JOURNAL OF CHEMICAL & ENGINEERING DATA

Thermodynamics of Ketone + Amine Mixtures. Part VIII. Molar Excess Enthalpies at 298.15 K for *n*-Alkanone + Aniline or + *N*-Methylaniline Systems

Iván Alonso, Ismael Mozo, Isaías García de la Fuente, Juan Antonio González,* and José Carlos Cobos

G.E.T.E.F., Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain

ABSTRACT: Molar excess enthalpies, H_{m}^{E} , at 298.15 K and atmospheric pressure have been determined over the entire mole fraction range, using a Tian-Calvet microcalorimeter, for the systems: propanone, 2-butanone, 2-pentanone, or 2-heptanone + aniline or + *N*-methylaniline. The negative H_{m}^{E} values obtained for all of the mixtures reveal that interactions between unlike molecules are prevalent. Aniline solutions show more negative H_{m}^{E} values due to stronger amine-ketone interactions compared to those in *N*-methylaniline solutions. In addition, H_{m}^{E} increases with the size of the alkanone, which may be interpreted in terms of a weakening of interactions between unlike molecules. H_{m}^{E} varies somewhat differently in *N*-methylaniline solutions, probably due to the positive contribution to H_{m}^{E} is here more important. Molar excess internal energies at constant volume, U_{Vm}^{E} , have been determined from the present H_{m}^{E} data using our previous measurements on molar excess volumes, compressibilities, and isothermal expansion coefficients. U_{Vm}^{E} behaves similarly to H_{m}^{E} . U_{Vm}^{E} values are much higher than those of H_{m}^{E} , which remarks the importance of the contribution of the equation of state term to H_{m}^{E} .

INTRODUCTION

As part of our research on the thermodynamic properties of ketone + amine mixtures, we report in this work molar excess enthalpies, $H_{\rm m}^{\rm E}$ at 298.15 K and atmospheric pressure for the systems: propanone, 2-butanone, 2-pentanone, or 2-heptanone + aniline or + *N*-methylaniline. Previously, we have determined densities, ρ , molar excess volumes, $V_{\rm m}^{\rm E}$, excess adiabatic compressibilities, $\kappa_{\rm S}^{\rm E}$, and excess thermal expansion coefficients, $\alpha_{\rm p}^{\rm E}$, for these solutions.¹⁻⁴ These data have been used to compute the corresponding excess molar internal energies at constant volume, $U_{\rm Vm}^{\rm E}$. Knowledge of the amine—carbonyl interactions is essential for a better understanding of amide solutions, and of peptide bonds,⁵ and is necessary as a first step to investigate complex molecules of biological interest.⁶

EXPERIMENTAL SECTION

Materials. Propanone (≥ 0.995), 2-butanone (≥ 0.995), 2-pentanone (≥ 0.99), and *N*-methylaniline (≥ 0.98) were from Fluka; 2-heptanone (≥ 0.99) was from Sigma-Aldrich and aniline (≥ 0.995) from Riedel de Haën. The chemicals were used without further purification (purities expressed in mass fraction). The ρ values of the pure liquids are in good agreement with those from the literature (Table 1). Density measurements were carried out using a vibrating-tube densimeter and a sound analyzer, Anton Paar model DSA-5000. The uncertainty for the ρ values is $\pm 1 \cdot 10^{-2} \text{ kg} \cdot \text{m}^{-3}$, while the corresponding precision is $\pm 1 \cdot 10^{-3} \text{ kg} \cdot \text{m}^{-3}$.

Apparatus and Procedure. Binary mixtures were prepared by mass. All weighings were corrected for buoyancy effects, and the error on the final mole fraction is estimated to be less than \pm 0.0001. The conversion to molar quantities was based on the relative atomic mass table of 1996 issued by the International Union of Pure and Applied Chemistry (IUPAC).⁷

Table 1. Dens	sities, ρ , of Pure	e Compounds	at 2	298.15	K
---------------	--------------------------	-------------	------	--------	---

	$ ho/ m g\cdot cm^{-3}$			
compound	exp.	lit.		
propanone	0.785094	0.78443; ²³ 0.7845; ²⁴ 0.7844 ^{25,26} 0.78455 ²⁷		
2-butanone	0.799969	$0.7997;^{25,26} 0.79992^{27}$		
2-pentanone	0.801522	$0.8015;^{25} 0.80142^{28}$		
2-heptanone	0.811162	$0.8111;^{29} 0.81123^{25}$		
aniline	1.017457	$1.01710;^{30} 1.01744;^{31} 1.01741^{32}$		
N-methylaniline	0.982237	0.98206 ³¹		

A standard Calvet-type microcalorimeter, equipped with a batch mixing cell with a small (< 2 %) gas phase, was used to determine $H_{\rm m}^{\rm E}$ over the entire mole fraction range. Measurements were carried out at 298.15 K and atmospheric pressure. Before mixing, one liquid was maintained in the cell, and the another liquid was maintained in a syringe; both the cell and the syringe are kept in a calorimetric chamber. When baseline was steady, the quantified amount of pure reagent in cell was mixed with that in a syringe by batch injecting. In comparison with previous applications,⁸ some important improvements have been developed: (i) the temperature is controlled within \pm 0.0006 K using an analogical output through a Eurotherm 2416 controller connected to a power supplier Agilent 6644A; (ii) the initial glass mixing cells have been replaced by ones made of stainless steel, designed by us. For the test of the calorimeter, our $H_{\rm m}^{\rm E}$ measurements were compared to those available in the literature for the systems cyclohexane + benzene and cyclohexane

Received:	April 6, 2011
Accepted:	May 16, 2011
Published:	May 25, 2011

Table 2. Molar Excess Enthalpies, H_m^E , at 298.15 K and Atmospheric Pressure for *n*-Alkanone (1) + Aniline (2) or + *N*-Methylaniline (2) Mixtures

		$H_{ m m}^{ m E}$
x_1		J.mol ^{−1}
0.1100	2-Propanone (1) + Aniline (2)	105
0.1130		-427
0.2145		-746
0.3052		-965
0.4107		-1165.
0.5014		-1243
0.5082		-1245
0.6015		-1219
0.6991		-1076
0.8045		-816.
0.9002		-480
	2-Butanone (1) + Aniline (2)	
0.1156		-378
0.1565		-499
0.2099		-648.
0.3121		-879
0.4116		-1075
0.5106		-1173
0.6086		-1171
0.7009		-1071
0.8064		-814
0.9018		-469
	2-Pentanone (1) + Aniline (2)	
0.1113		-293
0.2052		-511
0.3080		-766
0.4073		-926
0.5067		-1027
0.5088		-1029
0.6049		-1049
0.6088		-1051
0.7108		-940
0.7979		-737
0.8995		-432
	2-Heptanone (1) + Aniline (2)	
0.1124		-131
0.2179		-294
0.3082		-449
0.4052		-588
0.4523		-647
0.5096		-691
0.5554		-724
0.6024		-744
0.6026		-740
0.7034		-699
0.7934		-565
0.8479		-471
0.8481		-472
0.8972		-346

ARTICLE

Table 2. Continued

		$H_{\rm m}^{\rm E}$
x_1		$J \cdot mol^{-1}$
	Propanone $(1) + N$ -Methylaniline (2)	
0.1286		-335
0.2316		-500
0.3191		-598
0.4089		-666
0.5086		-672
0.6075		-622
0.7097		-525
0.8055		-381
0.9012		-204
	2-Butanone (1) + N-Methylaniline (2)	
0.1361		-356
0.2283		-540
0.3187		-676
0.4093		-781
0.5090		-816
0.6091		-779
0.7055		-672
0.8028		-506
0.9030		-280
	2-Pentanone (1) + N-Methylaniline (2)	
0.1297		-332
0.2222		-528
0.3239		-693
0.4060		-793
0.5083		-837
0.6057		-807
0.7044		-707
0.8058		-529
0.9031		-292
	2-Heptanone (1) + N-Methylaniline (2)	
0.1219		-248
0.2133		-415
0.3078		-578
0.4076		-691
0.5029		-741
0.6064		-728
0.7063		-641
0.8037		-489
0.8975		-284

+ 2,2,4-trimethylpentane. Our results differ by less than 1 % from those of the literature^{9,10} near $x_1 = 0.5$.

RESULTS AND DISCUSSION

Table 2 lists values of the measured $H_{\rm m}^{\rm E}$ vs x_1 , the mole fraction of the *n*-alkanone. Our previous data¹⁻⁴ on $V_{\rm m}^{\rm E}$, $\kappa_{\rm S}$, and α_p for these mixtures have been used to compute $U_{\rm Vm}^{\rm E}$ (Table 3) from the equation:^{11,12}

$$U_{\rm Vm}^{\rm E} = H_{\rm m}^{\rm E} - \frac{\alpha_{\rm p}}{\kappa_{\rm T}} T V_{\rm m}^{\rm E} \tag{1}$$

Table 3. Molar Excess Internal Energies at Constant Volume, U_{Vm}^E , at 298.15 K and Atmospheric Pressure for *n*-Alkanone (1) + Aniline (2) or + *N*-Methylaniline (2) Mixtures

		$U_{ m Vm}^{ m E}$
x_1		$J \cdot mol^{-1}$
	2 Decrements $(1) + Antilize (2)$	
0 1000	2-Propanone (1) + Aniline (2)	210
0.1088		-219
0.1978		- 580
0.3039		-33/
0.5025		-048
0.5055		-090
0.5501		-/00
0.3922		-088
0.0995		-010
0.8051		-435
0.8931		-280
	2-Butanone (1) + Aniline (2)	
0.1118		-153
0.1547		-4199
0.2038		-272
0.3064		-426
0.4089		-553
0.5026		-623
0.6019		-639
0.7048		-587
0.8030		-480
0.9019		-277
	2-Pentanone (1) + Aniline (2)	
0.0948		-100
0.1497		-169
0.1939		-229
0.2993		-383
0.4058		-515
0.5005		-597
0.6055		-636
0.6963		-596
0.7943		-480
0.8890		-291
	2-Heptanone (1) + Aniline (2)	
0.1115		26
0.2133		-43
0.3064		-143
0.4002		-242
0.4537		-301
0.5092		-349
0.5430		-374
0.5964		-404
0.7057		-408
0.8041		-345
0.8515		-289
0.9033		-206
	Propanone (1) + N-Methylaniline (2)	
0.1447		-244
0.2503		-328

Га	ble	3.	Continued

		$U_{ m Vm}^{ m E}$
x_1		$J \cdot mol^{-1}$
0.2919		-354
0.3924		-380
0.4948		-364
0.6004		-325
0.6962		-257
0.8009		-186
0.8986		-91
	2-Butanone (1) + N-Methylaniline (2)	
0.1115		-192
0.2076		-325
0.2967		-449
0.3973		-520
0.4950		-545
0.5992		-521
0.6921		-439
0.8007		-333
0.8993		-178
	2-Pentanone (1) + N-Methylaniline (2)	
0.1000		-160
0.1980		-308
0.3057		-441
0.4037		-525
0.5014		-565
0.6052		-550
0.6985		-489
0.7949		-378
0.8894		-225
	2-Heptanone (1) + N-Methylaniline (2)	
0.1032		-131
0.2036		-273
0.2987		-394
0.3994		-492
0.4949		-542
0.5977		-545
0.6904		-499
0.8023		-373
0.8989		-212

In this equation, $\kappa_{\rm T}$ has been evaluated from the well-known relation: 13

$$\kappa_{\rm T} = \kappa_{\rm S} + \frac{T V_{\rm m} \alpha_{\rm p}^2}{C_{\rm Pm}} \tag{2}$$

Due to the lack of experimental data, $\kappa_{\rm T}$ values were determined assuming that the isobaric heat capacities of the investigated mixtures are ideal. 14 The data were fitted by unweighted least-squares polynomial regression to the equation:

$$F_{\rm m}^{\rm E} = x_1(1-x_1)\sum_{i=0}^{k-1} A_i(2x_1-1)^i$$
(3)

where $F_{\rm m}$ stands for the properties cited above. The number of coefficients k used in eq 3 for each mixture was determined by

Figure 1. H_m^E and U_{Vm}^E at 298.15 K for *n*-alkanone (1) + aniline (2) mixtures. Full points, H_m^E , measurements: \bullet , propanone; \blacksquare , 2-butanone; \blacktriangle , 2-pentanone; \blacktriangledown , 2-heptanone (this work); \blacklozenge , propanone; ¹⁶ open symbols, U_{Vm}^E data: \bigcirc , propanone; \bigtriangledown , 2-heptanone (this work). Curves, H_m^E (solid lines) and U_{Vm}^E (dashed lines), indicated results obtained using eq 3 and parameters listed in Table 4.

Figure 2. $H_{\rm m}^{\rm E}$ and $U_{\rm Vm}^{\rm E}$ at 298.15 K for *n*-alkanone (1) + *N*-methylaniline (2) mixtures. Full points, $H_{\rm m}^{\rm E}$ measurements: \bullet , propanone; \blacksquare , 2-butanone; \blacktriangle , 2-pentanone; \blacktriangledown , 2-heptanone; open symbols, $U_{\rm Vm}^{\rm E}$ data: \bigcirc , propanone; \bigtriangledown , 2-heptanone (this work). Curves, $H_{\rm m}^{\rm E}$ (solid lines) and $U_{\rm Vm}^{\rm E}$ (dashed lines), indicate results obtained using eq 3 and parameters listed in Table 4.

applying an *F*-test¹⁵ at the 99.5 % confidence level. Table 4 lists the parameters A_i obtained in the regression, together with the standard deviations σ , defined by:

$$\sigma(F_{\rm m}^{\rm E}) = \left[\frac{1}{N-k}\sum (F_{\rm m,\,cal}^{\rm E} - F_{\rm m,\,exp}^{\rm E})^2\right]^{1/2} \tag{4}$$

where N is the number of direct experimental values. Figures 1 and 2 show the data graphically. It is remarkable that our H_m^E measurements

Table 4. Coefficients A_i and Standard Deviations, $\sigma(F_m^E)$ (eq 4), for the Representation of the F_m^E Property at Temperature *T* for *n*-Alkanone (1) + Aniline (2) or + *N*-Methylaniline (2) Systems by eq 3

	$F_{\rm m}^{\rm E}$					$\sigma(F_{\rm m}^{\rm E})$	
system	$J \cdot mol^{-1}$	A_0	A_1	A_2	A_3	$J \cdot mol^{-1}$	
propanone + aniline	$H_{\rm m}^{\rm E}$	-4946	-690	400		9	
	$U_{ m Vm}^{ m E}$	-2775	-450	309		2	
2-butanone + aniline	$H_{ m m}^{ m E}$	-4660	-1150	290		10	
	$U_{ m Vm}^{ m E}$	-2473	-1075	339		7	
2-pentanone + aniline	$H_{ m m}^{ m E}$	-4115	-1340	500	300	10	
	$U_{ m Vm}^{ m E}$	-2401	-1273	596	326	7	
2-heptanone + aniline	$H_{ m m}^{ m E}$	-2767	-1570	450		6	
	$U_{ m Vm}^{ m E}$	-1371	-1657	520		2	
propanone +	$H_{\mathrm{m}}^{\mathrm{E}}$	-2672	340			8	
N-methylaniline							
	$U_{ m Vm}^{ m E}$	-1469	592			6	
2-butanone +	$H_{\rm m}^{\rm E}$	-3248	-140	300		6	
N-methylaniline							
	$U_{ m Vm}^{ m E}$	-2178	-7.3	330		8	
2-pentanone +	$H_{\rm m}^{\rm E}$	-3340	-295	370		3	
N-methylaniline							
	$U_{ m Vm}^{ m E}$	-2255	-313	351		0.6	
2-heptanone +	$H_{\rm m}^{\rm E}$	-2966	-517	490		3	
N-methylaniline							
	$U_{\rm Vm}^{\rm E}$	-2180	-567	463		2	

are in good agreement with those available in the literature for the propanone + aniline system. $^{16}\,$

Hereafter, we are referring to the values of the excess functions at equimolar composition and 298.15 K. The negative $H_{\rm m}^{\rm E}$ values obtained (Table 2) indicate the existence of strong interactions between unlike molecules. In a previous article,¹ the strength of the H-bonds between aniline and propanone has been evaluated to be $-30.52 \text{ kJ} \cdot \text{mol}^{-1}$, a value which is even lower than that for the H-bonds between 1-alkanol molecules $(-25.1 \text{ kJ} \cdot \text{mol}^{-1} \text{ in the ERAS model}^{17,18})$. The large and negative V_{m}^{E} values of these systems also support the existence of strong amine-ketone interactions. Thus, $V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = -1.183$ and -0.727 for the propanone + aniline or + N-methylaniline mixtures,¹ respectively, and -0.861 and -0.509 for the 2-heptanone + aniline or + N-methylaniline systems.³ We note that for a given alkanone, $H_{\rm m}^{\rm E}$ (aniline) < $H_{\rm m}^{\rm E}$ (N-methylaniline) (Table 2, Figures 1 and 2). This may be due to: (i) interactions between unlike molecules are stronger in aniline solutions; (ii) a lower number of amine-ketone interactions is created upon mixing in the case of systems containing N-methylaniline, as in this molecule the amine group is more sterically hindered; (iii) a higher positive contribution to $H_{\rm m}^{\rm E}$ from the breaking of the ketone-ketone interactions when N-methylaniline is mixed with alkanones, because of the aliphatic surface of this secondary amine.

The variation of $H_{\rm m}^{\rm E}$ with the chain length of the 2-alkanone is somewhat different for mixtures with aniline of *N*-methylaniline. For aniline systems, $H_{\rm m}^{\rm E}/J \cdot {\rm mol}^{-1}$ changes in the sequence: -1236 (propanone) < -1165 (2-butanone) < -1029 (2-pentanone) < -692 (2-heptanone), which may be ascribed to a weakening of the interactions between unlike molecules, when the size of the ketone is increased. For *N*-methylaniline systems, $H_{\rm m}^{\rm E}/J \cdot {\rm mol}^{-1}$ varies in the order: -668 (propanone) > -712 (2-heptanone) > -812 (2-butanone) > -835 (2-pentanone). A similar trend is encountered in alkanenitrile + 2-alkanone mixtures.¹⁹ Such H_m^E variation is probably due to the major importance of the positive contribution to H_m^E from the disruption of the alkanone-alkanone interactions, more favorably produced by the existence of the aliphatic part of *N*-methylaniline. It should be noted that in systems with heptane, $H_m^E/J \cdot mol^{-1}$ changes as follows: 1704 (propanone)²⁰ > 1338 (2-butanone)²¹ > 1135 (2-pentanone)²¹ > 886 (2-heptanone).²²

On the other hand, the large difference between $H_{\rm m}^{\rm E}$ and $U_{\rm Vm}^{\rm E}$ values (Tables 2 to 4, Figures 1 and 2) remarks on the importance of the equation of state contribution, which is related to the large and negative $V_{\rm m}^{\rm E}$ of these systems¹⁻⁴ (see above). The observed trends for $H_{\rm m}^{\rm E}$ are still valid for $U_{\rm Vm}^{\rm E}$. However, it is remarkable that the latter magnitude is practically constant from 2-butanone for *N*-methylaniline systems, which reveals that the different contributions to $U_{\rm Vm}^{\rm E}$ are here counterbalanced.

CONCLUSIONS

 $H_{\rm m}^{\rm E}$ values at 298.15 K have been determined for the propanone, 2-butanone, 2-pentanone, or 2-heptanone + aniline or + *N*-methylaniline systems. Negative $H_{\rm m}^{\rm E}$ values reveal that interactions between unlike molecules are dominant. Aniline solutions show more negative $H_{\rm m}^{\rm E}$ values due to stronger amine—ketone interactions compared to those in *N*-methylaniline solutions. In addition, $H_{\rm m}^{\rm E}$ increases with the size of the alkanone, which may be interpreted in terms of a weakening of interactions between unlike molecules. $H_{\rm m}^{\rm E}$ varies somewhat differently in *N*-methylaniline solutions, probably because the positive contribution to $H_{\rm m}^{\rm E}$ is more important here. The excess functions $H_{\rm m}^{\rm E}$ and $U_{\rm Vm}^{\rm E}$ show similar trends, although the latter is much higher, which remarks on the importance of the contribution of the equation of state term to $H_{\rm m}^{\rm E}$.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jagl@termo.uva.es. Fax: +34-983-423136. Tel.: +34-983-423757.

Funding Sources

The authors gratefully acknowledge the financial support received from the Consejería de Educación y Cultura of Junta de Castilla y León, under Project VA052A09 and from the Ministerio de Ciencia e Innovación, under Project FIS2010-16957. I.A. also gratefully acknowledges the grants received from the Junta de Castilla y León.

REFERENCES

(1) Alonso, I.; Alonso, V.; Mozo, I.; García de la Fuente, I.; González, J. A.; Cobos, J. C. Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-propanone + aniline, + N-methylaniline, or + pyridine systems. *J. Chem. Eng. Data* **2010**, *55*, 2505–2011.

(2) Alonso, I.; Mozo, I.; García de la Fuente, I.; González, J. A.; Cobos, J. C. Thermodynamics of ketone + amine mixtures. Part III. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-butanone + aniline, + N-methylaniline, or + pyridine systems. J. Chem. Eng. Data 2010, 55, 5400–5405. (3) Alonso, I.; Mozo I.; García de la Fuente, I.; González, J. A.; Cobos, J. C. Thermodynamics of ketone + amine mixtures. Part V. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-heptanone + aniline, + N-methylaniline, or + pyridine systems. *J. Solution Chem.*, in press.

(4) Alonso, I.; Mozo, I.; García de la Fuente, I.; González, J. A.; Cobos, J. C. Thermodynamics of ketone + amine mixtures. 7. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-pentanone + aniline, + N-methylaniline, or + pyridine systems. J. Mol. Liq. **2011**, 160, 180–186.

(5) Bour, P.; Tam, C. N.; Sopková, J.; Trouw, F. R. Measurement and ab initio modelling of the inelastic neutron scattering of solid *N*-methylformamide. *J. Chem. Phys.* **1998**, *108*, 351–359.

(6) Eberhardt, E. S.; Raines, R. T. Amide-amide interactions and amide-water hydrogen bonds: implication for proteins folding and stability. *J. Am. Chem. Soc.* **1994**, *116*, 2149–2150.

(7) Atomic weights of the elements 1995 (IUPAC technical report). *Pure Appl. Chem.* **1996**, *68*, 2339–2359.

(8) Cobos, J. C.; García de la Fuente, I.; González, J. A. Molar excess enthalpies for some systems containing the OH and (or) O groups in the same or in different molecules. *Can. J. Chem.* **2002**, *80*, 292–301.

(9) Stokes, R. H.; Marsh, K. N.; Tomlins, R. P. An isothermal displacement calorimeter for endothermic enthalpies of mixing. *J. Chem. Thermodyn.* **1969**, *1*, 211–221.

(10) Grolier, J.-P. E. Int Data Ser. Selec. DATA Mixtures Ser. A 1974, 3, 220.

(11) Rowlinson, J. S.; Swinton, F. L. Liquid and Liquid Mixtures, 3rd ed.; Butterworths: London, 1982.

(12) Kalali, H.; Kohler, F.; Svejda, P. Excess properties of binary mixtures of 2,2,4-trimethylpentane with one polar component. *Fluid Phase Equilib.* **1985**, *20*, 75–80.

(13) Douheret, G.; Davis, M. I.; Reis, J. C. R.; Blandamer, M. J. Isentropic compressibilities. Experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. *Chem. Phys. Chem.* **2001**, *2*, 148–161.

(14) Marczak, W.; Kielek, K. Internal pressure in binary mixtures of methylpyridine isomers with H₂O and D₂O. *Int. J. Thermophys.* 2010, 31, 85–96.

(15) Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, 1969.

(16) Nagata, I.; Ksiazczak, A. Excess enthalpies for (ethanol or propan-2-ol + aniline + propanone) at the temperature 298.15 K. *J. Chem. Thermodyn.* **1995**, *27*, 1235–1240.

(17) González, J. A.; Mozo, I.; García de la Fuente, I.; Cobos, J. C. Thermodynamics of organic mixtures contaning amines. IV. Systems with aniline. *Can. J. Chem.* **2004**, *83*, 1812–1825.

(18) González, J. A.; García de la Fuente, I.; Cobos, J. C. Thermodynamics of mixtures with strongly negative deviations from the Raoult's law. Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with Dortmund UNIFAC and ERAS results. *Fluid Phase Equilib.* **2000**, *168*, 31–58.

(19) Marras, G.; Artal, M.; Otín, S.; Marongiu, B. Calorimetric study of nitrile-carbonyl group interactions. Comparison with DISQUAC predictions. *Fluid Phase Equilib.* **1994**, *98*, 149–162.

(20) Hanson, D. O.; Van Winkle, M. Relation of binary heats of mixing and distribution of ketone between phases in some ketone-water solvent ternaries. *J. Chem. Eng. Data* **1960**, *5*, 30–34.

(21) Kiyohara, O.; Handa, Y. P.; Benson, G. C. Thermodynamic properties of binary mixtures containing ketones. III. Excess enthalpies of *n*-alkanes + some aliphatic ketones. *J. Chem. Thermodyn.* **1979**, *11*, 453–460.

(22) Urdaneta, O.; Handa, Y. P.; Benson, G. C. Thermodynamic properties of binary mixtures containing ketones. V. Enthalpies of an isomeric heptanone + *n*-heptane. *J. Chem. Thermodyn.* **1979**, *11*, 857–860.

(23) Akamatsu, Y.; Ogawa, H.; Murakami, S. Molar excess enthalpies, molar excess volumes, and molar isentropic compressions of mixtures of 2-propanone with heptane, benzene and trichloromethane at 298.15 K. *Thermochim. Acta* **1987**, *113*, 141–150.

(24) Papaioannou, D.; Ziakas, D.; Panayiotou, C. Volumetric properties of binary mixtures. 1. 2-Propanone + 2,2,4-trimethylpentane and *n*-heptane + ethanol mixtures. *J. Chem. Eng. Data* **1988**, *36*, 35–39.

(25) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Techniques of Chemistry; Weissberger, A., Ed.; Wiley: New York, 1986; Vol. II.

(26) Pereiro, A. B.; Tojo, E.; Rodríguez, A.; Canosa, J.; Tojo, J. Properties of ionic liquid HMIMPF₆ with carbonates, ketones and alkyl acetates. *J. Chem. Thermodyn.* **2006**, *38*, 651–661.

(27) Lee, L.; Chuang, M. Excess volumes of cyclohexane with 2-propanone, 2-butanone, 3-pentanone, 4-methyl-2-pentanone, 1-propanol, and 2-propanol and ethanoic acid + 1-propanol Systems. *J. Chem. Eng. Data* **1997**, *42*, 850–853.

(28) González, B.; Domínguez, A.; Tojo, J. Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15 and 303.15) K. New UNIFAC-VISCO interaction parameters. *J. Chem. Thermodyn.* **2006**, *38*, 707–716.

(29) Rubio, R. G.; Renuncio, J. A.; Díaz Peña, M. Vapor-liquid equilibrium of (methanol + a heptanone) at 298.15 K. J. Chem. Thermodyn. **1983**, 15, 779–783.

(30) Su, L.; Wang, H. Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: a theoretical and experimental study. *J. Chem. Thermodyn.* **2009**, *41*, 315–322.

(31) Nakanishi, K.; Touhara, H. Excess molar enthalpies of (methanol + aniline), (methanol + N-methylaniline), and (methanol + N_i N-dimethylaniline). J. Chem. Thermodyn. **1986**, 18, 657–660.

(32) Takagi, T. Ultrasonic speeds and thermodynamics of (benzene + aniline) and (chlorobenzene + aniline) under high pressures. *J. Chem. Thermodyn.* **1980**, *12*, 277–286.