JOURNAL OF CHEMICAL & ENGINEERING **DATA**

Effects of Shear Rate, Temperature, and Polymer Composition on the Shear Stress of Polyethersulfone/1-Methyl-2-pyrrolidone Cast Solutions

Nayef M. Ghasem* and Mohamed H. Al-Marzouqi

Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain, P.O. Box 17555, United Arab Emirates

ABSTRACT: Polyethersulfone (PES) is extensively used for the preparation of hollow fiber membrane contactors; these modules are utilized in microfiltration (MF), ultrafiltration (UF), and gas separation. Viscosity plays a crucial role in the fabrication of hollow fiber membranes and their separation performance. In this study the effect shear rate, temperature, and polymer composition on shear stress of dope solutions prepared from PES polymer, dissolved in 1-methyl-2-pyrrolidone (NMP) solvent, is experimentally investigated. An empirical equation is developed to describe these effects on the shear stress of the polymer solutions. Data were obtained for (0.050, 0.10, 0.15, 0.20, and 0.25) mass fractions of PES polymer in NMP solvent at temperatures for (298, 308, 318, 328, 338, and 353) K. The shear stress results calculated by the developed equation describe well the set of experimental data.

INTRODUCTION

Viscosity is an essential property which plays a significant function in fluid transportation, mixing, heat transfer, or mass transfer operations. Polymer solution viscosities at different temperatures are also important in polymer extruding and fabrication of polymeric hollow fiber membranes used in dialysis, water treatment, and gas separation processes. Fluids are classified based on their performance into Newtonian and non-Newtonian. Newtonian fluids are defined as those exhibiting a direct proportionality relationship between shear stress and shear rate, whereas for non-Newtonian fluids, the relationship between shear stress and shear rate is not linear. Pseudoplastic fluids are called shear thinning fluids, because their apparent viscosity decreases with shear rate; hence, increased shearing breaks down the internal structure within the fluid rapidly.

The viscosity of polyisoimide solutions was studied by Levinson et al.;¹ two models were developed, to describe the effect of temperatures and shear rates on the viscosity. The data were obtained for various polyisoimide solutions prepared in different ratios of oxolane/diglyme in 1-methyl-2pyrrolidone (NMP), and the viscosity of the polymer solutions was tested at various temperatures. These models account for temperature dependencies in the power law shear-thinning exponent. Experimental data were found to fit the proposed model reasonably well. The effects of polymer concentration, temperature, and surfactant on the rheological properties of poly(*n*-isopropylacrylamide), poly(NIP-AM), were studied by Tam et al.;^{2} the investigators found that there do exit unusual rheological behavior for the effect of viscosity as a function of temperature which was elucidated to the phase behavior of the polymer. Benchabane and Bekkour³ measured the critical concentrations of sodium carboxymethyl cellulose (CMC) with a rotational rheometer, and they observed that above a critical shear rate all CMC solutions exhibited shear thinning behavior and all of the flow curves were described by the cross model. The characterization

Table 1.	Statistics	Used to	Compare	Shear	Stress	Calculated
from eq	1 and Exp	erimenta	al Data			

AAD %	1.2
BIAS	-5.1
SDV	11
rms	0.12

Table 2. Estimated Parameters of eq 1

	estimated	asymptotic standard error	Wald 95 % confidence interval			
parameter	value	(ASE)	lower	upper		
A/Pa	2.2	0.012	2.2	2.3		
B/s^{-1}	18000	120	18000	19000		
C/K	1500	5.2	1500	1600		
D	0.28	0.021	0.28	0.29		
т	1.3	0.013	1.3	1.3		

of CMC solutions was completed with a time-dependent viscosity that showed that CMC solutions exhibit strong thixotropic behavior, mainly at high CMC concentrations. The influences of shear rate on relative viscosity of different polymer ratios of carboxymethyl cellulose and κ -carrageenan in aqueous solution were examined by Gómez-Díaz et al.,⁴ and the effect of temperatures on rheological behavior of the solution was investigated.

Special Issue: Kenneth N. Marsh Festschrift

Received:	March 29, 2011
Accepted:	May 18, 2011
Published:	May 25, 2011

Table 3. Shear Stress, τ , versus Shear Rate, $\dot{\gamma}$, at Different **Temperatures and PES Mass Fractions**

Table 3. Continued

		$ au/\mathrm{Pa}$					100W	$\dot{\gamma}/{ m s}^{-1}$	298 K	333 K	318 K	328 K		
100W	$\dot{\gamma}/\mathrm{s}^{-1}$	298 K	333 K	318 K	328 K	338 K	353 K			40	1095	945	797	684
										41	1132	972	821	706
25	0.3	105	85	64	49	42	30			43	1170	998	845	727
	0.7	182	162	125	97.6	80.6	60			45	1203	1020	868	748
	1	250	231	178	141	116	87			47	1242	1050	890	769
	1.4	330	293	228	182	152	114			48	1275	1070	913	789
	1.7	390	353	276	222	185	139			50	1313	1100	934	809
	2.1	450	409	323	261	218	165		15	35	238	200	170	145
	2.4	500	464	368	298	249	189			69	400	344	293	251
	2.8	560	516	410	333	279	212			104	560	474	404	345
	3.1	620	569	450	367	307	234			138	700	593	504	431
	3.5	666	613	489	400	336	256			172	830	704	602	514
	3.8	717	658	527	433	364	278			207	960	815	692	593
	4.1	768	702	564	464	391	300			241	1080	918	780	669
	4.5	817	744	600	495	416	321			276	1200	1022	867	744
	4.8	867	785	634	525	442	341			310	1300	1110	940	800
	5.2	916	824	668	554	467	361			345	1400	1210	1025	870
	5.5	963	862	701	583	492	382			379	1530	1300	1110	940
	5.9	1010	900	733	611	516	401			409	1600	1380	1150	1000
	6.2	1060	936	764	638	539	420		10	35	51	41	35	29
	6.6	1090	971	794	665	562	440			69	95	78	66.7	55.6
	6.9	1140	1010	825	690	585	457			104	135	112	96.1	80.9
	7.2	1180	1040	854	717	607	476			138	171	142	123	104
	7.6	1220	1070	883	742	629	494			172	204	171	149	127
	7.9	1270	1100	911	768	650	513			207	235	199	173	148
	8.3	1325	1130	938	792	672	530			241	265	224	196	169
	8.6	1368	1160	966	816	692	54/			276	293	248	218	188
	9	1411	1190	1006	839	/13	504			310	319	272	240	207
	9.3	1454	1220	1035	863	/30	581			345	344	294	260	225
	9./	1490	1240	1000	887	/52	597			379	368	316	279	242
20	10	1520	71	1090	909	26	27			414	392	336	298	259
20	2	164	125	109	44 07	30 72	51			448	414	356	317	276
	5	224	104	100	126	105	34 70			483	445	376	334	292
	5	207	249	201	164	103	104			517	465	395	352	308
	9	356	240	201	199	167	107			552	485	413	369	323
	10	412	347	243	234	197	150			580	510	431	385	338
	12	464	393	322	266	225	172			621	550	449	401	252
	12	514	436	359	298	251	194			600	580	403	417	201
	16	562	478	394	32.9	278	215			724	580 610	510	432	205
	17	608	519	429	358	303	235			724	630	530	447	408
	19	651	558	462	387	32.8	255			737	650	544	402	408
	21	694	596	494	415	351	274			878	680	560	4/0	435
	22	734	632	525	442	375	294			862	700	580	505	433
	24	773	667	556	469	398	312			802	700	600	518	460
	26	811	701	585	495	420	330			931	740	620	532	473
	28	848	734	614	520	441	348			966	760	640	545	485
	29	884	767	642	545	463	366			1000	780	660	573	407
	31	918	798	669	570	483	383		5	35	9	6	556	4
	33	952	829	696	594	504	400		5	69	17	14	11	т 0
	35	985	859	722	617	524	417			104	25	1T 20	16	12
	36	1020	888	748	640	544	433			138	32	26	2.2	17
	38	1050	917	773	662	563	449			173	39	32	2.7	21
										1,0	57	20		

353 K

34.2

50.5

66.3

81.6

95.8

338 K

 τ/Pa

Table 3. Continued

			$ au/\mathrm{Pa}$						
100W	$\dot{\gamma}/{ m s}^{-1}$	298 K	333 K	318 K	328 K	338 K	353 K		
	207	47	38	32	25	23	18		
	241	54	44	37	29	26	21		
	276	62	50	42	33	30	24		
	310	69	56	47	37	34	27		
	345	76	62	52	41	37	30		
	379	83	68	57	45	41	33		
	414	90	73	61	49	45	36		
	448	96	79	66	53	48	39		
	483	103	85	71	57	52	42		
	517	110	90	76	61	55	45		
	552	116	96	81	65	59	48		
	586	123	101	85	69	62	50		
	621	130	107	90	73	66	53		
	655	136	113	95	76	69	56		
	690	142	118	100	80	73	59		
	724	149	124	105	84	76	62		
	759	155	129	109	88	80	65		
	793	161	134	114	92	83	68		
	828	167	140	118	95	87	71		
	862	173	145	123	99	90	73		
	897	180	150	128	103	94	76		
	931	185	155	132	107	97	79		
	966	192	161	137	111	101	82		
	1000	197	166	141	114	104	85		

Figure 1. Shear stress versus shear rate at various temperatures, 0.25 mass fractions PES. Solid lines are calculated values. ◆, 298 K; ▲, 308 K; ●, 318 K; ◇, 328 K; △, 338 K; ○, 353 K.

Models based on the viscosity of individual polymer solutions were engaged to check up the experimental data.

In general, viscosity is an essential factor in the fabrication of polymeric hollow fiber membranes. Among these polymers, polyethersulfone (PES) is widely used for the preparation of microfiltration (MF), ultrafiltration (UF), and gas separation hollow fiber and flat sheet membranes. PES hollow fiber membranes are promising technology for water treatment and removal of pollutant gases such as CO_2 and H_2S from natural gas and flue gas. Membrane ultra filtration is

Figure 2. Viscosity versus shear rate at various temperatures, 0.20 mass fractions PES. Solid lines are calculated values. \blacklozenge , 298 K; \blacktriangle , 308 K; \blacklozenge , 318 K; \diamondsuit , 328 K; \bigtriangleup , 338 K; \bigcirc , 353 K.

Figure 3. Shear stress versus PES mass fractions at 318 K and shear stress 35 s^{-1} . The solid line is the calculated values.

well-known as a capable technique in water purification process. Membrane filtrations are easy to operate in comparison with conventional water treatment methods, and the energy required for operation and maintenance is small. It is a talented technology for purification and production of drinking water. Membrane filtration methods are capable of disinfecting water and removing its turbidity at moderately low pressure. Another advantage of membrane filtrations are the capability of removing a broad range of substances, and the production of stable quality water. ⁵⁻¹¹

As viscosity is an important factor in the preparation of PES hollow fibers membranes, the aim of the present work is to experimentally study the effect of shear rate, temperature, and polymer compositions on shear stress and to develop a model equation capable to describe the effect of shear rate, temperature, and PES mass fraction on shear stress. The developed model equation can also be used to predict shear stress for polymer solutions at various PES mass fractions and temperatures that have not been experimentally studied and are within the correlation acceptable range. Various solutions of PES/NMP mass fractions (0.050, 0.10, 0.15, 0.20, and 0.25) are prepared and tested at various temperatures (298 to 353) K and variable shear rates.

Figure 4. Shear stress versus temperature at fixed PES mass fraction, 0.20, and fixed shear rate, 35 s⁻¹.

Figure 5. Fractional deviation between experimental (τ_{exp}) and calculated (τ_{calc}) shear stress versus shear rate for various PES mass fractions; \diamond , 0.25; \blacksquare , 0.20; \blacktriangle , 0.15; \ominus , 0.10; \bigcirc , 0.05.

EXPERIMENTAL SECTION

PES (Ultrason E6020 P), with a weight-average molecular weight of 65 000, was purchased from BASF Company. The solvent, 1-methyl-2-pyrrolidone (purity 0.99 mass fraction), was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Ultrason pellets can absorb moisture very rapidly and must be dried before processing. Vacuum or dry air oven operating at (403 to 423) K is recommended. Circulating air ovens are unsuitable. Drying time is dependent on moisture level, but the materials must be dried at least four hours. Five different concentrations of PES/NMP were prepared: (0.05, 0.10, 0.15, 0.20, and 0.25) mass fraction PES. Each solution was mixed for 24 h using magnetic stirrer to ensure the solutions are homogeneous and perfectly mixed. The rotational viscometer, Rheolab QC, from Anton Paar, Austria [maximum torque of 50 mN·m, torque resolution of 0.01 mN \cdot m, speed (0.6 to 90000) s⁻¹, shear stress range of (0.25 to 75) mN·m, shear rate range of (10^{-2} to) 4000) s⁻¹, viscosity measuring range of (1 to 10⁹) mPa \cdot s] is used for the shear stress measurements. In this instrument, the viscous torque on a spinning object is monitored by measuring the rotation frequency of the object. This is converted directly into a viscosity by the software of the instrument and reported on the screen. The device was used to measure the shear stress of the polymer solutions versus shear rate for temperatures in the range (298 to 353) K; the same range of temperatures is used in the preparation of polymeric hollow fiber membrane utilizing nonsolvent-induced face separation techniques.

Correlation Development. Most of the equations which describe the relationship between the shear stress and shear rate are empirical correlations. The two-parameter power-law models $(\tau = K\dot{\gamma}^n)$ are the most commonly used as an empirical equation for pseudoplastic fluids. The power law model is a useful rheological model that describes the relationship between viscosity or shear stress and shear rate in a specific range of shear rates where shear thinning occurs in a non-Newtonian fluid. The power law is accurate for the prediction of viscosity at various shear rates for molten polymers.¹² The applicability of the power law gets better with the raise of solution concentrations. If n is equal to 1, the flow is Newtonian, and the viscosity does not change with shear rate. The flow is pseudoplastic or shear thinning if n is less than 1. Most polymer melts and solutions are pseudoplastic. The flow is dilatant or shear-thickening if n is greater than 1. The Andrade equation describes the temperature reliance of liquid viscosities.¹³ In the present work, a more comprehensive model adopted from the parabolic shape is used in fitting the experimental data.^{14,15}

$$\tau = A[(1+B^{-1}\dot{\gamma})^m - 1]^{m^{-1}} e^{CT^{-1}} e^{D(100W)}$$
(1)

where τ /Pa is the shear stress, $\dot{\gamma}/s^{-1}$ is the shear rate, and A/Pa, B/s^{-1} , C/K, D, and m are empirical parameters. T/K is the temperature, and W is the mass fraction of PES in NMP.

In this correlation m is just a fitting parameter and is different than n in the power low model. The empirical parameters are obtained by fitting the experimental data with the proposed model. The statistics used to compare shear stress calculated using eq 1 to experimental shear stress can be found elseware.¹⁶

High values of the average absolute deviation (AAD) and BIAS indicate systematic differences between experimental data and calculated results. Values of the standard deviation (SDV) give an indication of the systematic or random dispersion of the data set about the BIAS value. The rms provides another indication of the systematic or random dispersion of the data from the developed equation. Data sets are accurately represented by the developed correlation when all four statistical parameters are near zero.

The fitted empirical constants were calculated using Easy-Fit software package.^{17,18} The statistics was used to compare shear stress calculated from eq 1 and experimental data shown in Table 3. The estimated parameters were within the 95 % confident interval lower and upper limits. The obtained R^2 values were relatively high (above 0.99). The AAD, SDV, BIAS, and rootmean-square (rms) were calculated and are shown in Table 1. As close the |Bias| is to the rms, the bigger are the systematic deviations. Bias = 0 means that there are not systematic deviations. As Bias is more or less the half of the rms, the systematic deviations are of the same magnitude than the random deviations. Estimated values of ADD, SDV, BIAS, and rms are not very close to zero which indicates that there is a systematic deviation. Figure 5 shows that the systematic deviations are quite important mainly for low PES mass fractions of 0.05. The parameters of eq 1 are shown in Table 2. The experimental data at various shear rates, temperature, and PES compositions are shown in Table 3.

RESULTS AND DISCUSSION

Figure 1 shows the effect of shear stress versus shear rate for 0.25 PES mass fractions in NMP solvent at five different temperatures: (298, 308, 318, 328, 338, and 353) K. The figure demonstrates that, as shear rate increases, shear stress increases accordingly at any of those temperatures. At a specific value of shear rate, the shear stress was found to increase exponentially as polymer mass fraction increases, because, the polymer solution becomes thicker when the amount of polymer added to a fixed volume of solvent, increases. Calculated values were close to the experimental data at high values of shear rates; by contrast, at low shear rates there is significant deviation. The effect of solution viscosity of 0.2 mass fractions PES at variable shear rates and five different temperatures is depicted in Figure 2. The figure revealed how the viscosity is affected with changes in shear rate, temperature, and polymer compositions; at high shear rates the change in viscosity is very insignificant. At fixed values of shear rate, the viscosity decreases as temperature increases.

The effect of polymer mass fraction on shear stress at a fixed temperature (308 K) and fixed shear rate (35 s^{-1}) is revealed in Figure 3. The figure exemplifies the exponential relationship between shear stress and polymer mass fractions. This backs up the exponential relationship between shear stress and polymer mass fraction used in eq 1. The shear stress increased sharply for solutions with mass fractions higher than 0.15. This confirmed the suitable range of PES mass fraction in dope solutions used in the fabrication of polymeric hollow fiber membranes (the PES/NMP suitable range is between 0.15 and 0.25 mass fractions of PES). The effect of temperature on shear stress is depicted in Figure 4; the figure demonstrates that shear stress decreases as temperature increases. This agreed with the inverse relationship between shear stress and temperature used in eq 1. At low PES mass fractions, polymer solution shows evidence of Newtonian behavior fluid. The fractional deviation between experimental and calculated shear stress versus shear rate is shown in Figure 5. The plot shows that the deviation between calculated and experimental values is considerable at the low shear rates (less than 200 s^{-1}) and for a PES mass fraction of 0.05. By contrast, the discrepancy decreases with increasing shear rates and higher values of PES mass fractions.

CONCLUSIONS

A generalized model equation was developed to depict shear stress as a function of shear rate, temperature, and polymer mass fractions for PES/NMP polymer solutions. The polymeric solution is frequently used in the fabrication of hollow fiber membrane using nonsolvent-induced phase separation (NIPS) techniques. The generated correlation successfully describes shear stress to the shear rate for shear rate range (0 to 1000) s⁻¹, and PES mass fractions range from (0.05 to 0.25). The PES/NMP polymeric solution behaves as pseudoplastic fluids, the shear stress increases as shear rate increases, and polymer mass fractions in the dope solution increases. The developed equation is reliable to predict shear stress at various shear rates, temperature, and polymer mass fraction for values other than existing data.

AUTHOR INFORMATION

Corresponding Author

*E-mail: nayef@uaeu.ac.ae.

Funding Sources

The authors would like to acknowledge the financial support provided by the Japan Cooperation Center, Petroleum (JCCP) and the technical support of the JX Nippon Research Institute, Ltd. They would also like to thank ADGAS and UAE University Research Affairs for their support.

REFERENCES

(1) Levinson, W.; Czornyj, G.; Capo, D.; McMahon, J. Effect of temperature and shear rate on polyisoimide solution viscosity. *Polym. Eng. Sci.* **2004**, *18*, 1221–1225.

(2) Tam, K. C.; Wu, X. Y.; Pelton, R. H. Effect of Polymer Concentration, Temperature, and Surfactant on the Viscosity of Aqueous Solutions. J. Polym. Sci., Part A: Polym. Chem. 2003, 31, 963–969.

(3) Benchabane, A.; Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. *Colloid Polym. Sci.* 2008, 286, 1173–1180.

(4) Gómez-Díaz, D.; Navaza, J.; Quintáns-Riveiro, L. Influence of Mixing and Temperature on the Rheological Properties of Carboxymethyl Cellulose/κ-carrageenan Mixtures. *Eur. Food Res. Technol.* 2008, 5, 1397–1402.

(5) Atchariyawuta, S.; Jiraratananona, R.; Wang, R. Mass Transfer Study and Modeling of Gas–liquid Membrane Contacting Process by Multistage Cascade Model for CO₂ absorption. *Sep. Purif. Technol.* **2008**, *63*, 15–22.

(6) Dan-ying, Z.; You-yi, X.; Han-tao, Z. The Influence of PEG Molecular Weight on Morphologies and Properties of PVDF Asymmetric Membranes. *Chin. J. Polym. Sci.* **2008**, *26*, 405–414.

(7) Byoung, H. K.; Byoung, C. The Rheological Properties of the Solutions of PVDF in DMAc for Electrospinning. *Korean Fiber Soc.* **2004**, *41*, 419–423.

(8) Jermann, D.; Pronk, W.; Meylan, S.; Boller, M. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. *Water Res.* **2007**, *41*, 1713–1722.

(9) Madaeni, S. S. The application of membrane technology for water disinfection. *Water Res.* **1999**, *33*, 301–308.

(10) Pearce, G. Introduction to membranes: Filtration for water and wastewater treatment. *Filtr. Sep.* **200***7*, *44*, 24–27.

(11) Haiyang, Y.; Hao, L.; Zhu, P.; Yan, Y.; Zhu, Q.; Chenggao, F. A novel method for determining the viscosity of polymer solution. *Polym. Test.* **2004**, *23*, 997–901.

(12) Rodríguez, F. Principles of Polymer Systems; McGraw-Hill: New York, 1970.

(13) Bird, R. B.; Hassager, O.; Armstrong, R. C.; Curtiss, C. F. Dynamics of Polymeric Liquids; John Wiley & Sons: New York, 1977.

(14) Ghasem, N. M.; Marzouqi, M.; Elnaas, M. Effect of Temperature, Composition, and Shear Rate on poly-1,1-difluoroethene/*N*,*N*dimethylacetamide Solution Viscosity. *J. Chem. Eng. Data* **2009**, *54*, 3276–3280.

(15) Murrell, H. N.; Boucher, E. A. Properties of Liquids and Solutions; John Wiley & Sons: New York, 1982.

(16) Kittel, P. Advanced in cryogenic engineering, Vol. 39A; Plenum Press: New York, 1994.

(17) Alzahrani, S. M. A generalized rheological model for shear thinning fluids. J. Pet. Sci. Eng. 1997, 17, 211–215.

(18) Schittkowski, K. EASY-FIT User Guide; Department of Mathematics, University of Bayreuth, Germany, 2008.