.5 % 3.7%

standard deviation error 0.3 0.3

mean square error 0 0

N 1369 1353

Validation Set

R2 0.990 0.993

absolute average deviation 4.8 % 3.6%

standard deviation error 0.3 0.3

mean square error 0 0

N 170 169

Test Set

R2 0.990 0.988

absolute average deviation 4.4 % 3.6%

standard deviation error 0.3 0.3

mean square error 0 0

N 170 169

Training þ Validation þ Test Set

R2 0.987 0.992

absolute average deviation 5.3 % 3.7%

standard deviation error 0.3 0.3

mean square error 0 0

N 1709 1691
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Table 6. Absolute Average Deviation Ranges of the Model
Results for Critical Temperatures

family AAD %

1-alkenes 1.2
2,3,4-alkenes 0.8
acetates 1.0
aldehydes 0.6
aliphatic ethers 0.6
alkylcyclohexanes 1.2
alkylcyclopentanes 0.7
alkynes 0.7
anhydrides 0.2
aromatic alcohols 1.0
aromatic amines 0.5
aromatic carboxylic acids 1.7
aromatic chlorides 0.5
aromatic esters 1.0
C, H, Br compounds 0.3
C, H, F compounds 0.5
C, H, I compounds 0.5
C, H multihalogen compounds 0.4
C, H, NO2 compounds 0.9
C1/C2 aliphatic chlorides 1.3
C3 and higher aliphatic chlorides 0.5
cycloaliphatic alcohols 0.7
cycloalkanes 1.9
cycloalkenes 0.6
dialkenes 1.1
dicarboxylic acids 0.8
dimethylalkanes 1.4
diphenyl/polyaromatics 1.4
elements 2.5
epoxides 0.4
ethyl and higher alkenes 1.1
formates 0.5
inorganic acids 0.3
inorganic gases 1.2
inorganic halides 0.2
isocyanates/diisocyanates 0.4
ketones 0.7
mercaptans 1.0
methylalkanes 1.1
methylalkenes 0.8
multiring cycloalkanes 0.3
N-alcohols 0.7
N-aliphatic acids 0.5
N-aliphatic primary amines 0.3
N-alkanes 1.1
N-alkylbenzenes 0.5
naphthalenes 1.4
nitriles 1.3
nitroamines 1.6
organic salts 0.1
organic/inorganic compounds 3.4
other aliphatic acids 0.8
other aliphatic alcohols 1.2
other aliphatic amines 1.1
other alkanes 1.9
other alkylbenzenes 0.9
other amines, imines 0.4
other condensed rings 1.2
other ethers/diethers 1.0
other hydrocarbon rings 0.8
other inorganics 2.2
other monoaromatics 1.1
other polyfunctional C, H, O 2.1
other polyfunctional organics 0.0
other saturated aliphatic esters 1.3
peroxides 0.2
polyfunctional acids 1.3

Table 6. Continued
family AAD %

polyfunctional amides/amines 0.5
polyfunctional C, H, N, halide, (O) 0.8
polyfunctional C, H, O, halide 0.6
polyfunctional C, H, O, N 0.2
polyfunctional C, H, O, S 0.3
polyfunctional esters 1.0
polyfunctional nitriles 1.1
polyols 1.4
propionates and butyrates 0.8
silanes/siloxanes 1.2
sulfides/thiophenes 0.4
terpenes 1.1
unsaturated aliphatic esters 1.0

Table 7. Absolute Average Deviation Ranges of the Model
Results for Critical Pressures

family AAD %

1-alkenes 1.1
2,3,4-alkenes 1.1
acetates 0.8
aldehydes 1.4
aliphatic ethers 1.5
alkylcyclohexanes 2.2
alkylcyclopentanes 1.8
alkynes 0.9
anhydrides 0.1
aromatic alcohols 1.8
aromatic amines 0.6
aromatic carboxylic acids 0.1
aromatic chlorides 2.2
aromatic esters 0.8
C, H, BR compounds 0.3
C, H, F compounds 0.3
C, H, I compounds 0.3
C, H multihalogen compounds 0.4
C, H, NO2 compounds 1.3
C1/C2 aliphatic chlorides 0.6
C3 and higher aliphatic chlorides 0.5
cycloaliphatic alcohols 0.1
cycloalkanes 2.1
cycloalkenes 1.1
dialkenes 0.7
dicarboxylic acids 0.4
dimethylalkanes 2.4
diphenyl/polyaromatics 2.7
elements 0.3
epoxides 0.2
ethyl and higher alkenes 2.4
formates 0.9
inorganic acids 0.2
inorganic bases 0.5
inorganic gases 0.7
inorganic halides 1.5
isocyanates/diisocyanates 0.5
ketones 0.7
mercaptans 0.7
methylalkanes 1.1
methylalkenes 1.8
multiring cycloalkanes 0.7
N-alcohols 1.2
N-aliphatic acids 2.1
N-aliphatic primary amines 1.6
N-alkanes 1.3
N-alkylbenzenes 0.6
naphthalenes 2.6
nitriles 0.8
nitroamines 0.0



2472 dx.doi.org/10.1021/je200019g |J. Chem. Eng. Data 2011, 56, 2460–2476

Journal of Chemical & Engineering Data ARTICLE

literature. In this work, we select this value based on the percent
error ranges, after which the absolute deviations of the results
from experimental values begin to soar gradually in comparison
with other deviation ranges.

A significant point, which should be taken into account
regarding the developed model, is that the uncertainties of the
applied experimental values affect the model calculated/pre-
dicted results. However, these kinds of numerical models
(QSPR and ANN-GC ones) are generally developed with the
assumptions that the experimental data are considered error-
free.68 One should consider the uncertainties of the experimental
data when using a develop model (especially the models, which
are developed based on large data sets).

The mat file (MATLAB file format) of the new obtained ANN
containing all the parameters of the model and the instruction for
running the program have been presented as Supporting In-
formation. The results obtained with the new obtained ANN-GC
model prove it is an accurate and comprehensive method to
calculate/estimate the critical properties and acentric factors of
chemical compounds.

4. CONCLUSION

In this study, a group contribution-based model was presented
for representation (calculation) and prediction (estimation) of
critical properties and acentric factors of about 1700 chemical
compounds. The models are the result of a combination of
FFANNs andGC. The required parameters of the models are the
numbers of occurrences of different functional groups in each
investigated molecule. It should be noted that only few of these
functional groups are simultaneously present in a particular
molecule. Therefore, computation of the required parameters

Table 7. Continued
family AAD %

organic salts 0.0
organic/inorganic compounds 1.1
other aliphatic acids 1.6
other aliphatic alcohols 1.1
other aliphatic amines 1.7
other alkanes 3.5
other alkylbenzenes 2.0
other amines, imines 0.4
other condensed rings 1.4
other ethers/diethers 1.0
other hydrocarbon rings 0.9
other inorganics 0.7
other monoaromatics 1.0
other polyfunctional C, H, O 1.0
other polyfunctional ORGANICS 0.0
other saturated aliphatic esters 2.2
peroxides 0.2
polyfunctional acids 0.5
polyfunctional amides/amines 0.2
polyfunctional C, H, N, halide, (O) 0.2
polyfunctional C, H, O, halide 0.3
polyfunctional C, H, O, N 0.1
polyfunctional C, H, O, S 0.1
polyfunctional esters 0.9
polyfunctional nitriles 0.8
polyols 0.9
propionates and butyrates 1.4
silanes/siloxanes 2.8
sulfides/thiophenes 0.7
terpenes 0.8
unsaturated aliphatic esters 0.8

Table 8. Absolute Average Deviation Ranges of the Model
Results for Critical Volumes

family AAD %

1-alkenes 1.4

2,3,4-alkenes 1.2

acetates 1.1

aldehydes 1.7

aliphatic ethers 1.0

alkylcyclohexanes 1.1

alkylcyclopentanes 2.0

alkynes 1.0

anhydrides 0.3

aromatic alcohols 2.8

aromatic amines 1.6

aromatic carboxylic acids 0.4

aromatic chlorides 1.4

aromatic esters 2.3

C, H, BR compounds 0.6

C, H, F compounds 1.1

C, H, I compounds 1.7

C, H multihalogen compounds 0.9

C, H, NO2 compounds 1.8

C1/C2 aliphatic chlorides 0.6

C3 and higher aliphatic chlorides 0.5

cycloaliphatic alcohols 0.2

cycloalkanes 2.4

cycloalkenes 1.4

dialkenes 1.0

dicarboxylic acids 2.7

dimethylalkanes 1.7

diphenyl/polyaromatics 0.9

elements 5.5

epoxides 1.8

ethyl and higher alkenes 1.0

formates 1.9

inorganic acids 2.5

inorganic bases 0.8

inorganic gases 3.3

inorganic halides 0.5

isocyanates/diisocyanates 0.3

ketones 1.1

mercaptans 1.1

methylalkanes 2.0

methylalkenes 1.5

multiring cycloalkanes 0.2

N-alcohols 2.6

N-aliphatic acids 1.4

N-aliphatic primary amines 0.5

N-alkanes 0.9

N-alkylbenzenes 1.2

naphthalenes 2.7

nitriles 1.5

nitroamines 0.1

organic salts 0.4

organic/inorganic compounds 4.0

other aliphatic acids 1.7
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from chemical structure of any molecule is simple and straight-
forward. For developing the model, the experimental properties
values from DIPPR32 containing many of the pure compounds
from various chemical families were applied. As a conse-
quence, reliable and comprehensive models were developed
to calculate/estimate the desired properties of many of pure
compounds although there are still some limitations.
Although these models have wide ranges of applicability, their
prediction capabilities are restricted to the compounds, which
are similar to those implied in its development. Consequently,
the application of the obtained models for compounds that are
chemically different to those investigated must be limited to
rough estimations of their molecular diffusivity. However, the
presented models may be conveniently used as a kind of
technique to test the reliability of the experimental data
reported in the literature for compounds with chemical
structures similar to those already taken into account. It was
found that experimental values of critical properties and
acentric factors for some of the chemical compounds involved
in former database are doubtful and must be considered with
higher uncertainties than other experimental values.32 After
removing doubtful data, more satisfactory models have been
obtained. In the final analysis, the obtained FFANN group
contribution models can be considered as accurate ones for
both representing the investigated properties and the predic-
tions for compounds of similar chemical structure and also to
point out unreliable data.

Table 8. Continued
family AAD %

other aliphatic alcohols 1.0

other aliphatic amines 2.1

other alkanes 2.3

other alkylbenzenes 1.3

other amines, imines 0.8

other condensed rings 2.0

other ethers/diethers 1.1

other hydrocarbon rings 1.3

other inorganics 4.8

other monoaromatics 1.4

other polyfunctional C, H, O 1.2

other polyfunctional organics 0.2

other saturated aliphatic esters 2.0

peroxides 0.6

polyfunctional acids 1.8

polyfunctional amides/amines 1.1

polyfunctional C, H, N, halide, (O) 1.3

polyfunctional C, H, O, halide 0.9

polyfunctional C, H, O, N 0.8

polyfunctional C, H, O, S 0.6

polyfunctional esters 1.0

polyfunctional nitriles 4.2

polyols 1.4

propionates and butyrates 1.1

silanes/siloxanes 1.7

sulfides/thiophenes 0.8

terpenes 1.1

unsaturated aliphatic esters 0.7

Table 9. Absolute Average Deviation Ranges of the Model
Results for Acentric Factors

family AAD %

1-alkenes 2.5

2,3,4-alkenes 3.2

acetates 3.2

aldehydes 3.3

aliphatic ethers 4.1

alkylcyclohexanes 9.8

alkylcyclopentanes 7.9

alkynes 3.4

anhydrides 0.3

aromatic alcohols 4.7

aromatic amines 1.5

aromatic carboxylic acids 0.5

aromatic chlorides 4.4

aromatic esters 2.6

C, H, BR compounds 0.9

C, H, F compounds 2.0

C, H, I compounds 4.6

C, H multihalogen compounds 2.3

C, H, NO2 compounds 1.6

C1/C2 aliphatic chlorides 4.4

C3 and higher aliphatic chlorides 3.1

cycloaliphatic alcohols 0.7

cycloalkanes 14.9

cycloalkenes 5.8

dialkenes 11.1

dicarboxylic acids 1.1

dimethylalkanes 3.6

diphenyl/polyaromatics 3.7

elements 76.7

epoxides 1.3

ethyl and higher alkenes 3.3

formates 4.0

inorganic acids 8.7

inorganic bases 0.7

inorganic gases 11.4

inorganic halides 5.4

isocyanates/diisocyanates 4.6

ketones 3.2

mercaptans 2.2

methylalkanes 7.7

methylalkenes 3.5

multiring cycloalkanes 6.0

N-alcohols 2.8

N-aliphatic acids 3.5

N-aliphatic primary amines 2.2

N-alkanes 5.9

N-alkylbenzenes 2.4

naphthalenes 2.8

nitriles 3.0

nitroamines 1.3

organic salts 0.3

organic/inorganic compounds 17.6

other aliphatic acids 2.8
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’APPENDIX

Instructions for Running the Program. The model is very
easy to apply. Just drag and drop the mat file (freely available as
Supporting Information) into the MATLAB environment (any
version) workspace. One can follow the below example to get a
response from the model step by step:
Assume that one is willing to predict the critical temperature of

2-methyl-1-pentene using the developed model. First of all, the
group-contribution parameters should be defined from chemical
structure of 2-methyl-1-pentene (refer to the Supporting In-
formation). Later, drag and drop the mat file; the following
commands should be entered in MATLAB workspace:

GC = [2 2 0 0 0 0 0 0 0 1 0 1 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0];

Tc_est=sim(net,GC0); 500.87 K; where its experimental value
is equal to 505 (ARD % = 0.8 %).

’ASSOCIATED CONTENT

bS Supporting Information. 16 files (12 excel spreadsheets
and a zip file containing four mat files) including the schematic
list of the functional groups, number of occurrences of all of the
functional groups in the investigated compounds, the calcu-
lated and predicted values of critical properties and acentric
factors, the obtained results, the chemical formulas of all of the
investigated compounds, and the absolute relative deviations
of the two presented model results with/without considering
of outliers (as xls files) and the computer (mat) program
developed based on the proposed model (as a mat file). This
material is available free of charge via the Internet at http://
pubs.acs.org.
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